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Let P be a simple n-sided polygon in the :plane, not 
necessarily convex. A diQgona2 of P is a line segment 
joining two non-adjacent vertices of P. We c,onsider 
here the problem of triangulating P, that is, of finding 
n - 3 diagonals which intersect neither each other nor 
the boundary of P and which divide the interior of P 
intox - :2 triarrgles 

a simple polygon appears to be more difficult. Indeed. 
no previously known method im,proves on the o(n13 
brute force algorithm. (The method of [4,51 is no* 
sufficient, since it cannot ensure that the boundary 
edge:s of P will belong to the constructed triangulation.) 
We shall give an algorithm which triangulates an arbl- 
trary n-vertex simple polygon in time O(n log tip). 

Applications of triangulation arise in closest point 
problems [ii ,2] and in evaluating functions by interpo- 
lation [3,6]. An elegant algorithm for triangulating a 
set S of n points in the plane has been given by Shamos 
[4.5], using the Voronoi diagram of S, and it requires 
on& O(n log n) steps on a random access machine with 
real-number arit’ .metic. The problem of triangulating 
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Our algorithm depends heavily upon results in f I] . 
We use the “regularization” procedure of that paper 
to preprocess the given polygon, subdividing it into 
polygons having a very simple structure. This special 
structure permits us to complete the triangulation usin 
a straightforward algorithm for triangulating each of the 
simpler polygons. Section ?, of this paper presents the 
algorithm for triangulating such a specially-structured 
polygon, and Section 3 discusses the property of ‘keg 
ularization” which allows us to use this algorithm for 
triangulating an arbitrary simple polygon. 

2. Triangulating :n monotone polygon 

Let P be Q simple polygon in the plate 
axy vertices ply p2, . . . . ptz. 

preferred direction and as 
that no two vertices of pb have the same y- 
(this assumption is not crucial to the resu 
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merely to simplify the presentat:ionj. Suppose without 
loss of generality th%at p1 is the vertex with the largest 
y-coordinate. The polygon P is said to be nzoProtorre 
if there is a vertex pe such that the vertices pl, pss .*., 
pk are in decreasing order by y-coordinate and the 
vertices pb p&+1, ..-, pm p1 are in increasing order by 
y-coordinate. ln this section we describe an algorithm 
for triangulating a nonotone polygon. 

To triangulate such a polygon P, we first sort its 
vertices in order of decreasing y-coordinate, Because 
P is a monotone, this can be done in time O(n) by 
merging the two sequences of vertices given by the 
definition. Suppose ql, 42, . . . . qn is the resulting 
sequence, withqi ‘~1. It is easy to prove that the 
following property (*) is equivalent to the monotone 
propps”ry: 
(*) For 2 G i Q n, there is some j ,< i such that qi and 
41 are adjacent on the boundary of P. 

We process the boundary vertices in the order ql, 
q2, l **9 qn. When we process a vertex, we may add cer- 
tain diagonals to the polygon. Each added diagonal 
cuts 2 triangle off of the polygon and leaves a polygon 
of one less side still to be triangulated. We shall call 
the part of the original polygon still to be triangulated 
the “remaining polygon”. 

During the processing, we maintain a stack that con- 
tains all vertices which have been processed so far and 
which lie on the boundary of the remaining polygon. 
The contents xl, x2, . . ., Xi of the stack satisfy the fol- 
lowing properties drrrng the processing: 

(i) x1, x2, . ..) Xi are in decreasing order byy-coor- 
dinate; 

60x1, x2, l **9 xi form a chain on the boundary of 
the remaining polygon; 

(iii) the inter‘;laJ angles of the remaining polygon at 
x21 x39 l **Y xi-1 are at least 180” ; and 

(iv) the next vertex to be processed is adjacent to 
either x1 or xi (or both). 

