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1. Introduction

Let Pbe a simple n-sided polygon in the plane, not
necessarily convex. A diagonal of P is a line segment
joining two non-adjacent vertices of P. We consider
here the problem of triangulating P, that is, of finding
n — 3 diagonals which intersect neither each othernor
the boundary of P and which divide the interior of P
into'n — 2 triangles ’

Applications of triangulation arise in closest point
problems [1,2] and in evaluating functions by interpo-
lation [3,6]. An elegant algorithm for triangulating a
set S of n points in the plane has been given by Shamos
[4.5], using the Voronoi diagram of §, and it requires
onlv O(n log n) steps on a random access machine with
real-number arit'.metic. The problem of triangulating
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a simple polygon appears to be more difficult. Indeed.
no previously known method improves on the O(n?)
brute force algorithm. (The method of [4,5] is not
sufficient, since it cannot ensure that the boundary
edges of P will belong to the constructed triangulation.)
We shall give an algorithm which triangulates an arbi-
trary n-vertex simple polygon in time O(n log n).

Our algorithm depends heavily upon results in 1].
We use the “regularization” procedure of that paper
to preprocess the given polygon, subdividing it into
polygons having a very simple structure. This special
structure permits us to complete the triangulation using
a straightforward algorithm for triangulating each of the
simpler polygons. Section 2 of this paper presents the
algorithm for triangulating such a specially-structured
polygon, and Section 3 discusses the property of “reg-
ularization” which allows us to use this algorithm for
triangulating an arbitrary simple polygon.

2. Triangulating » monotone polygon

Let P be z simple polygon in the plane having bound-
ary vertices py, pa, ..., Pn. We choose the y-axis as a
preferred direction and assume throughout this paper
that no two vertices of P have the same y-coordinate
(this assumption is not crucial to the resulis, but serves
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merely to «implify the presentation). Suppose without
loss of generality that p, is the vertex with the largest
y-coordinate. The polygon P is said to be monotone

if there is a vertex py such that the vertices py, ps, ...,
D are in decreasing order by y-coordinate and the
vertices pg, pkﬂ, ..., Dn D1 are in increasing order by
y-coordinate. In this section we describe an algorithm
for triangulating a monotone polygon.

To triangulate such a polygon P, we first sort its
vertices in order of decreasing y-coordinate. Because
Pis a monotone, this can be done in time O(z) by
merging the two sequences of vertices given by the
definition. Suppose q,, 45, ..., @ is the resulting
sequence, with ¢; = p;. It is easy to prove that the
following property () is equivalent to the monotone

e o b e

properiy:
(+) For 2 i <n, there is some j <i such that q; and
q; are adjacent on the boundary of P.

We process the uuuuualy vertices in the order qi
q3, -, @n. When we process a vertex, we may add cer-
tain diagonals to the polygon. Each added diagonal
cuts z triangle off of the polygon and leaves a polygo
of one less side still to be triangulated. We shall call
the part of the original polygon still to be tnangulated
the “remaining polygon™.

During the processing, we maintain a stack that con-
tains all vertices which have been processed so far and
which lie on the boundary of the remaining polygon.
The contents x;, X5, ..., X; of the stack satisfy the fol-
lowing properties during the processing:

(i) x4, x5, ..., x; are in decreasing order by y-coor-
dinate;

(ii) x4, x, ..., x; form a chain on the boundary of
the remaining polygon;

(iii) the internal angles of the remaining polygon at
X3,X3, ..., X;_y are at least 180°; and

(iv) the next vertex to be processed is adjacent to
either x; or x; (or both).

Here is the triangulation algorithm.

Initial step: Place the first two vertices g, and g,
in the stack.

General step: Let x4, x,,...., x; denote the stack
contents and x the next vertex to be processed.

