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Abstract
We present a fundamental framework for organizing exploration, coverage, and surveillance by a swarm of robots with
limited individual capabilities, based on triangulating an unknown environment with a multi-robot system. Locally, an
individual triangle is easy for a single robot to manage and covers a small area; globally, the topology of the triangula-
tion approximately captures the geometry of the entire environment. Combined, a multi-robot system can explore, map,
navigate, and patrol. Algorithms can store information in triangles that the robots can read and write as they run their
algorithms. This creates a physical data structure (PDS) that is both robust and versatile.

We study distributed approaches to triangulating an unknown, two-dimensional Euclidean space using a multi-robot
network. The resulting PDS is a compact representation of the workspace, contains distributed knowledge of each triangle,
encodes the dual graph of the triangulation, and supports reads and writes of auxiliary data. The ability to store and
process this auxiliary information enables the simple robots to solve complex problems. We develop distributed algorithms
for dual-graph navigation, patrolling, construction of a topological Voronoi tessellation, and location of the geodesic
centers in non-convex regions. We provide theoretical performance guarantees for the quality of constructed triangulation
and the connectivity of a dual graph in the triangulation. In addition, we show that the path lengths of the physical
navigation are within a constant factor of the shortest-path Euclidean distance. We validate these theoretical results with
simulations and experiments with a dozen or more robots.
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1. Introduction

Consider an unknown environment, such as a factory after
a fire, a building after an earthquake or a landscape follow-
ing a flood. How can we make use of mobile robots in order
to explore the area, construct a useful map, and respond
to ongoing developments? How can we secure the area, so
that new events or developments are quickly detected and a
rapid response can be dispatched? And how can we struc-
ture exploration and surveillance in the first place, before a
disaster even happens?

Fundamental problems arising from these kinds of sce-
narios have been considered from a variety of differ-
ent angles, with many impressive scientific and practical
achievements. Work on individual mobile robots has pro-
duced platforms that are capable of amazing feats; how-
ever, even an extremely powerful robot cannot be in several
places at once, therefore it cannot detect parallel events, has
to travel between locations, and is vulnerable to catastrophic
failures. On the other hand, the field of sensor networks has
been able to develop a wide range of methods and technolo-
gies for achieving distributed coverage, parallel sensing and

processing, and robustness; however, these platforms are
immobile, requiring deployment beforehand and precluding
flexible response to dynamic developments.

This is where systems of many simple robots can offer
the best of both worlds: they combine mobility and flexi-
bility with parallelism and robustness. The basic idea is to
deploy a mobile sensor network that informs other robots
about the surrounding environment, where we envision
deploying a heterogeneous group of robots. A large num-
ber of small, low-cost, simple robots initially spread out
to map the environment and sense events. With proper
organization, we can use their topological map as a dis-
crete representation of the surrounding environment. Thus,
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we can provide support for many kinds of tasks, allow-
ing us to achieve localization of sensory events, distributed
computation, and support for other, more capable, robots,
without requiring global information, communications, or
processing.

There are several crucial challenges that must be solved
in order to reach this objective. How can we organize a
swarm of simple robots in order to explore an unknown
environment? How can we use active deployment as a step-
ping stone for building structures that continue to be useful
and flexible for surveillance and guarding, such that the
advantages of distributed and parallel action are not wiped
out by the impediments of limited sensing and bounded
local information and coordination? And how can we use
the structured swarm for even higher-order tasks?

This paper provides an integrated framework for solv-
ing this hierarchy of challenges, combining swarm robotics
with ideas from sensor networks as well as analytic meth-
ods from algorithmics. At the first level, our approach is
based on constructing a “good” triangulation of the environ-
ment during exploration, even with very simple and weak
individual robots. We demonstrate that triangulating the
workspace with a multi-robot system is a useful stepping
stone for a wide range of tasks, even when using robots with
limited sensors and sensor accuracy. As it turns out, these
capabilities suffice to achieve triangulation with provable
trigonometric performance guarantees, even in the worst
case. To this end, the simple robots are positioned such that
they become the vertices of a triangulation of the environ-
ment. The triangulation provides complete coverage, can be
built using basic local geometry, allows proofs of proper-
ties for coverage and navigation, and provides distributed
computation and data storage.

Making use of the underlying topological structure of a
triangulation is also the key to handling the second chal-
lenge: the triangles in the triangulation create a physical
data structure (PDS) of computational elements embedded
in the physical world. Exploiting the dual graph of a tri-
angulation for distributed mapping and navigation leads to
provable performance guarantees.

Considering computation on the triangles instead of the
robots provides a useful abstraction that eases computa-
tion. At the third level, we use the triangles to compute
a discretized approximation of a Voronoi partition, called
the topological Voronoi tessellation (TVT). Using the TVT,
the triangles can then compute the geodesic center of their
Voronoi partition. A straightforward approach to this com-
putation is susceptible to errors from local minima. Using
the triangles as computational elements allows us to intro-
duce virtual agents, simulated robots that perform com-
putation and travel from triangle to triangle at the speed
of message communication. These virtual agents find all
the minima, and then separate the local from the globally
optimal center. A mobile robot positioned at this center
can respond to events in their TVT partition with optimal
response time.

All three levels of this framework (Sections 4, 5 and 6)
are presented in a modular manner. For all algorithmic solu-
tions, we present technical assumptions, theoretical results,
algorithms, simulation results, and hardware experiments,
demonstrating the integration of provable analytic results
with practical simulations and experiments.

Our contributions

Research on particular aspects of exploration, mapping,
navigation and surveillance of known and unknown envi-
ronments is a central topic in; (1) robotics; (2) sensor net-
works; and (3) algorithmics (in Section 2, we describe a
selection of related work from all three fields). In particular,
making use of swarms of many simple components instead
of single, more powerful robots has received a growing
amount of attention. However, the vast majority of previous
research has been carried out separately.

1. Impressive work from robotics has been largely
heuristic, without provable theoretical performance
guarantees.

2. Sensor networks are able to carry out a wide range of
distributed computing tasks, but only provide a station-
ary infrastructure that lacks many of the key features of
mobile robots.

3. While algorithmics has managed to achieve many
sophisticated methods, these are often only founded in
theory.

The key contribution of our work is to develop an over-
all framework for a (potentially huge) swarm of simple,
mobile robots that combines ideas and methods from all
three fields, and manages to blend them into one integrated,
multi-level approach that achieves results that provide; (1)
provable theoretical performance guarantees; (2) a robust
sensory infrastructure that combines aspects of stationary
sensor networks with mobile robotics; (3) practically useful
and experimentally validated methods.

We present in detail a multi-level, fully distributed
approach that is structured into three stages.

1. At the deployment level, we develop simple distributed
exploration methods for a swarm of simple robots in
unknown environments, based on triangulation requir-
ing only local information and geometry. The key idea is
that even very limited capabilities in sensing and control
suffice to construct a triangulation of “good” trigono-
metric properties, which achieves provably good cov-
erage. The corresponding module is described in Sec-
tion 4, “triangulation construction in unknown space”.

2. At the navigation level, we show how the achieved trian-
gulation can be employed as a physical data structure for
navigation and routing. The key idea is that in a good tri-
angulation, basic dual graph navigation achieves prov-
ably good performance in the original geometric space,
even with very limited sensing capabilities and without
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global coordination. Details of this module are provided
in Section 5, “navigation in triangulated space”.

3. At the global infrastructure level, we demonstrate how
the benign properties of good triangulations can be
used for more advanced structuring, without requiring
global computation. The key idea is that we can exploit
higher-order topological Voronoi tessellations in order
to coordinate more complicated distributed tasks, such
as patrolling by a swarm of mobile robots. Section 6,
“topological Voronoi tessellation”, presents details of
the resulting module.

For each of these modules, we describe the underlying
theoretical and technical assumptions, establish provable
theoretical worst-case performance guarantees, provide
details of technical implementation, and present experimen-
tal validation and evaluation.

2. Related work

There has been a large body of work in the field of robotics
on using robot swarms for navigation and exploration. Here
we only mention the work most closely related to ours, in
particular those employing some elements of sensor net-
works. Notable is the approach by Batalin and Sukhatme
(2004), which is similar to our own in that it combines
mobile robots with a sensor network, but uses estimated
transition probabilities between nodes to compute the best
direction to suggest to a mobile robot for moving between a
start and goal node. These transition probabilities are estab-
lished during deployment, with both the robots and sen-
sor nodes having synchronized direction sensors. McLurkin
and Smith (2004) present a breadth-first distribution from a
more practical view, using a swarm of 100 robots. However,
their work forms a sensor network that does not contain the
environment’s geometric features. Another bridge between
robotics and sensor networks is described by McLurkin
and Demaine (2009); they use ideas similar to the ones
for detecting the boundary of a stationary sensor network
(see Fekete et al. (2004), Fekete et al. (2005), Kröller et al.
(2006)) for identifying the boundary of a robot swarm. Bur-
gard et al. (2000) coordinated multiple robots using a proba-
bilistic method to explore unknown space, but assumed that
each robot knows the relative positions of all other robots.
This differs from our work that pursues a fully decentralized
network, so that each robot is able to share local infor-
mation only with its immediate neighbors that are within
communication range.

Konolige et al. (2006) and Ko et al. (2003) designed
distributed algorithms for multi-robot localization and map-
ping in an unknown environment. However, their work
allows the loss of communication between a pair of robots
while exploring an unknown environment. Partial maps col-
lected by each robot can only be merged after two robots
rendezvous at the same location and share their map data. If
disconnection happens, one robot in a rendezvous position
cannot announce its current location to other disconnected

robots. As a result, the robot at the rendezvous location only
relies on the “chance” to meet with other robots by waiting
at its current location. This method cannot deterministically
guarantee the algorithmic correctness without employing
more advanced methodologies for achieving a rendezvous;
even though there is a wide range of models and methods
for dealing with rendezvous search, this is a deep theoretical
field (Alpern and Gal, 2003).

Another highly interesting work is the GNAT project
by O’Hara et al. (2005), which aims at building a sen-
sor network that interacts with mobile robots to support
various applications. This, however, does not consider the
dispersion of a large number of sensors in an unknown envi-
ronment. Instead, the authors focus on the device structure
of each sensor and the way in which a sensor network inter-
acts with mobile robots. Unless these are provided a priori,
this also precludes enabling provably good properties of the
employed sensor network, which is one of the key features
of our work.

Other extremely relevant work is presented by
Rutishauser et al. (2009), who placed a group of miniature
robots to cover a target space using a collaborative scheme.
While this also provides distributed methods for dispersing
robots uniformly, it uses a different avenue for dealing
with the geometry of the environment, giving robots the
individual ability to localize themselves based on a prede-
fined, global color-coding scheme. This differs from our
approach, which does not require or provide any such prior
knowledge (or global coordinates such as GPS). Durham
et al. (2010) present a pursuit-evasion algorithm for a team
of robots, whereas Ghoshal and Shell (2011) and Nouyan
and Dorigo (2006) describe an RRT-like algorithm. Those
works use the robot’s physical positions as a data structure
to store intermediate results of the algorithm. On the other
hand, robots used by Durham et al. (2010) are not station-
ary. Therefore, sensing an event in these robot networks
becomes time sensitive. Moreover, random-based branch
expansion in a tree-like structure by Ghoshal and Shell
(2011) and Nouyan and Dorigo (2006) may degenerate the
space coverage efficiency because of unbalanced robot den-
sity. Other exciting recent work on formations of massive
swarms of robots is presented by Rubenstein et al. (2014),
who describe how to achieve geometric shapes with simple
robots. However, the simplicity of the employed kilobot
platform requires some external control, so distributed
methods for achieving guaranteed geometric properties
appear to be elusive. Instead, algorithmic approaches take
a quite different angle (e.g. as described in Becker et al.
(2013a), Becker et al. (2014) and Becker et al. (2015)).