Here is the triangulation algorithm. 
Initial step: Place the first two vertices ql and q2 

in the stack. 
General step: Let x1, x2, . . . . . xi denote the stack 

contents and x the next vertex to be processed. 
(a) Jl’x is adjacent to xl but not xi, add &ago- 

nals cc x2), 6, x3), *a*, (x, Xi). Replace the stack 
contents by xi, X. 

(b) Otherwise, if x is adjacek;t to xI but not xl, 
repeat the follotig until i = I or the internal angle 
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Fig. 1. Caw (a) of the monotone polygon triaq@ation alga- 
rithm. Dashed lines are odded diagonals. The remaining poly- 
gon is formed from the old polygon by replacing the polygonal 
chain J:, xl, x2, xg x4 by the line segment x, x4. 

at J:i is at least 180” : add diagonal (x1-1, x), delete 
xi from the stack, and replace i by i - 1 a When this 
step is no longer ap,plicable, add x to the top of the 
stack. 

I$) Otherwise, if x is adjacent to both xl and xi, 
add diagonals (x, x2), (x, x3), . . . . (x, x1-1) and stop. 
Vertex x is the last one to be processed. 

Repeat the general step until case (c) applies. 
Fig!;. 1 through 3 illustrate cases (a), (b) and (c). The 

correctness of the algorithm depends upotl the fact 
that the added diagonals lie completely inside ‘be poly- 
gon. Consider for example the diagonal (x, x2) con- 
structed in case (a). None of the vertices xg x4, . . . . X‘K~ 
can Be inside or on the boundary of the triangle formed 
by xl, x2, and x because the internal angles of at least 
180” at xa x3 , . . . . xi_ 1 force x and x;), x4, . . . . xi to lie 
on opposite sides of the line through xl, x2 (Fig. 4). 
No other vertex of the polygon lies inside or on the 
boundary of this t&ngle because all such vertices have 
smaller y-coordinates than x. No point inside the tri- 
angle can be exterior to the polygon, because the poly- 
gon would then have to pass through the interior of 
the triangle, and at least one of its vertices would be 

Fig;. 2. Case (b) ci’ the monotone polygon triangulation algo- 
knm. The remaining polygon is formed from the old polygon 
k y replacing the polygonal chain x3, x* x5 x by x3 x. 
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Fig. 3. Case (c) of the monotone polygon triangulation algo- 
rithm. 

Fii 4. Verticesx and xg x,+, xg lie on opposite sides of the 
line through xl and x2. 

x2 

Fig. 5. Pointy is on the outside of the polygon. Some point 
z on line segment (xl, y) must lie on the polygon boundary. 
At least one end of the boundary edge containing z must lie 
inside the triangle xl, x2, x. 

in the interior of the triangle (Fig. 5). Thus, the diag 
onal (x, x2) lies completely within the polygon. A proof 
by induction verifies that the other diagonals constructed 
in case (a) lie inside the polygon. The proofs for cases 
(b) and (c) are similar. 

It is routine to verify that properties (i) through 
(iii) are preserved by the general step. The validity of 
(iv) follows from (*)* 

The algorithm requires Q(n) time for the initial 
merge-sort and O(n) time to process all the vertices. 
Ihe space required is also O(n). Thus, except for con- 

stant factors, neither the time complexity nor the 
space requirements can be improved, 

3. b@&uizatioh and inonotone polygons 

To complete the triangulation algorithm we need 

a met’hod for sub:dividing an arbitrary simple polygon 
into one or more monotone polygons. For this purpose 
we use the regularization algorithm of [ 11. This dgo- 
rithm adds diagonals to the given polygon P, none of 
which intersects either a boug.dary edge or another 
diagonal, so that the following properties hold: 

(i) Each vertex (except the one with largest y-coor- 
dinate) is joined directly to at least one vertex with a 
larger y-coordinate; and 

(ii) Each vkrtex (except the one with smallest y-coor- 
dinate) i8 joined directly to at least one vertex with a 
smaller y-coordinate. 