(a) 7 x is adjacent to x but not x;, add diago-
nals (x, x,), (x, x3), ..., (x, x;). Replace the stack
contents by x;, x

(b} Otherwise, if x is adjaceit to x; but not x;,
repeat the following until i = 1 or the internal angle

176

. INFORMATION PROCESSING LETTERS

June 1978

Fig. 1. Case (a) of the monotone poiygon trianguiation aigo-
rithm. Dashed lines are added diagonals. The remaining poly-
gon is formed from the old polygon by replacing the polygonal
chain J;, xq, X3, X3, X4 by the line segment x, x4.

at:; is at least 180": add diagonal (x;_,, x), delete
x; {rom the stack, and replace i by i — 1. When this
step is no longer applicable, add x to the top of the
stack.

(c) Otherwise, if x is adjacent to both x; and x;,
add diagonals (x, x3), (x, x3) « (x, x;_1) and stop.
Veitex x is the last one to be pTGCESSv‘:u.

Repea: the general step until case (c) applies.
Figs. 1 through 3 illustrate cases (a), (b) and (c). The

correcrness of the nlomnthm rlenendq upon the fact

that the added dxagonals lie completely inside “ne poly-
gon. Consider for example the diagonal (x, x,) con-
structed in case (a). None of the vertices x 3, xg4, ..., X;
can lie inside or on the boundary of the triangle formed
by x4, X3, and x because the internal angles of at least
180° at x4, X3, ..., Xj—y force x and x 3, x4, ..., X; to lie
on opposite sides of the line through x,, x, (Fig. 4).

No other vertex of the polygon lies inside or on the
houndary of this triangle because all such vertices have

- smaller y-coordinates than x. No point inside the tri-

angle can be exterior to the polygon, because the poly-
gon would then have to pass through the interior of
the triangle, and at least one of its vertices would be

Fiy. 2. Case (b) of the monotone polygon triangulaticn algo-
riinm. The remaining polygon is formed from the old polygon
ty replacing the polygonal chain x3, x4, x5, X by x3, x.
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rithm.

Fig. 4. Vertices x and x3, x4, x5 lie on opposite sides of the
line through x4 and x5.

Fig. 5. Point y is on the outside of the polygon. Some point
2 on line segment (xy, ¥) must lie on the polygon boundary.
At least one end of the boundary edge containing z must lie
inside the triangle xy, x3, x

in the interior of the triangle (Fig. 5). Thus, the diag-
onal (x, x,) lies completely within the polygon. A proof
by induction verifies that the other diagonals constructed
in case (a) lie inside the polygon. The proofs for cases
(b) and (c) are similar.

It is routine to verify that properties (i) through
(iii) are preserved by the general step. The validity of
(iv) follows from (*).

The algorithm requires O(x) time for the initial
merge-sort and O(n) time to process all the vertices.
The space required is also O(n). Thus, except for con-
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stant factors, neither the time complexity nor the

. space requirements can be improved.

3. Regulanzatmn nnd monotone p«olygons

To complete the. tnammlatlon algorithm we need
a method for sul: dmdmg an arbitrary simple polygon
into one or more monotone polygons. For this purpose
we use the regularization algorithm of [11. This algo-
rithm adds diagonals to the given polygon P, none of
which intersects either a boundary edge or another
diagonal, so that the following properties hold:

(i) Each vertex (except the one with largest y-coor-

~dinate) is joined directly to at least one vertex with a

larger y-coordinate; and

(ii) Each vértex (except the one with smallest y-coor-
dinate) i§ joined directly to at leazt one vertex with a
smaller y-coordinate.

The regularization algorithm may add some dlag-
onals which are.exterior to P (see Fig. 6(a)), but for
our purposes these can be ignored. As shown in Fig.
6(b), the diagonals added to the interior of P subdivic
P into a number of smaller polygons, each of which
contains no portion of any other diagonal in its inte-
rior. We claim that each of these polygons must be
monotone.