In contrast to physical data structures (PDSs) for naviga-
tion in a triangulated space, our approach allows us to use
triangles as computational elements, which provide useful
geometric properties and support practical distributed com-
putations for robot navigation and exploration using only
local information and communications. Approaches such as
those used by Spears et al. (2004) and Turgut et al. (2008)
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build a triangle lattice using potential fields, but this is
not a triangulation: there is no knowledge of triangles, the
dual graph, or distributed data structures for computation,
so the robots never recognize that they form a triangula-
tion. Therefore, many studies, including Geraerts (2010) or
Kallmann (2005), use a triangulated environment for path
planning, but require global information and localization.

For triangulation construction, we combine the ideas of
routing in stationary sensor networks (Fekete and Kröller,
2006, 2007; Kröller et al., 2009) with approaches for
dynamic robot swarms. New challenges arise when consid-
ering a large number of real-life mobile nodes with limited
capabilities. The online minimum relay triangulation prob-
lem (MRTP) has received attention from the theoretical side
by Fekete et al. (2011), who show that a competitive fac-
tor of 3 for the number of necessary nodes can be achieved,
whereas no constant factor can be guaranteed for the related
online maximum area triangulation problem (MATP) of
maximizing the space of a given number of nodes. For
settings with axis-parallel boundaries of the environment,
see Fekete et al. (2013). The MATP is revisited in Sec-
tion 4.2, in which we demonstrate that certain geometric
assumptions can allow such a constant factor for the online
MATP. In a more general setting, triangulations with shape
constraints for the triangles and the use of Steiner points are
considered in mesh generation, see the survey by Bern and
Eppstein (1992). With respect to the particular capabilities
of the robot, we remark that our work has been motivated by
and evaluated on a particular platform (the r-one), but works
similarly well for others, as long as some basic trigonom-
etry can be performed (e.g. when being able to measure
distances instead of angles). In this context, the interested
reader is directed to the survey by Suri et al. (2008) on the
abilities of robot exploration with minimal sensing.

The problem of placing a minimum number of relays
with a limited communication range in order to achieve a
connected network (a generalization of the classical Steiner
tree problem) is considered by Efrat et al. (2008), who give
a number of approximation results for the offline problem
(a 3.11-approximation for the one-tier version and a PTAS
for the two-tier version of this problem). A similar ques-
tion is considered by Bredin et al. (2010), who reported
on the minimum number of relays needing to be placed
to assure a k-connected network. They present approxima-
tion results for the offline problem. Kashyap et al. (2011)
concentrate on approximation algorithms for the case of
k = 2 in higher-dimensional Euclidean space. Asking for
multipath connectivity in a network increases the fault tol-
erance against node failures. We aim for a well-connected
network, but the triangulated structure allows other applica-
tions. Moreover, k-connectivity approaches do not consider
whether an entire region is covered, or how much of the area
can be covered. For swarms, Hsiang et al. (2004) consider
the problem of dispersing a swarm of simple robots in a cel-
lular environment, minimizing the time until every cell is
occupied by a robot. For workspaces with a single entrance

door, Hsiang et al. present algorithms with time optimal
makespan and �( log( k + 1) )-competitive algorithms for
k doors. Maintaining cohesiveness of a robot swarm in the
presence of exterior forces is the subject of a recent paper
by Krupke et al. (2015).

With respect to topological Voronoi tessellation, we place
a set of robots at their optimal positions for the mini-
mum worst-case response time. The proposed algorithms
adapt an approach similar to Lloyd’s algorithm with Voronoi
tessellation; however, we face a more difficult scenario,
because we preclude global positioning or maps of an envi-
ronment. Cortes et al. (2004) used Lloyd’s algorithm with
a density function around the target region, such as a light
source, to deploy robots around the target with resting den-
sity. This work, however, uses the standard Voronoi dia-
gram, and only guarantees convergence when the Voronoi
regions are convex. Several authors have extended Lloyd’s
algorithm to operate in non-convex regions. This makes it
necessary to deal with the case in which the centroid is
not within the navigable region, but instead is inside a con-
cavity, or inside of an obstacle. Bhattacharya et al. (2013)
computed the closest point on the boundary of the region to
the centroid, then moved the robot there. Breitenmoser et al.
(2010b) presented a similar approach, but used the tangent
bug algorithm to find the closest point. Both approaches
do not guarantee the location with the minimum response
time. Moreover, these works require either self-localization
in shared coordinate or an external source for global posi-
tioning. Yun and Rusy (2012) proposed a distributed ver-
tex substitution algorithm to compute Voronoi centroids for
multiple robots in non-convex and discrete space, comput-
ing a configuration that is locally optimal. Breitenmoser
et al. (2010a) used a triangle mesh to compute centroids
Voronoi tessellation of a non-planar surface. They assumed
that each robot can get the mesh information within the
communication range and share it with neighbor robots,
therefore the result highly depends on the length of mesh
edges.

A more rigorous approach is to compute the geodesic
center of the Voronoi region. Aronov (1989) presented an
algorithm to compute a geodesic Voronoi tessellation in
non-convex environments, but did not compute the geodesic
center. It is possible to compute the geodesic center in a
brute-force fashion by considering each point in the region,
but this is computationally intractable for large regions.
Many approximations can be found in the robotics litera-
ture. Durham et al. (2012) described a pairwise gossip algo-
rithm that makes robots converge to the center of Voronoi
cells constructed on a discrete grid; however, they require
a map with a unified coordinate system. Moreover, their
work allows that each Voronoi region can be larger than the
sensing or communication radius of a robot. This requires
each robot in each Voronoi cell to physically move to adjust
each Voronoi region and to sense an event. Therefore, it
may not be possible to sense multiple events immediately
and in parallel, even though multiple robots are employed.
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Pimenta et al. (2008) used objective function with vari-
ous types of distance including the geodesic distance for
geodesic center in a non-convex environment and the power
distance for heterogeneous types of robots, but allowed
a centralized approach. For instance, two robots in their
work are able to interact with each other to generate a
Voronoi cell, even when the distance between them is larger
than the radius of robots’ sensing footprints. For this rea-
son, they used an objective function in a global coordi-
nate system. Note that our paper aims at a fully distributed
approach, where no external device, map or global infor-
mation is allowed. Caicedo-Nuez and Zefran (2008) applied
a diffeomorphism that transforms a connected non-convex
region to a convex region to run Lloyd’s algorithm appro-
priately, which, however, requires complete knowledge of
an environment.

Finally, we mention that some of the ideas in this paper
have been presented in condensed and preliminary form in
the conference abstracts Lee et al. (2014a) and Lee et al.
(2014b); see Becker et al. (2013b) for a video illustrat-
ing some of the foundations of online triangulation, i.e. the
results presented in Section 4.

3. Model and preliminaries

We have a system of n triangulation robots and p naviga-
tion robots. The communication network is an undirected
graph G =( V , E). Each robot is modeled as a vertex, u ∈ V ,
where V is the set of all robots and E is the set of all robot-
to-robot communication links. The neighbors of each vertex
u are the set of robots within line-of-sight communication
range rmax of robot u, denoted N( u)= {v ∈ V | {u, v} ∈ E}.

During construction, we ensure that all network edges,
except the edge facing a wall, are also navigable paths. In
other words, the minimum edge length of a triangulation
exceeds the diameter of a navigation robot, so that the navi-
gation robot is able to pass through any edges while navigat-
ing triangle by triangle. Robot u sits at the origin of its local
coordinate system, with the x̂-axis aligned with its current
heading. Robot u cannot measure distance to its neighbors,
but can only measure the bearing and orientation, as shown
in Figure 1c.

We assume that these angular measurements have lim-
ited resolution. Note that these assumptions are based on a
real-world platform: all experiments in this paper use r-one
robots, shown in Figure 1a. This robot is equipped with 8
IR receivers that form π

8 radian bearing angle resolution, as
shown in Figure 1b. Clearly, our overall approach remains
valid for other platforms with similarly limited capabili-
ties, provided that the underlying trigonometric properties
can be achieved (for example, being able to approximately
measure distances instead of angles works in a similar
manner).

Robots share their angle measurements with their neigh-
bors. In this way, robot u can learn of all angles in its
2-hop neighborhood. Figure 1d shows the relevant inner

Fig. 1. (a) (Foreground) the r-one robot is an advanced, low-cost,
open-source platform designed for research, education, and out-
reach. (b) 16 IR communication sectors by 8 IR-transmitter and
8 IR- receiver sensors. Each sector has limited resolution of π

8 .
(c) Robot u can measure the bearing to neighbor A, Bu( A), and
the orientation of neighbor A, Oriu( A). (d) Triangle angles (black
arrows) are measured from neighbors of robot u, and shared with
u using a local broadcast message.

angles of a triangle around u. Each neighbor of u com-
putes these angles from local bearing measurements, then
announces them. The communication used by these mes-
sages is O( max( δ( u)∈ V )2 ), where δ( u) is the degree of
vertex u.

Each robot has contact sensors that detect collisions with
the environment. There is an obstacle avoidance behavior
that can effectively maneuver the robot away from these col-
lisions. The robots also have a short-range obstacle sensor
that can detect walls closer than ≈ 50 cm. The obstacle
sensor does not detect neighboring robots.

Algorithm execution occurs in a series of synchronous
rounds, tr. This greatly simplifies analysis and is straight-
forward to implement in a physical system, as mentioned in
the work by McLurkin (2008). At the end of each round,
every robot u broadcasts a message to all of its neigh-
bors. The robots randomly offset their initial transmission
to minimize collisions. During the duration of each round,
robot u receives a message from each neighbor v ∈ N( u).
Each message contains a set of public variables, including
the sending robot’s unique ID number u.id and other vari-
ables defined later. Note that the a message at each round
has a constant size. Each message contains a fixed number
of variables, where most of them use fixed number of bits
(uint8 or uint16), except one variable to express the ID of a
message sender. For the ID variable, the number of required
bits increases as we use more robots. However, the size is
also bounded by log2n, i.e. the number of bits to express n
distinctive ID numbers. Moreover, this work regards log2n
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as constant because the MATP problem considers a fixed
number of robots to triangulate the maximum area. There-
fore, the size of each message becomes constant because all
variables in the message use a bounded number of bits.