The regularization algorithm may add some &as_ 
04s which are-exterior to P{see Fig. 6(a)), but for 
our purposes these can be ignored. As shown in Fig. 
6(b), the diagonals added to the interior of P sirbdivid 
P into a number of smaller polygons, each of which 
contains no portion of any other diagonal in its inte- 
rior. We claim that each of these polygons must be 
monotone. 

LRt us say that a vertex 4 of a simple polygon Q is 
an inter&r cusp of Q if the internal angle at 4 exceeds 
180” and the two vertices adjacent to (I on the bound- 
ary of Q either both have larger y-coordinates than 4 
or both have smaller y-coordinates than 4. We then 
observe that, if Q is any one of the polygons obtained 
as described above from regularizing P, then no vertex 
of Q can be an interior cusp. Thjis is an immediate 
consequence of the two regularization properties and 
the fact that Q was chosen so th#t none of the dia,g 
onals introduced in the regularization of P intersects 
its interior. The following theorem then implies that 
each of the.;. polygons obtained by regularizing P is a 
monotone: polygon. 

llteorem 1. If Q is a simple polygon land no vertex of 
Q is an interior cusp, then Q is monotone. 

oof. Let Q be a polygon satisfying the hppot 
of the theorem, and let ql, q2, ..+$ qan denote the ver- 
tices of Q, listed in clockwise order almound the bound- 
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(b) i0) 

Fig. 6. A simple polygon P: (a) regularized; (b) decomposed into monotone polygons; (c) triangulated. 

arg. Suppose without less of generality that Q l has the 
largest y-coordinate among these and that qk, 1 < k G 
m , has the smallest y-coordinate. If Q is not monotone, 
?nen one of the two chtilns from 41 to Q& formed by 
the boundary edges of Q is not strictly decreasing by 
y-coordinate. Consider the case in which the chain 
passing through q2 faik to be strictly decreasing (the 
other case is symmetric). Choose 41, 1 <i <k, to be 
the first vertex on thi!; path such that the y-coordinate 
of qi+l exceeds that of QI. 

We first obseme that the edge from qi to qi+l must 
lie to the Ileft of the edge from qi_l to 41, for other- 
wise qi would be an interior cusp of Q (see Fig. 7(a)). 
Now consider the line through qi and qk (see Fig. 7(b)), 
and let r +r qi be the first point on the boundaq ol Q 
encounterlzd when traveling from gi to 4s along this 
line (r might be qk). Then the line segment joining pi 
to I divide:3 the exterior of Q into two parts, one of 
which is a finite polygon Q’, as shown in Fig. 7(c). 
Except for r, the vertices of Q’ are all vertices of Q. 

Among all the vertices of Q’, let s be the one having 
largest y-coordinate. Then s is also a vertex of Q, and 
furthermore s must be an interior cusp; it therefore 
follows that Q must be monotone. 

The following algorithm triangulates an arbitrary 
simple polygon. 

Step 1. Apply the regularization algorithm to the 
polygon. Delete all added diagonals which are exterior 
to the pofygon (in fact the regularization algorithm 
can be mcdified to add only the interior diagona!s). 

Step 2. Apply the algorithm of Section 2 to t&n- 
gulate each monotone polygon in the subdivision of 
the given polygon constructed by Step 1. 
Fig. 6(c) shows the results of applying this algorithm 
to a simple polygon. 

The regularization algoiithm given in [ 1 ] requires 
O(n log n) time for zn n-vertex polygon, and the algo- 
tithkm of Section 2 requires a total of o(n) time to 
triangulate all the polygons in the resulting subdivision. 
Thus the total time required for triangulating an n-ver- 

(a) (b) (cl 
I-&. 7. Steps in f!w proof of Theorem 1: (a) qi is the first ver- 
tex on the path q1,42 , . . . . qk such that qi+l has largery-coor- 

a.ry for the first time at point r; (c) polygon &’ exterior to Q 

dinate than qi; (b) !ine from qi to qk intersects polygon hound- 
formed by the line segment (qh r); s is the vertex of Q’ having 
largest y-coqtdinate and must be an interior cusp of Q. 
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