Let us say that a vertex g of a simple polygon Q is
an interior cusp of Q if the internal angle at g exceeds
180° and the twa vertices adjacent to g on the bound-
ary of Q either both have larger y-coordinates than q
or both iiave smaller y-coordinates than q. We then
observe that, if @ is any one of the polygons cbtained
as described above from regularizing P, then no vertex
of Q can be an interior cusp. This is an immediate
consequence of the two regularization properties and
the fact that Q was chosen so that none of the diag-
onals introduced in the regularization of P intersects
its interior. The following theorem then implies that
each of the polygons obtained by regularizing P is a
monotone polygon.

Theorem: 1. If Q is a simple polygon and no vertex of
Q is an interior cusp, then @ is monotone.

Proof. Let Q be a polygon satisfying the hypothesis

of the theorem, and let gy, @3, ..., m denote the ver-
tices of Q, listed in clockwise order around the bound-
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Fig. 6. A simple polygon P: (a) regularized; (b) decomposed into monotone polygons; (c) triangulated.

ary. Suppose without less of generality that g, has the
largest y-coordinate among these and that g, 1 <k <
n:, has the sraallest y-courdinate. If Q is not monotone,
then one of the two chains from g, to g formed by
the boundary edges of (2 is not strictly decreasing by
y-coorditiate. Consider the case in which the chain
passing through g, fails to be strictly decreasing (the
other case is symmetric). Choose g;, 1 <i <k, to be
the first vertex on this path such that the y-coordinate
of g;+1 exceeds that of g;.

We first observe that the edge from g; to g4+, must
lie to the left of the edge from q;_; to q;, for other-
wise g; weuld be an interior cusp of Q (see Fig. 7(a)).

Now consider the line through q; and g, (see Fig. 7(b)),

and let r # q; be the first point on the boundary oi Q
encounterzd when traveling from 4; to g along this
line ( might be gx). Then the line segment joining q;
to r divides the exterior of Q into two parts, one of
which is a finite polygon @', as shown in Fig. 7(c).
Except for 7, the vertices of Q' are all vertices of Q.

I'ig. 7. Steps in the proof of Theorem 1: (a) q; is the first ver-
tcjx on the path qy, q3, ..., g such that ;4 has larger y-coor-
dinate than g;; (t) line from q; to gy intersects polygon hound-
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Among all the vertices of @', let s be the one having
largest y-coordinate. Then s is also a vertex of Q, and
furthermore s must be an interior cusp; it therefore
follows that Q@ must be monotone.

The following algorithm triangulates an arbitrary
simple polygon.

Step 1. Apply the regularization algorithm to the
polygon. Delete all added diagonals which are exterior
to the polygon (in fact the regularization algorithm
can be mcdified to add only the interior diagonal's).

Step 2. Apply the algorithm of Section 2 to trizn-
gulate each monotone polygon in the subdivision of
the given polygon constructed by Step 1.

Fig. 6(c) shows the results of applying this algorithm
to a simple polygon.

The regularization algosithm given in [1] requires
O(n log n) time for 2n n-vertex polygon, and the algo-
rithim of Section 2 requires a total of O(n) time to
triangulate all the polygons in the resulting subdivision.
Thus the total time required for triangulating an n-ver-

(¢)

ary for the first time at point r; (c) polygon Q' exterior to @
formed by the line segment (g;, r); s is the vertex of Q' having

largest y-coordinate and must be an interior cuspof Q. . .
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tex simple polygon is O{n log n). The space reqmred o 3D,

is ofn).

References

(1] D.T. Lee and F.P. Preparata, Location of a pointin a
planar subdivision and its applications, SIAM J. Comput.
6 (1977) 594-606.

[2]) R.J. Lipton and R.E. Tarjan, Applications of a planar

separator theorem, to appear.

i nv from random

, of Comput ~Sck: 16 (1975)
- 151-162, S

[6] G. Strang and G. Fix, An Analysls of the Finite Element
Method, (Prentice-Hall, Englewood Cliffs, NJ, 1973).

179