4. Triangulation construction in unknown
space

In this section, we present a distributed approach to con-
struct a triangulation in an unknown environment. If the
number of available robots is not bounded a priori, the
problem of minimizing their number for covering all of the
region is known as the minimum relay triangulation prob-
lem(MRTP); if their number is fixed, the objective is to
maximize the covered area, which is known as the maximum
area triangulation problem (MATP). Each of these prob-
lems has been studied, both for the offline scenario (in which
the region is fully known), and the online scenario (where
the region is not known in advance) (Fekete et al., 2011;
Lee et al., 2014b). The online MRTP admits a 3-competitive
strategy, while the online MATP does not allow a bounded
competitive factor: if the region consists of many narrow
corridors, we may run out of robots exploring them, and
thereby miss a large room that could permit large triangles.
Later in this paper, we will argue that practical considera-
tions allow us to overcome this bound in realistic scenarios.
In a more theoretical setting (in which the region that is
to be explored consists of unit pixels, making all corridors
at least 1 wide), Fekete et al. (2013) provided competitive
factors slightly above 1.5. In this section, our method for
triangulating is based on the MATP, however in the rest of
this paper, we assume that the population of robots is large
enough to triangulate the entire workspace.

4.1. Online max-area triangulation algorithm

From the definition of the online MATP, the purpose of the
max-area triangulation algorithm is to triangulate the maxi-
mum area of an unknown environment using a fixed number
of robots. Our assumptions preclude the use of global local-
ization or a geometric model of the environment. Therefore,
it is not possible to use a centralized approach that directly
computes the optimal positions of robots for the globally
maximum area of triangulation. Instead, we apply an incre-
mental approach for the online MATP algorithm. Each
robot enters a currently triangulated workspace sequen-
tially, navigates in the triangulation, creates new triangles in
the untriangulated region that extends the current triangula-
tion. This process continues until the entire environment has
been triangulated.

Figure 2 illustrates the execution of the online max-area
triangulation algorithm. We assume that two base robots
initially mark the base edge - such as a door to an unex-
plored building, where all other robots are behind the base
edge. The algorithm starts with this base edge and proceeds
by constructing a triangulation in a breadth-first manner.

The triangulation is extended as robots construct triangles
along the current frontier of exploration. The frontier is
shown as blue lines in Figure 2, and it delineates the bound-
ary between triangulated space and untriangulated space.
All the area between the base edge and the frontier is trian-
gulated. Each mobile robot extends the frontier by moving
into unexplored space and forming a triangle with itself and
at least two other adjacent robots from the frontier. The
algorithm terminates when either all of the workspace has
been explored, or the maximum number of robots has been
exhausted. Each robot tries to build a high-quality triangle
- one that does not have edges that are too short or angles
that are too small. Equilateral triangles are ideal, but cannot
always be constructed due to errors or environmental con-
straints. We use two properties of the resulting structure,
lower bounds on edge length and angles, to provide the-
oretical performance guarantees. We formally define this
quality metric in Section 4.2. In a practical implementa-
tion, the minimum edge length is bounded by the robot size,
and the maximum edge length is bounded by the commu-
nications range of the robots. The angular properties are
limited by the type of sensor used, and the limits of the
motion controller to drive to the equilateral points of the
new triangle.

During algorithm execution, we distinguish the following
types of edges in the robot network G;

1. Frontier edges (blue lines in Figure 2), {u, v} ∈ EF ,
which belong to only one triangle and have at least one
vertex that is not in contact with the wall.

2. Wall edges, {u, v} ∈ EW , which also belong to only one
triangle, but both vertices of the edge are in contact
with a wall. Both frontier edges and wall edges lie on
the exterior of a triangulated network, but a navigating
robot only passes through frontier edges.

3. Internal edges, {u, v} ∈ EI which belong to two adja-
cent triangles.

We do not allow for any overlapping triangles because
each robot creates new triangles by passing through only
one frontier edge, and always updates new frontier edges
as the edges are faced with an uncovered area. Hence, each
edge can only belong to either one or two triangles and all
edges that are not a frontier edge, base edge, or wall edge
become an internal edge. The dotted yellow lines indicate
the dual graph, D, which connects adjacent triangles and
can be used for navigation in the triangulated region. We
address details of dual graph navigation in Section 5.

Construction of a new triangle begins with the addition
of a new navigating robot, u. To build the triangulation in
a breadth-first fashion, a frontier triangle is selected that
is the minimum distance in the dual graph from the base
triangle. This triangle will have at least one frontier edge;
we select it to be the goal frontier edge, {l, r}. The robot
uses the dual graph to navigate to the frontier triangle.
More details about the navigation algorithm are described
in Sections 5.1 and 5.2.
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Fig. 2. Constructing a triangulation in a BFS manner. The edges
of the BFS tree in the dual graph are dashed yellow, and blue-
colored lines denote frontier edges distinguishing covered area
from uncovered region. Blue-colored circles are robots that form
frontier edges. Among these robots, we refer to a robot in free
space as a frontier robot and a robot in contact with a wall as a
frontier-wall robot. The number in each robot denotes the order of
a robot entering into a workspace to expand triangles. Each robot
colored in green behind the initial edge {1, 2} subsequently enters
into a workspace, creates a new triangle when it arrives at the equi-
lateral point, becomes a frontier robot (or a frontier-wall robot),
and updates frontier edges. On the other hand, all edges having at
least one non-frontier robot are all interior edges colored in green.
The blue tick marks on each robot show the direction of the fron-
tier normal. This points into unexplored space, in the direction
perpendicular to the frontier edges incident at each robot.

A new triangle can be formed in two ways, expansion or
discovery. Figure 3a illustrates the construction of a trian-
gle by expansion. When navigating robot u is within the
frontier triangle, it switches to the expanding state, and
moves towards the equilateral point for the new triangle.
When u crosses the frontier edge {l, r}, it creates a new
expansion triangle �ulr (l = l0 and r = r0 in Figure 3a).
Once robot u arrives at the equilateral point, it switches to
the expanded state, and adds �ulr to its list of triangles,
becoming its owner. Edge {l, r} becomes an internal edge,
and robot u broadcasts a message to neighbors l and r, so
that they update their right and left frontier neighbors to u.
This ensures that each robot can only create one expansion
triangle, and prevents creating overlapping triangles.

When u enters the expanded state, it needs to discover
all of the unexpanded high-quality triangles adjacent to
�ulr. Figure 3b shows an example of triangle discovery.
We describe the process for the left frontier neighbor (l);
it is analogous for the right. We label the left neighbors
{l0, l1, . . .}, where l0 ≡ l. Robot u first considers neighbor
l1, then proceeds through each neighbor on its left side in
counter-clockwise order. For each neighbor li, i ≥ 1, robot

u checks for edge {li, li−1} ∈ EF . If this edge exists, then
u forms a candidate triangle, �ulili−1 (light green in Fig-
ure 3b), and evaluates its quality using definition 4.1. If
the candidate triangle is high quality, robot u becomes its
owner, and switches its left frontier neighbor from li−1 to li.
Robot u then broadcasts a message to li to update its right
frontier neighbor from ii−1 to u. Because the edge {l, r} is
now internal, it is not used for expansion again. Robot u
repeats the above procedure to discover other high-quality,
adjacent triangles, and can create and own multiple trian-
gles. When complete, u changes its state to frontier. Note
that all messages used to expand or discover triangles have
constant size and are transmitted continually rather than
instantaneously, like a token-based protocol. By doing so,
we avoid any errors caused by communication failures.

4.2. Covered area

The quality of the triangulation affects the practical and the-
oretical performance guarantees of our applications, includ-
ing the patrolling and topological Voronoi algorithms in
Sections 5 and 6. Let rmax be the maximum length of a tri-
angulation edge. We also consider a lower bound of rmin

on the length of the shortest edge in the triangulation; in
particular, we assume that the local construction ensures
that any non-boundary edge is long enough to let a robot
pass between the two robots marking the vertices of the
edge, so rmin ≥ 2δ, where δ is the diameter of a robot.
The practical validity of these assumptions for a real-world
robot platform will be shown in Section 4.4. Finally, angu-
lar measurements of neighbor positions let us guarantee a
minimum angle of α in all triangles. These constraints give
rise to the following:

Definition 4.1. Let T be a triangulation of a planar region
R, with vertex set V . T is ( ρ, α)-fat, if it satisfies the
following properties;

1. The ratio rmax/rmin of the longest to shortest edge in T
is upper bounded by some positive ρ.

2. All angles in T have size at least α.

This definition is also used to prove properties of the
coverage control based on tessellations in Sections 5.3
and 6.1. Given the definition, we then establish theoretical
performance guarantee about the quality of triangulation.

Theorem 4.1. Consider a ( ρ, α)-fat triangulation of a set
V with n vertices, with maximum edge length rmax and min-
imum edge length rmin. Then the total triangulated area is
within

√
3ρ2/ sin( α) of the optimum.

Proof. In a ( ρ, α)-fat triangulation, each edge has length
between rmin and rmax, and any angle is bounded from below
by α. Then suppose that the triangulation has |T | triangles.
The largest possible area covered by the triangulation can-
not exceed the covered area by a triangulation with |T | equi-
lateral triangles whose edge length is rmax. In this optimum
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Fig. 3. (a) An example expansion triangle. The red arrow shows the path of robot u in state expanding. After arriving at the equilateral
point, robot u switches to the expanded state, and the triangle is complete. (b) An example discovery triangle is shown in light green.
Robot u checks θF to evaluate the quality of candidate triangle, �ul1l0. If this triangle is sufficiently high quality, the robot u stores
�ul1l0 in its triangle list.

case, the area of the triangulation is |T |√3r2
max/2. On the

other hand, the minimum possible area covered by the tri-
angulation happens when the triangulation is composed of
|T | triangles, where each of them covers the minimum area.
From elementary trigonometry, an obtuse triangle has area
( sin α) rminr′/2, where r′ ≥ rmin. Hence, the covered area
by an obtuse triangle is at least ( sin α) r2

min/2. Likewise, an
acute triangle has area at least ( cos α/2) r2

min/2. Because
α ≤ π/3, we have ( cos α/2)≥ sin α and the minimum
area covered by the triangulation becomes |T |( sin α) r2

min/2.
Therefore, the maximum ratio of the covered areas with

a given ( ρ, α)-fat triangulation becomes |T |√3r2
max/2

(|T | sin α)r2
min/2

=
√

3ρ2/ sin( α).

Note that in a practical setting, ρ will be much smaller
than the worst theoretically possible case. See Figure 12 for
a real-world evaluation.

4.3. Implementation

A high-level finite-state machine for the MAT algorithm is
shown in Figure 4. Two robots are initialized in the state
frontier-wall and placed at the base-edge. All other robots
begin behind the base edge in state navigation. Table 1 lists
the helper functions in the algorithms below.

4.3.1. Navigation-internal state. The navigation contains
three states; nav-internal, expand-triangle, and wall-follow.
A new robot, u, enters the network in the nav-internal state,
and runs algorithm 1 to navigate to a frontier triangle. Line
2 runs an occupancy test function, shown in Figure 5a, that
returns the current triangle, Tc, which contains the robot u,
and its owner, o. If Tc is not a frontier triangle, then the
robot u moves to an adjacent triangle that is topologically
closer to a frontier triangle using the navigation algorithm
described in Section 5.2.

If Tc is a frontier triangle (line 3) or null (only true if the
robot u has just crossed the base edge, line 6), then the robot
u will create a new triangle. The variables u.L and u.R are
set to the left and right neighbors of the frontier edge (lines
4 and 7), and the robot changes its state to expand-triangle
(lines 5 and 8).

Algorithm 1 NAV-INTERNAL

1: while u.state =Navigate-Internal do
2: Tc ← GETCURRENTTRIANGLE()
3: if ISFRONTIERTRIANGLE( Tc) then
4: ( u.L, u.R)← GETFRONTIEREDGENBR( Tc)
5: u.state← Expand-Triangle
6: else if ISONLYBASEEDGE( N( u) ) then
7: ( u.L, u.R)← GETBASEEDGENBR( )
8: u.state← Expand-Triangle
9: else

10: Tnext ← GETCLOSERADJTRI( Tc)
11: MOVETONEXTTRIANGLE( Tnext)
12: end if
13: end while

Algorithm 2 EXPAND-TRIANGLE

1: while u.state = Expand-Triangle do
2: ( θL, θR)← GETINNERANGLE( u.L, u.R)
3: TRIANGLEEXPANSIONCONTROLLER( θL, θR)
4: if ISINGOALREGION( θL, θR) then
5: STORETRIANGLESTOLIST (�uu.Lu.R)
6: TD ← DISCOVERTRIANGLE( u.L, u.R)
7: UPDATEFNBR( )
8: BCASTFMSG()
9: BCASTDISCONNECTMSG()

10: STORETRIANGLESTOLIST (TD)
11: u.state← Frontier
12: else if ISWALLDETECTED() then
13: u.state←Wall-Follow
14: end if
15: end while

4.3.2. Expand-triangle state. In the state expand-triangle,
a robot u runs algorithm 2. Line 2 computes the left and
right inner angles to the frontier neighbors, θL and θR.
Line 3 runs the triangle-expansion controller illustrated in
Figure 5b until the robot u is in region 3.

Instead of a complete description of the controller, we
briefly sketch its operation here. When the robot u enters
region 3, if θL > θR, the robot u first moves toward
Bu( u.L)+π until θR ≥ π

3 , where Bu denotes the bearing
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Table 1. Table of helper functions.

GETCURRENTTRIANGLE() Runs occupancy test and returns current triangle, Tc.
GETCLOSERADJTRI( Tc) Gets Tc’s adjacent triangle that is topologically closest to any frontier triangles.
GetInnerAngle( u.L, u.R) Computes and returns left and right inner angle, θL and θR.
DISCOVERTRIANGLE( u.L, u.R) Runs discovery procedure and gets discovery triangles, TD, and list of u’s old and

new frontier neighbors.
ISISOSCELESTRIANGLE( u.L, u.R) Checks if θL = θR in an expand triangle.
GETFRONTIERWALLNBR( u.L, u.R) Returns u.L or u.R in frontier-wall state.
BCASTFMSG() Broadcasts new frontier msg to nbrs.
RECVFMSG() Receives new frontier nbrs.
UPDATEFNBR() Changes frontier nbrs of u.
BCASTDISCONNECTMSG() Broadcasts disconnect msg to nbrs.
RECVDISCONNECTMSG() Returns usender if usender disconnects u.
ISCONTAINFRONTIEREDGE( Ti) Checks if Ti has a frontier edge.
UPDATETRIANGLEHOP(Ti,N( o))) For each triangle u owns, sets its hop to 1 + minimum among all adjacent

triangles’ hops.
BCASTTRIANGLEHOP(N( o)) Broadcasts hops of all triangles u owns.

Fig. 4. Finite-state machine for the MAT algorithm. A robot behind a base line enters a workspace and initially moves to state nav-
internal. Note that if there are no triangles in the workspace yet, a robot directly transits to state expand triangle. In the nav-internal
state, the robot moves through the triangulated space until it reaches a source triangle that has at least one frontier edge. If the robot
arrives at the source triangle, it changes its state to the expand triangle state, and expands a new triangle into the uncovered region. If
the robot successfully expands a new triangle without detecting a wall, the expansion is complete, and the triangle is likely to be high
quality (see Figure 7). However, if the robot detects a wall while creating a new triangle, it cannot create a high-quality triangle. So, it
changes its mode to state wall-follow and follows along the wall until it forms a triangle of the best possible quality. In either case, after
expanding a new triangle, the robot discovers adjacent triangles by checking their quality, updates frontier edges, stores the information
of its expanded and discovered triangles, and then changes its state to frontier.

angle of the neighbor from the robot u. It then changes its
heading toward Bu( u.R)+π , and moves until it reaches the
goal region (region 4). The opposite control happens when
θL < θR.

The robot u stores the triangle on its list (line 5) and
runs the discover triangle procedure to discover all adja-
cent triangles (line 6). The frontier angle, θF , provides a
simple way to evaluate the quality of candidate triangles;
we define a triangle to be of high quality if θF < k, with k

manually tuned to reduce errors. Lines 6-11 in algorithm 2
are also related with updating the frontier edges; details are
described in Section 4.3.6. On the other hand, if the robot
u detects a wall while expanding a triangle (line 12), it
changes its state to wall-follow (line 13).

4.3.3. Wall-follow state. Because a wall prevents the cre-
ation of a triangle with the best quality, a robot u then
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Fig. 5. (a) The occupancy test algorithm determines if a robot is inside a given triangle. If any angle between neighbors of u is greater
than π , then u is outside of the triangle. (b) Diagram of triangle expansion controller regions between robots uL and uR, each with π

8
bearing resolution. A robot in region 1 rotates around uL (if �uuLuR > �uuRuL) or uR (if �uuLuR < �uuRuL), so that it always ends in
region 2. A robot in region 2 always moves in the direction where its two inner angles are decreasing. By doing so, the controller always
guides a robot from a lower to an adjacent higher-number region using only θL and θR. All sample trajectories (red lines) converge to
the goal region.

aims to expand the triangle of second-best quality by mov-
ing along the wall. There are various ways for defining the
involved quality measure; we use an isosceles triangle that
has the largest minimum inner angle.

The robot u in state wall-follow executes algorithm 3.
Once the robot detects a nearby wall whose distance from
the robot is too close to expand the best quality triangle, it
moves toward the wall (line 3). By doing so, we can cre-
ate an isosceles triangle whose minimum inner angle is the
largest among the inner angles of other isosceles triangles
whose vertex does not have contact with the wall. If the
robot u arrives at the wall, it moves along the wall until it
forms an isosceles triangle (line 5).

Once the robot u expands an isosceles triangle, the robot
then stores the triangle, broadcasts messages to u.L or u.R
for updating frontier edges, and changes its state to frontier-
wall (lines 7-12). In particular, the robot u sends a discon-
nect message to its frontier-wall neighbor. By doing so,
an edge between the robot u and the frontier-wall neigh-
bor becomes inactive, and no other robots will try to pass
through the edge.

Note that any owner u is connected to the owners of all its
adjacent triangles in the dual graph GD. We show this in the-
orem 5.2 in Section 5.1. In addition, these expand-triangle
and wall-follow algorithms use messages to disconnect and
connect triangles from the frontier path. A configuration
with triangles that are not ( ρ, α)-fat could require many
messages, but this is unlikely. Our implementation allows
for 6 messages, but we only used a maximum of 2.

4.3.4. Frontier and frontier-wall state. When a robot u
enters the frontier or frontier-wall state, it becomes station-
ary and runs algorithm 4. In lines 3-7, u labels all of its
triangles that include a frontier edge as frontier triangles.
In lines 8-9, these triangles become sources for messages
to conduct dual graph navigation in Section 5. In lines 11-
13, the frontier robots compute and broadcast the frontier

Algorithm 3 WALL-FOLLOW

1: while u.state = Wall-Follow do
2: if WALLBUMPED() = FALSE then
3: MOVETOWARDWALL( )
4: else if ISOSCELESTRIANGLE(u.L, u.R) = FALSE

then
5: MOVEALONGTHEWALL( )
6: else
7: STORETRIANGLESTOLIST (�uu.Lu.R)
8: UPDATEFNBR( )
9: BCASTFMSG( )

10: uW ← GETFRONTIERWALLNBR(u.L, u.R)
11: BCASTDISCONNECTMSG(uW )
12: u.state = Frontier-Wall
13: end if
14: end while

angle, θF , between adjacent frontier neighbors, in the direc-
tion of the frontier normal, shown in Figures 2 and 3b.
The algorithm transmits two constant-sized messages, so
the message complexity is O( 1). To compute θF , each fron-
tier robot in state frontier-wall conducts line 11 in algo-
rithm 4. We use the formula, θ

Temp
F = Bu(u.L)−Bu(u.R)

2 , where
θF , Bu( u.L) , Bu( u.R)∈(−π , π ]. We compute the final θF

by normalizing the θ
Temp
F to be in (−π , π ]. Note that base

robots are initially in state frontier-wall.

4.3.5. Internal state. Robot u is likely to eventually
become an internal robot when a new navigation robot
discovers triangles and broadcasts disconnect messages to
nearby robots, including the robot u, to update frontier
edges. Although robot u becomes the internal robot, it
maintains the list of triangles owned by robot u. The key
role of the robots in state internal is to relay messages for
dual graph navigation. They continuously call functions for
updating and broadcasting the messages, like the functions
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Algorithm 4 FRONTIER/FRONTIER-WALL()
1: while u.state=Frontier OR u.state=Frontier-Wall do
2: for all Ti ∈ TriangleList do
3: if ISCONTAINFRONTIEREDGE(Ti) then
4: SETFRONTIERTRIANGLE(Ti)
5: else
6: CLEARFRONTIERTRIANGLE(Ti)
7: end if
8: UPDATETRIANGLEHOP( Ti, N( o) )
9: BCASTTRIANGLEHOP( N( o) )

10: end for
11: COMPUTE/ROTATETONORMALVEC(B( u.L) , B( u.R))
12: θF ← COMPUTEFRONTIERANGLE

(B( u.L) , B( u.R))
13: BROADCASTFRONTIERANGLE(θF)
14: if RECVFMSG() then
15: UpdateFNbr()
16: end if
17: v← RECVDISCONNECTMSG()
18: if v.state = Frontier then
19: u.state← Internal
20: else if v.state = Frontier-Wall ∧u.state= Frontier-

Wall then
21: u.state← Internal
22: end if
23: end while

shown in line 8-9 in algorithm 4. We omit the detailed
pseudocode for the state internal.

4.3.6. Maintaining the frontier path graph. To ensure that
the frontier subnetwork PF remains a path, the navigating
robot u updates its frontier edges and the edges of its neigh-
bors when it adds new triangles. The frontier is initially
only the base edge. When a robot u expands a triangle with
u.L ∈ EF and u.R ∈ EF , it updates its internal frontier edges
in line 7 of algorithm 2. It then sends a message to u.L or
u.R in line 8, telling them to disconnect from each other
(removing the previous frontier edge {u.L, u.R}) and con-
nect their frontier to the robot u. This message is received
in line 15 of algorithm 4.

The process for connecting and disconnecting discovered
triangles is similar. The robot u updates and broadcasts its
frontier neighbors in lines 7-8 of algorithm 2. A frontier
or frontier-wall neighbor receives the message in line 15
of algorithm 4, disconnects {Li, Li−1} from each other, and
connects Li to the robot u. In this case, the robot u also
broadcasts a disconnect message to the robot Li−1 (line 9
in algorithm 2 or line 11 in algorithm 3). The Li−1 that
gets the disconnection message switches to state internal
(lines 17, 19, and 21 in algorithm 4). This continues for all
of Li ∈ N( u), eventually leaving the robot u connected to
the last Li, thus preserving the path. The operation on the
right neighbors of N( u) is analogous.

A special case is if the robot u enters the state frontier-
wall and its left (or right) is also in frontier-wall; then the
frontier endpoint is disconnected, u disconnects from v and
v disconnects from the robot u, making the robot u the new
endpoint of PF . The robot v then changes its state to inter-
nal (line 21 in algorithm 4). The disconnected edge {u, v}
becomes inactive. By doing so, we prevent other navigation
robots from navigating through the edge blocked by a wall.

4.4. Triangulation construction experiments

We have performed several hardware experiments, using the
r-one robots shown in the work by McLurkin et al. (2013).
The capabilities of this platform support the assumptions in
our problem statement; each robot can measure the bear-
ings to its nearby robots (with a limited resolution of only
π
8 ), and exchange messages including those bearings and
necessary information to run an implemented algorithm (in
Section 4.3) using inter-robot communication. Each robot
also has eight bump sensors that provide wall detection.
The interested reader can find a demonstration of some of
the basic aspects of the robots in our video (Becker et al.,
2013b), along with some real-world footage of building a
triangulation. To evaluate a resulting triangulation quality
or trace the trajectory of a navigation robot, we use April-
Tag (Olson, 2011). This measures the ground-truth position,
Pu = {xu, yu, θu}, of each robot u. The robots cannot mea-
sure or use the ground-truth position while executing our
algorithms. Robots only know the two-hop local network
geometry shown in Figure 1d.

Figures 6a and 6b show snapshots of one triangulation
experimental trial and the MATLAB analysis. Over 8 tri-
als using 9-16 robots, the average triangulated area was
1.5± 0.29 m2. In addition, it takes 7.8± 2.1 robots to cover
a unit area (1 m2). The average of resulting triangulations
are (ρ=3.6, α=0.36 rad)-fat.

Figure 7a shows that our triangulations cover about 91%
of the region behind the frontier edges. The uncovered
region is because the top-left and bottom-left corners in Fig-
ure 6a are wall edges (incident on two wall robots), and are
not expanded by navigating robots. In order to overcome
this limitation, navigating robots would need to attempt to
expand each wall edge and look for corners. This is ineffi-
cient in environments with large perimeters, and impractical
with our current hardware, as corner detection is unreli-
able. Figure 7b shows the distribution of area covered by
individual triangles. The initial length of the base edge
determines the area of an ideal equilateral triangle to be
0.088 m2, and our triangles have a mean area of 0.13 m2,
with a standard deviation of 0.065 m2. This discrepancy is
caused by the angle-based sensors; the robots cannot mea-
sure range, and therefore cannot control the area of the
triangle they produce. We show this by studying individual
triangle quality.

Figures 8a and 8b show our measurements of individ-
ual triangle quality: the distribution of minimum angle and
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Fig. 6. (a) Screenshots while constructing a triangulation with 12 robots. (b) MATLAB reconstruction of the resulting triangulation
from the physical data structure in Figure 6a. Dark green and light green triangles denote the expansion and discovered triangles.
Numbers between parentheses and in the second line are the owner and the size of each triangle. Gray triangles indicate the uncovered
region. This is because two robots, 10 and 28, are base robots in state internal, and robots 18 and 5 are in state frontier-wall, while
expanding their triangles. Those edges, {10, 18} and {28, 5}, then become internal edges that do not allow other robots passing through
them to expand new triangles.

Fig. 7. (a) Pie chart for area covered by all triangles. (b) His-
togram of area covered by each triangle. Dashed red line indicates
the area of an equilateral triangle, regarded as ideal shape in our
triangulation.

maximum/minimum edge length ratio (MaxMin ratio) for
each triangle. The individual data show triangle quality in a
way that overall ρ cannot. An ideal equilateral triangle has
a minimum angle of π

3 rad and MaxMin ratio of one. About
95% of triangles satisfy the lower bound for minimum angle
and 96.7% the upper bound for MaxMin ratio. We note that
all triangles not constrained by a wall satisfy these bounds,
meaning they are approximately the correct shape, but not
always the correct size. Knowing range would let us address
this, but it is unclear how robots expanding the triangula-
tion should choose between making a triangle of the correct
shape or the correct size. In addition, we may be able to
implement a more parallel execution method for triangula-
tion construction, where multiple robots navigate through a
triangulated region and expand multiple triangles. We leave
these for future work.

Fig. 8. Histograms of triangle quality in terms of minimum angle
(a) and a MaxMin ratio (the ratio between the maximum edge
length and the minimum edge length in each triangle) (b) Blue bars
are for all triangles created without any disturbance by a wall and
red bars are for all triangles interrupted by a wall while expand-
ing. (a) Distribution of minimum angle of each triangle, not for a
global ρ. All triangles not constrained by a wall satisfy the lower
bound, π

8 (dashed red line). (b) Distribution of MaxMin ratio of
each triangle. All triangles whose minimum angle is larger than
the π

8 (blue colored bars) also satisfy corresponding upperbound
MaxMin ratio.

5. Navigation in triangulated space

After the triangulation is constructed, each robot owns its
set of expanded or discovered triangles. This distributed
data storage forms a physical data structure (PDS) that
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approximately maps the surrounding environment, and cre-
ates a dual graph of the corresponding triangulation. In this
section, we use the PDS to build a navigation algorithm that
can guide a robot to any given target triangle from anywhere
in the network.

5.1. Dual graph construction

The dual graph of our triangulation, GD =( V D, ED), where
V D is the set of all triangles stored in all the robots, and ED

is the set of all edges between adjacent triangles.
However, there is no centralized authority that can explic-

itly keep track of a dual graph, as there are only “primal”
vertices, i.e. robots. Our solution is to establish and main-
tain the dual graph implicitly, by assigning each triangle �

to a unique robot “owner”, o( �), and then mapping edges
between triangles in the dual graph, ED, to edges between
robots in the primal graph, E. This mapping will let us
reason about relaying messages using the dual graph, and
abstract away from the primal graph network. We can use
this to realize global objectives, such as routing.

We observe that all owners are connected because all
robots in our network, with the exception of the base robots,
are owners by construction; every new navigating robot
becomes the owner of at least one constructed triangle. A
robot can own multiple discovered triangles, and then must
maintain multiple vertices in the dual graph.

We must ensure that owners of two triangles connected
by an edge in the dual graph can communicate with each
other through the primal graph. By doing so, each triangle
is able to share its information with all adjacent triangles
using only zero or one hop communication to conduct var-
ious applications, including dual-graph navigation in Sec-
tion 5, distributively. If two adjacent triangles �1 and �2,
connected through a dual graph edge {o( �1) , o( �2) }D ∈
GD, are owned by the same robot o( �1)= o( �2), these
two triangles can interact with each other using zero-hop
communication because the owner robot has the informa-
tion of both triangles in its local memory space. In this
case, we can presume that two triangles are connected via
the owner robot. On the other hand, if two adjacent trian-
gles �1 and �2 are owned by two different triangle owners
o( �1) �= o( �2), we must show that those two owners are
directly connected with each other through an edge in the
primal graph {o( �1) , o( �2) }.
Lemma 5.1. Consider a triangle �abc with edge {a, b} ∈
EF as shown in Figure 9a. Let o( �abc) be the owner of �abc.
Then o( �abc)= a or o( �abc)= b.

Proof. By contradiction, assume o( �abc) �= a and
o( �abc) �= b. Then consider the state expanding for
�o(�abc)ab. Because o( �abc) is the owner in the expanded
state, o( �abc) must have been the navigation robot in
state expanding. Therefore {a, b} was the frontier edge in
state expanding and {a, b} is now the internal edge in the
expanded state, a contradiction.

Fig. 9. Illustrations for lemma 5.1. Dashed circles and lines are
frontier robots and frontier edges. (a) Diagram of lemma 5.1 show-
ing a triangle �abc, where the edge {a, b} is a frontier edge. (b)-(c)
Illustrations for theorem 5.2 presenting that two owners of two
adjacent triangles are connected. (b) If the robot a was a navigation
robot in state expanding, both triangles are either the expansion tri-
angle or discovery triangle by the robot a. In this case, the robot a
is the owner of the triangle �abc and �abd . (c) If the robot d was a
navigation robot which expanded the triangle abd, the edge {a, b}
should be a frontier edge and the robot a or b should be the owner
of the triangle �abc, from lemma 5.1. Black arrows indicate the
edge connecting two owners of the triangles �abc and �abd . Note
that similar logic holds when the robot c was a navigation robot to
expand the triangle �abc based on the frontier edge {a, b}).

Given the lemma, we then prove that an owner is located
within the communication range of its neighboring owner if
their triangles are faced with each other. The proof ensures
that an owner of a triangle or a robot inside the triangle
is able to acquire the information of all adjacent trian-
gles using only two-hop or fewer communications. In the
sense that the information between two adjacent triangles
can flow using only distributed communication, we con-
clude that the dual graph edge is established between two
adjacent triangles if, and only if, their owners are con-
nected. This connected dual graph in a triangulation is used
for various applications, such as navigable path planning
or approximated Voronoi tessellation, with only distributed
algorithms.

Theorem 5.2. The owners of two adjacent triangles must
also be connected.

Proof. Let �abc and �abd be the two adjacent triangles, and
{a, b} be the edge they share. As stated in Section 4.1, we do
not allow an overlapped triangle, and every edge belongs to
at most two triangles. Therefore, these two triangles can be
formed in the following two ways (in state expanding);

1. Robot a was the navigation robot. Then a is the owner
for both �abc and �abd as shown in Figure 9b. a is
connected to itself.



Lee et al. 1247

2. Robot d was the navigation robot. This makes �abc

an existing triangle and {a, b} a frontier edge in state
expanding. d is also the owner robot for �abd in the
expanded state. Either a or b is the owner of �abc by
lemma 5.1, so d, the owner of �abd , must be con-
nected to the owner of �abc through either edge {a, d}
or edge {b, d} as shown in Figure 9c. By symmetry, b is
equivalent to a, and c is equivalent to d.

5.2. Dual graph navigation

We use a dual graph as a navigation guide for robots in a
triangulation, resulting in a path shown by the dotted yel-
low line in Figure 10a. The vertex of a destination triangle
becomes the source in the dual graph, sets its hop to zero,
and broadcasts messages to build a BFS tree suitable for
navigation (Li and Rus, 2005). Each non-source triangle
continuously relays broadcast messages to update its hops
by setting one more value from the minimum hop among
its all adjacent triangles. Resulting hops of all triangles then
become the topologically shortest from the destination tri-
angle in a dual graph, called hop distance. By theorem 5.2,
we guarantee that all triangles are able to compute their
valid hop distances from any destination triangle because
the dual graph of a triangulation is connected; an owner of
a triangle is always connected with all owners of its adjacent
triangles.

To move to the destination triangle, a navigation robot
first figures out the current triangle that contains the naviga-
tion robot using the occupancy test algorithm described in
Figure 5a in Section 4.3. The navigation robot then continu-
ously checks the hops of all adjacent triangles of the current
triangle, and moves toward the adjacent triangle with the
lowest hop distance value. These two steps repeat until the
navigation robot arrives at the destination triangle. Note that
the navigation robot uses only 2-hop communication to con-
duct the dual graph navigation algorithm. From the triangle
inequality, the owner robot of the current triangle (including
the navigation robot) is located in the communication range
of the navigation robot. This is because the owner robot can
communicate with the rest of the robots forming the trian-
gle, and the communication range of the navigation robot
is larger than the owner of the triangle. In addition, theo-
rem 5.2 also ensures that the owner of the current triangle is
connected to all owners of its adjacent triangles. Therefore,
the navigation robot can acquire the hop distance informa-
tion of all adjacent triangles by querying the owner robot of
the current triangle, who already has the hops of the adja-
cent triangles using direct communication with the adjacent
owners.

As mentioned in the previous section, this method is also
used for triangulation construction recall lines 8-9 in algo-
rithm 4 in Section 4.3). Robots owning the frontier triangles
set them as source triangles. Each owner, including the
owner of frontier triangles, then continuously propagates
messages to update the hop distance of all owned triangles.

This lets any new robot crossing the base edge move to the
topologically closest frontier triangle in the dual graph of a
current triangulation, providing a breadth-first construction.
This procedure requires only one message from each robot,
with O( 1) complexity.

5.3. Path stretch

Our previous work shows there is no lower bound on the
competitive factor of the stretch of a path in the online
MATP problem (Fekete et al., 2011), but this requires nar-
row corridors of infinitesimal width. As stated in Sec-
tion 4.2, we made a more realistic assumption that does
allow constant-factor performance; we assume the mini-
mum non-boundary edge length is long enough so that a
robot can move through any non-boundary edge. Because
we also assume network connections are navigable, dis-
tances in the dual graph are a discrete approximation of
the actual geodesic distance between triangles. Now we can
establish that the dual graph of our triangulation can be used
for provably good routing. With high-quality triangles, the
path length of dual-graph navigation is within a constant
factor of the actual distance. We make use of the following
terminology.

Definition 5.1. Consider a connected triangulation T of a
planar region R, with vertex set V , as in Figure 10a. Let
s, g be points in R and let p( s, g) be a polygonal path in R
that connects s to g; let dp( s, g) be its length. Let �s and
�g be the triangles containing s and g, respectively, and
let D( s, g) := �s, �1, . . . , �	, �g be a shortest path in the
dual graph of T . Then a T -greedy path between s and g is
a path s, q1, . . . , q	, g, such that qi ∈ �i, and consecutive
vertices of the path are connected by a straight line.

In other words, a T -greedy path between s and g builds a
short connection in the dual graph of the triangulation, and
then goes from triangle to triangle along straight segments.
Note that we do not make any assumptions whatsoever
concerning where we visit each of the triangles.

Lemma 5.3. Consider a ( ρ, α)-fat triangle � with mini-
mum edge length at least rmin; let � be intersected by a
straight line L. Then the total length of the intersection of L
and � is at least 2 sin( α/2) rmin or the length of the inter-
section of L with the rmin/2-disk around one of �’s vertices
is at least 2 sin( α/2) rmin

Proof. See Figure 10b. Consider the closest distance
between L and one of the vertices of �. If this is larger
than 2rmincos( α/2), then we see from Pythagoras’ theo-
rem that the intersection of L and � must have length
at least 2rminsin( α/2). Otherwise the distance is at most
2rmincos( α/2), and the intersection of L with the rmin/2-
disk around the closest vertex of � must have length at least
2rminsin( α/2).

With this, we can proceed to the proof of the theorem for
a bound on the stretch factor of resulting paths.
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Fig. 10. (a) A shortest s,g-path (shown in red) in a region covered by a triangulation T . The resulting T -greedy path is depicted in
yellow; a shortest dual path is indicated by colored triangles. Note that each point qi may be anywhere in the respective triangle �i.
(b) A triangle � is intersected by a straight line L. If L passes through the triangle away from one of the endpoints, then the length of
the intersection is long. If the line passes through the triangle close to one of the endpoints (indicated by the dashed line L′), then the
intersection with a circle of radius rmin/2 must be long.

Theorem 5.4. Consider a ( ρ, α)-fat triangulation T of a
planar region R, with vertex set V , maximum and minimum
edge lengths rmax and rmin, respectively. Let s, g be points
in R that are separated by at least one triangle, i.e. the
triangles �s, �g in T that contain s and g do not share a
vertex. Let p( s, g) be a shortest polygonal path in R that
connects s with g, and let dp( s, g) be its length. Let pT ( s, g)
be a T -greedy path between s and g, of length dpT ( s, g).
Then dpT ( s, g)≤ c · dp( s, g)+2, for c = � 2π

α

 ρ

sin(α/2) , and

dpT ( s, g)≤ c′ · dp( s, g), for c′ = � 6π
α

 ρ

sin(α/2) .

Proof. Consider p( s, g), triangles �s, �g and the sequence
�1, . . . , �	′ of 	′ other triangles intersected by it; by
assumption, 	′ ≥ 	 ≥ 1, where 	 is the number of tri-
angles contained in pT ( s, g). Furthermore, note that the
disjointness of �s, �g implies dp( s, g)≥ rmin.

We first show that dp( s, g)≥ 	′� 2π
α

2 sin( α/2) rmin. For

this purpose, we charge the intersection of p( s, g) with �i

to �i, if its length is at least 2 sin( α/2)rmin; if it is shorter,
we charge the length of the intersection of p( s, g) with the
rmin/2-disk around one of �’s vertices pj evenly to all of the
triangles �i that are incident to pj. Because the minimum
angle in a triangle is bounded from below by α, the preced-
ing lemma implies the claimed lower bound on the length
of dp( s, g).

On the other hand, it is straightforward to see that no edge
in a T-greedy s, g-path can be longer than 2rmax. Therefore,
dpT ( s, g)≤ 2( 	 + 2) rmax. Comparing the lower bound on
dp( s, g) and the upper bound on dpT ( s, g) yields the claim
dpT ( s, g)≤ c · dp( s, g)+2 with c as stated. The additive
term of 2 results from s and g possibly being close to the
boundaries of �s and �g, respectively; it can be removed
by noting that 	′ ≥ 	 ≥ 1 implies ( 	+2)≤ 3	′, as indicated
by the second comparison and the choice of c′.

This provides constant stretch factors even under mini-
mal, highly pessimistic assumptions. The practical perfor-
mance in real-world settings in which the greedy paths

do not visit worst-case points in the visited triangles is
considerably better, as we show in Section 5.4.

5.4. Dual graph navigation experiments

We conducted experiments for the dual graph navigation
in a triangulation, as shown in Figure 11a. The quality of
the triangulation is (ρ=1.36, α = 0.88 rad)-fat. Given this
triangulated network, we carried out 34 trials for the dual
graph navigation from various starting to goal triangle com-
binations. For each trial, robots forming the triangulation
successfully build a breath first tree in the dual graph.

Figure 11b shows the MATLAB reconstruction of the tri-
angulation for the dual graph experiment by combining the
data from the PDS of the triangulation with the position-
ing data of each robot measured by AprilTag (Olson, 2011).
Note that the AprilTag positioning data is only for plot-
ting the shape of the triangulation and navigation path. All
robots for the triangulation and dual graph navigation do not
use this positioning data in these experiments. Other infor-
mation including triangle ownership, primal graph, and hop
of each triangle is from the PDS. The thick blue lines indi-
cate the primal graph that concatenates all pairs of owners
whose triangles are adjacent with each other and maps the
connected dual graph in the triangulation. Although this
graph is not a complete union of triangulation edges, it
is a spanning graph of all triangle owners in G, which is
implied by theorem 5.2. Five red-colored lines indicate the
sample traces of the navigation robot among the entire 34
trials from various initial locations to the same destination
triangle. While the shape of most resulting paths is smooth
and straight, some parts of them are undulated. These incor-
rect navigation paths are caused by the errors of the occu-
pancy test algorithm, not by structural errors of the topology
in the dual graph. Note that errors of the occupancy test
algorithm occur when the navigation robot, whose bearing
sensing resolution is π

8 , incorrectly measures the bearing of
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Fig. 11. (a) A sample triangulation with 17 r-one robots. A nav-
igating robot used a tree rooted at the red triangle (including a
star-shaped marker) to guide the navigation robot from its current
location to the goal location, and followed the red-colored trace.
The numbers indicate hops in the dual graph from the goal trian-
gle. An arc near each robot denotes triangle ownership. (b) Traces
of resulting navigation paths using r-one robots. Thick light blue
lines indicate primal graph mapping the dual graph of the trian-
gulation. An edge of the primal graph between two owner robots
exists if two triangles owned by those robots are adjacent.

its neighbor. Throughout all trials, our occupancy test algo-
rithm returns the correct triangle with a success rate of 91%.
In addition, the navigation robot moves to the correct adja-
cent triangle having the locally minimum hop distance with
99% of the entire triangle transitions.

Figure 12 shows the histogram of the stretch factors for
all navigation paths over 34 trials. We measure the length
of each navigation path using the odometry embedded in
the robot platform used in these experiments. The aver-
age and maximum stretch factor are 1.38 ± 0.19 and 1.87.
Note that even the maximum stretch factor satisfies the the-
oretical upper bound stated in theorem 5.4: 1.87 < c

′ =
6π

0.28π

ρ

sin ( 0.28π
2 )
= 67.8).

There are practical issues that affect the performance of
dual graph navigation. For instance, system faults or mes-
sage loss may disturb forming a correct hop distribution
from specific source triangle. Fortunately, the method used
for the dual graph navigation is based on self-stabilized
algorithms, such as consensus. Therefore, as long as the
system fault or message loss happens temporarily, each tri-
angle in a triangulation converges its hop information from

Fig. 12. Stretch factor histogram with 34 trials of navigation
experiment.

a target triangle to the correct value after the delay or error
is resolved. Note that if the delay or error is not temporary,
the hop information never converges to the proper value.
A previous study by Fischer et al. (1985) addresses how a
faulty process prevents achieving distributed consensus.

In addition, we need to consider the relationship between
the performance of dual graph navigation and the quality
of a triangulation, the speed of a navigation robot, message
broadcast frequency, or the minimum edge length of a trian-
gulation. While navigating in a triangulation, a robot should
get hop messages of three adjacent triangles before it tran-
sits to another triangle. If the navigation robot is too fast,
message broadcast is too slow, or the navigation path is too
short, the navigation robot might have to make a decision
about “where to go” before receiving hops of all adjacent
triangles. In this case, the robot transits to an incorrect
adjacent triangle whose hop count is not locally minimal.
Suppose that a navigation robot conducts dual graph nav-
igation in a ( ρ, α)-fat triangulation. Refer to VR and tround

as the velocity of a navigation robot and message broadcast
period. From lemma 5.3, the minimum path length to tran-
sit from a triangle to another triangle is 2rminsin( α

2 ), where
rmin is the minimum edge length. Hence, the expected time

to travel along to the path with velocity VR will be
2rminsin( α

2 )
VR

.
Because each robot broadcasts a message within tround , the
inequality below should hold in order to guarantee sufficient
time for proper dual graph navigation

2rminsin( α
2 )

VRtround
≥ 1

For instance, with VR = 0.3 m/s, tround = 0.25 round/sec,
rmin = 0.6 m, and α = 0.88 rad, used in the above dual
graph navigation experiment, the navigation robot takes at
least 2×0.6×sin(0.88/2)

0.3×0.25 = 6.8 rounds. Therefore, the navigation
robot has more than six chances to acquire hop messages
while transiting to another triangle. This means that any
hop message broadcasting delay (caused by robot system
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fault or message collision) within six rounds is allowable
for proper dual graph navigation.

5.5. Distributed patrolling

In this section, we apply triangulation to a patrolling appli-
cation. Patrolling visits all regions in a workspace regularly,
with the goal of minimizing the maximum visitation inter-
val, i.e. we wish to visit each region as frequently as possi-
ble. Previous patrolling work by Pasqualetti et al. (2012a,b)
or Elmaliach et al. (2009) requires global information and
complicated computation; our approach is simple and fully
distributed. We assume that the patrolling robots move with
their maximum velocity. We also assume that the sensing
range of each patrolling robot is large enough to cover
the largest triangle in the environment. With our triangu-
lated environment, the goal of patrolling can be restated:
we desire that the patrolling robots regularly visit all the
dual graph vertices in our triangulation. In the following
discussion, we refer to triangles as computational elements,
but recall that the actual computation is performed by the
owner robot.

To measure the performance of our patrolling algorithm,
we use the refresh time, RT , from Pasqualetti et al. (2012b).
For patrolling a triangulation, we modify the definition
of the refresh time to the largest individual refresh time,
RT�i(t), of each dual graph vertex �i, where the RT�i(t) indi-
cates the time elapsed since the most recent visitation of any
patrolling robot to the triangle i at time t. To update the indi-
vidual refresh time of each triangle, patrolling robots run
the occupancy test algorithm and announce their occupancy
to the triangle. The triangle resets its individual refresh
time to zero. Once the patrolling robot leaves, the trian-
gle updates the most recent visitation time, tlast to indicate
when the patrolling robot left. Each triangle can then calcu-
late RT�i(t) = t − tlast. Note that each triangle measures the
individual refresh time using only the local time frame of
its owner. Therefore, we do not require a centralized clock
to synchronize time frames between individual triangles.

Given a patrolling robot team in a graph, computing the
deterministic team trajectory for the optimal refresh time
is NP-hard (it constitutes a traveling salesman problem for
one patrolling robot), as stated in the work by Pasqualetti
et al. (2012b). Instead, we develop a simple patrolling pol-
icy called LRV, for least recently visited. This LRV policy
continuously guides each patrolling robot to its adjacent
triangle having the locally largest RT�i ( t). Figure 13 illus-
trates an example of adjacent triangles around a patrolling
robot. In this local network, the patrolling robot queries the
individual refresh times of all adjacent triangles, and moves
to the triangle whose individual refresh time is 35. Note that
no two (or more) patrolling robots can be in the same trian-
gle. This is because a triangle containing a patrolling robot
sets its individual refresh time to the lowest value, 0. This
policy uses only local information with no more than two-
hop communications and O( 1) computational complexity

Fig. 13. An illustration of the LRV policy. The numbers indicate
the individual refresh time in each triangle. The patrolling robot
P collects all individual refresh times of its adjacent triangles, and
moves to the adjacent triangle whose individual refresh time is
maximum (yellow arrow).

(the maximum number of adjacent triangles is three). While
simple, this policy produces complete coverage, as shown
by the following theorem; recall that we refer to the dual
graph induced by a triangulation as GD.

Theorem 5.5. Consider a connected graph GD =( V , E)
with n vertices, patrolled by p robots according to LRV. Then
all vertices get visited infinitely often.

Proof. Let V∞ ⊆ V be the set of all vertices that get visited
infinitely often. Because V is finite, V∞ is nonempty. Sup-
pose that V∞ �= V , then the robots must stay within the set
V∞ after some finite time t0. By definition, they keep vis-
iting all vertices in V∞, so after t1 > t0, each of them will
have been visited after time t0, for an individual refresh time
of RT�i < t− t0, where �i ∈ V∞. Conversely, all vertices in
V \ V∞ will have an individual refresh time RT�j ≥ t − t0,
where �j ∈ V \ V∞, because they do not get visited again.
Because GD is connected, there must be a vertex w ∈ V \V∞
that is adjacent to a vertex v ∈ V∞. By definition, v will be
visited again; when this happens, the LRV policy ensures
that the visiting robot must prefer vertex w (with individ-
ual refresh time at least t − t0) to all vertices in V∞ (with
individual refresh times less than t − t0), a contradiction to
the assumption that w is not visited again. We conclude that
V = V∞.

Figure 14b shows the resulting refresh time data using the
LRV from the patrolling experiment shown in Figure 14a.
The experiment starts with one navigating robot; we add
another at 1500 and 3600 seconds. As we deploy more navi-
gating robots, the refresh time decreases, seen in the red line
that shows the 400 s moving average. We compute the theo-
retical lower bound of the refresh time by assuming that all
eleven dual graph vertices from the Hamiltonian cycle are
evenly divided for the trajectory of each patrolling robot.
Note that the resulting refresh time plot never reaches the
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Fig. 14. (a) An experiment setup for LRV experiments with 11
stationary robots. Black lines and red circles depict resulting tri-
angles and patrolling robots, respectively. Dashed blue (at upper
left corner) and solid gray lines indicate the dual graph of the tri-
angulation. (b) Patrolling experiments result in the triangulation
shown in Figure 14a. The black and dashed red lines indicate the
refresh time and the theoretical lower bound of the refresh time at
each time, respectively. The solid red line is the moving average of
the refresh time (window size = 400 seconds) to see the tendency
of the refresh time graph. It starts from one patrolling robot, and
adds one more patrolling robot after 1500 seconds and 3600 sec-
onds. The refresh time tends to decrease as we add more patrolling
robots, but it takes about tlag time to stabilize the refresh time with
an increased number of patrolling robots.

theoretical lower bound because the dashed blue edge in
Figure 14a is used twice to visit the protruded vertex (blue
circle). Therefore, the graph cannot form a Hamiltonian
cycle, but the real-world performance is still quite good.

6. Topological Voronoi tessellation

In this section, we use a triangulation to tessellate the
workspace into topological Voronoi cells. A conventional
method to compute Voronoi tessellation requires a complete
notion of an environment that requires a highly centralized
approach. A method using a uniformly distributed sensor
network by McLurkin and Smith (2004) uses only a dis-
tributed method, but may cause a geometrically ambiguous
boundary between Voronoi cells, especially if the density
of a network is sparse. In this section, we design a fully

distributed method that partitions a set of triangles in a tri-
angulated space according to the hop distance in a dual
graph, to triangles containing a navigation robot acting as
a “site”. By doing so, we generate a topological Voronoi
tessellation even in a non-convex space. Moreover, Voronoi
cells in the resulting topological Voronoi tessellation can
form a clear boundary, so that we can combine the topolog-
ical Voronoi tessellation with various applications, such as
patrolling, to enhance the performance of the application.

We assume the environment has been triangulated using
an online MATP approach, where a set of triangles dis-
cretely approximates the space. Because our triangles are
computational elements in the PDS, we model algorithmic
execution on the triangles, and rely on the map between
the dual and primal graph to assign the computations to the
appropriate owner robots. Our robot sensing does not pro-
vide distance information about the graph embedding, only
angles. However, we can use path length in the dual graph
to approximate distances, and then divide the entire trian-
gulated network into n topologically equal subnetworks. If
we assume that the shape and size of the triangles is similar,
we can establish performance guarantees for our results.

An example topological tessellation is shown in Fig-
ure 15a. We tessellate the environment around p reference
points, R1 and R2 in the example. Each point is a patrolling
robot, constituting the reference point of its topological
Voronoi cell. The extent of each cell is the set of clos-
est triangles using geodesic distance. In the implementa-
tion, a triangle containing a patrolling robot broadcasts a
cell message. This message disperses within the graph in a
breadth-first fashion, building a tree as it propagates. Trian-
gles without robots join the cell whose source is closest in
the dual graph. Triangles equidistant from multiple sources
join each cell. This approach uses a message of size O( 1)
and takes O( D( GD) ) rounds of computation, where D( GD)
is the diameter of the dual graph, GD. Figure 15b presents
an experimental result of topological Voronoi tessellation
using eleven stationary r-one robots for creating a trian-
gulation and three patrolling r-one robots moving in the
triangulation.

6.1. Global path stretch within a region

Theorem 5.4 provides constant stretch factors in the pres-
ence of a single robot. In this section, we describe how
to provide constant stretch factors even in the presence of
multiple robots. Corollary 6.1 addresses performance guar-
antees for the path stretch across different cells, i.e. we
show that the topological Voronoi tessellation yields travel
distances for the navigation robots (using local informa-
tion) that are within constant factors of the shortest distance
under full information, even if we end up using a navi-
gation robot that is not closest to a target. The proof is
largely based on theorem 5.4; again we do not have to worry
about navigation between locations that are in triangles
sharing a vertex: in that case, local navigation provides good
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Fig. 15. (a) An example of topological Voronoi tessellation. The
red and blue circles (R1 and R2) are the reference points for
the tessellation. The triangles that contain them are sources of
BFS broadcast trees. The number in each square indicates the
hop count in the dual graph to the closest source triangle. Trian-
gles join the cell that is closest, those equidistant join both cells,
such as the triangle with five hops. (b) Experimental result for a
geodesic Voronoi tessellation of a triangulated network with a sim-
ple patrolling test. Colored circles and triangles represent source
robots and corresponding Voronoi cells. Black dots and lines indi-
cate the dual graph of the triangulation. Note that a triangle that
has equal geodesic hops from several source triangles can belong
to multiple topological Voronoi cells (leftmost triangle with stripe
pattern). The number in each triangle indicates the refresh time for
a simple patrolling algorithm.

results. This provides constant stretch factors under mini-
mal, conservative assumptions. The practical performance
in real-world settings (where the greedy paths do not visit
worst-case points in the visited triangles) is considerably
better.

Corollary 6.1. Consider a ( ρ, α)-fat triangulation T of a
planar region R, with vertex set V , maximum and minimum
edge length rmax and rmin, respectively. Let s1 be the loca-
tion of a navigation robot, and g be a target location in R
that belongs to the topological Voronoi cell of s1. Let s1 and
g be separated by at least one triangle, i.e. the triangles
�s1 , �g in T that contain s1 and g do not share a vertex.
Then a T -greedy path based on a dual Voronoi tessellation

is within a constant factor of a shortest geometric path from
any navigation robot to g.

Proof. By assumption, �s1 is the triangle with minimum
hop count in the dual graph. On the other hand, suppose
s2 is the location of a navigation robot that is closest to
g in geometry. If s2 = s1, theorem 5.4 provides a proof.
Instead, suppose s2 has a larger hop count in the dual graph,
meaning it does not contain g within its cell. Then we
can proceed completely analogously to theorem 5.4, but
use the lower bound on dp( s2, g) and the upper bound on
dpT ( s1, g) in order to get dpT ( s1, g)≤ c · dp( s2, g)+2,
for c = � 2π

α

 ρ

sin(α/2) , and dpT ( s1, g)≤ c′ · dp( s2, g), for

c′ = � 6π
α

 ρ

sin(α/2) .

6.2. Advanced patrolling algorithm using topo-
logical Voronoi tessellation

In this section, we develop an advanced policy that
shows greater performance than the LRV using topologi-
cal Voronoi cells. Each robot navigates to the triangle in its
cell, Vu, with max RT�i(t). Figure 16 illustrates the advanced
patrolling policy. To compute the refresh time in a cell, the
triangles run a leader election algorithm, using individual
refresh times as the quantity (McLurkin, 2008). This uses
a message of size O( 1) and takes O( D( Vu) ) rounds of
computation. Once the maximum individual refresh time
triangle is elected, the triangle becomes the source trian-
gle and build a BFS tree in the dual graph of the cell. The
patrolling robot then conducts dual graph navigation until it
reaches the source triangle.

We compare the performance of the advanced policy with
the LRV by analyzing the worst-case scenario. The worst-
case refresh time will be proportional to the required hop
distance to travel all vertices of a dual graph. Assume with-
out loss of generality that a Voronoi cell, Vu, has the largest
diameter D( Vu) and the greatest number of dual graph
vertices |Vu| among all cells. Obviously, the inequalities,
D( Vu)≤ n and |Vu| ≤ n, hold, where n is the number of
dual graph vertices in all Voronoi cells. Therefore, by using
the advanced patrolling policy, the worst-case hop distance
to patrol all vertices in the entire triangulation becomes
D( Vu) |Vu| ≤ n2 for k = 1, but exponential in n for LRV
(Maftuleac et al., 2015). Figures 17a and 17b show simula-
tion results of patrolling with the advanced and LRV policy
for k ≥ 1.

6.3. Centers of non-convex Voronoi cells

There are many robotic approaches to configuration con-
trol that use some variant of the weighted centroid of a
region. Given the boundaries of the region, the centroid is
straightforward to compute and guaranteed to be in the inte-
rior of any convex region. However, for non-convex regions,
the centroid might not be inside, so approximations are
often used, as in the work by Breitenmoser et al. (2010b)
and Bhattacharya et al. (2013). For applications that require
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Fig. 16. Illustrations for the advanced patrolling algorithm. Blue-colored triangles indicate all triangles that belong to the Voronoi cell
whose reference point is the robot P. (a) All triangles in the same Voronoi cell conduct a leader election algorithm to elect the maximum
individual refresh time triangle (yellow colored triangle including circled number). (b) The yellow triangle then becomes the source
of a BFS tree in the dual graph. The robot P then uses dual graph navigation to move to the source triangle. Once the robot P arrives
at the triangle, it sets its individual refresh time to zero, and all triangles continuously elect a new source triangle with the maximum
individual refresh time.

Fig. 17. (a) Distributed patrolling simulation screen shot (with an advanced policy). We test with 1, 3, 10, and 20 patrolling robots.
Circles and equilateral triangles represent robots and the target triangle of each robot, respectively. Each color represents each topological
Voronoi cell. (b) Comparison of the maximum refresh time. Dashed and solid lines represent the maximum refresh time result with the
LRV and advanced policy using topological Voronoi cells, respectively.

navigation robots to respond to an event inside its region,
the response time is determined by the geodesic distance
to the event. Hence, positioning the robot with a centrality
metric that uses this distance yields optimal performance.
This section uses the distances in the dual graph of the tri-
angulation to compute a topological center of a non-convex
Voronoi cell.

There are many types of topological centrality mea-
sures (at least nine, by our count). The appropriate choice
depends on the application. If we desire a fast response
time for an exogeneous event in a region, the closeness
centrality and the eccentricity centrality (both in the work
by Koschützki et al. (2005)) minimize the average and
worst-case response time, respectively.

In a distributed system, selecting a metric that uses
a fixed-size message is important. In this work, we use
the eccentricity centrality (EC) to provide the min-max
response time, but our technique can apply to any centrality
metric that can be computed using fixed-size messages. For
a given vertex in the dual graph u (or its triangle, �) and a

function to compute the shortest hop count ds( u, v) between
two vertices in the dual graph, the value of the EC metric is

EC( �)≡ EC( u)= 1

maxv∈V ds( u, v)

Given the definition of the EC metric, we then can compute
the center of a cell in a brute-force fashion if each trian-
gle builds a BFS tree, computes its max distance, and then
selects the triangle with the min-max in the cell. The entire
environment contains |T | triangles, requiring |T | broad-
cast trees, and therefore messages of size O( |T |). Because
|T | ≥ O( n/3), these are impractically sized messages.

Our solution is to compute the center iteratively, while
navigating to it. Our motion controller only considers the
three triangles adjacent to the one occupied by the navigat-
ing robot, triangle �, shown in Figure 18a. Given a metric,
m ∈ C3( u), each triangle adjacent to � broadcasts a BFS
tree in the dual graph, then runs a convergecast to collect
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Fig. 18. (a) Distributed algorithm to choose the triangle having the min-max geodesic hops among all adjacent triangles in same
topological Voronoi cell. The robot in the gray triangle builds a BFS tree rooted at each adjacent triangle and computes the min-max
hop count among these three sub-trees. The min-max hop count in the red (triangles), blue (squares), and green (circles) sub-trees are
5, 2, and 3, respectively. Therefore, the robot moves into the red adjacent triangle. (b) An A-shaped environment where convergence to
the regional local minima (blue star) happens. The agent moves toward the adjacent point at (2) because its min-max distance, d( 2), is
less than other min-max distance, such as at d( 1). (c)-(d) Simulation results that show all converging paths from each starting vertex to
the regional local minima or the regional global minimum in the dual graph of A-shaped and rectangle-shaped environments. Both of
them contain at least one regional local minimum.

Algorithm 5 REALAGENTS

1: while TRUE do
2: �adj ← GETADJTRIANGLES()
3: �goal ← ∅
4: valMin←∞
5: for all �i ∈ �adj do
6: val← EC( �i)
7: if val < valMin then
8: �goal ← �i

9: valMin← val
10: end if
11: end for
12: if �goal

�= ∅ then
13: MoveRealAgentToTargetTri( �goal)
14: end if
15: end while

metric values. These three trees do not overlap, so the mes-
sage size is O( 1), one broadcast and one convergecast mes-
sage. The robot in � moves toward the adjacent triangle that

has the lowest metric value. Algorithm 5 shows this itera-
tive approach to guide a patrolling robot to the center of its
topological Voronoi cell. Lines 2-9 evaluate the centrality
metric on adjacent triangles. Line 13 moves the navigat-
ing robot towards the triangle with the smallest value of the
metric. The process repeats until the robot is in the triangle
that is the center of the cell. Unfortunately, many metrics,
including EC, do not produce a unique destination with
this type of local controller. Figure 18b addresses a sam-
ple environment that can generate multiple destinations and
trap the navigating robots (black circle) in a regional local
minimum. Figures 18c and 18d are simulation results show-
ing that the paths of navigation robots from various dual-
graph vertices converge to the regional global minimum
or regional local minima in A-shaped and rectangle-shaped
environments.

To address the regional local minima problem, we use
a probabilistic approach. Algorithm 6 shows pseudocode
for this approach. With probability p, each triangle cre-
ates a navigation agent. Each of these agents broadcasts a
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Algorithm 6 VIRTUALAGENTS

1: Initially, each owner that has the physical data struc-
ture of its triangle randomly generates a message which
stands for a virtual agent in the triangle with probabil-
ity, p. An owner robot of triangle Ti then runs the below
algorithm.

2: while ISREALAGENTINCENTROID() = FALSE do
3: Tadj ← GETADJTRIANGLES()
4: maxHop←∞
5: Tmax ← ∅
6: for all Tj ∈ Tadj do
7: hj ← GETMINMAXHOP(Tj)
8: if hj < maxHop then
9: Tmax ← Tj

10: maxHop← hj

11: end if
12: end for
13: if Tmax = ∅ then
14: ELECTCELLMIN()
15: if IsCellMin( Ti) then
16: GuideRealRobotToTri( Ti)
17: end if
18: else
19: MoveVirtualAgentToTargetTri( Tmax)
20: end if
21: end while

message throughout the cell of the form {agentID, agent-
MetricValue, messageHops}. We allocate k slots for broad-
cast messages, so a triangle only creates an navigation agent
if there is a free slot. The navigation agents follow the same
motion policy as the navigation robots, but propagate at
network speeds. The physical robot follows the broadcast
message from the agent with the best agentMetricValue.
If multiple agents reach the same triangle, one remains;
the others are destroyed. An agent that remains stationary
for more than 2D(Vu) rounds without having the best met-
ric value in Vu is destroyed. This always leaves one agent
present – the one that is in the triangle with the best metric
value found. This process continues indefinitely, with one
agent remaining at the current best value, and k − 1 agents
in motion. Eventually, a virtual agent will be created in the
basin of the cell’s regional global minimum, will propagate
there, and will remain indefinitely. Increasing the number
of agents reduces the time required to find the best value
in Vu, but adds communications cost. Figure 19 illustrates
how this method guides an actual robot to a region’s global
minimum with virtual agents.

Each agent has the same communications requirements
as the navigating robot: a broadcast+convergecast message
to find the adjacent triangle with the deepest tree in the cell.
Therefore the total communications complexity for each
cell is O( k+1). Note that these messages do not travel out-
side of the cell, so the total global message complexity for
the entire system is also O( k+1), and it does not depend on

Fig. 19. Illustrations of guiding a robot to the regional mini-
mum in an ‘A’-shaped Voronoi cell using virtual agents. Blue and
red circles with ‘X’ marks denote regional local minima and the
regional minimum, respectively. (a) Each cell generates k virtual
agents. Each virtual agent continuously moves to the min-max hop
count adjacent triangle among all adjacent triangles, and broad-
casts the min-max hop count of the current triangle (containing
the virtual agent to elect the regional min-max hop count among
all virtual agents in the cell). At the same time, the triangle with
the elected regional minimum becomes a source to guide a real
robot to the triangle. Note that this source triangle may be changed
as any virtual agent moves. (b) All agents eventually converge to
either the regional local minima or regional minimum, and then
the elected source triangle and the regional minimum among min-
max hops of all virtual agents are changed no more. The final
source triangle in which the real robot will converge becomes the
regional minimum triangle with non-zero probability, and builds
its own dual graph in the cell to guide the real robot. (c)-(d) The
real robot then uses dual graph navigation to move to the agent
with the regional global minimum.

the number of cells (i.e. the number of robots). The running
time requires worst-case O( k ·D( GD) ) rounds to select the
initial k agents. It takes O( D( GD) ) rounds for an agent to
travel the entire region, and O( D( GD) ) rounds for a new
agent to be created when two reach the same triangle.

This algorithm is probabilistically complete: if we con-
duct an infinite number of trials, the probability that at least
one agent is created in the basin of the region’s global mini-
mum, and therefore converges towards it, becomes 1. How-
ever, the expected running time will depend on the number
of navigation agents deployed – generating more agents will
find the regional global minimum faster. This lets us trade
off between message size and expected execution time. For
simplicity, we assume that a set of k navigation agents
is generated, which then converge (or are destroyed) once
every D( GD) rounds. Therefore, the expected time to start
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an agent in the basin of the cell’s regional global minimum
is governed by a series of Bernoulli trials, where each trial
takes place every D( GD) rounds. Note that actual naviga-
tion agents are regenerated right after they converge (or are
destroyed), so that the life span of each agent may be shorter
than D( GD) rounds. Therefore, the expected execution time
of these Bernoulli trials is actually an upper bound for the
actual expected execution time.

Let F (“fail”) denote the event that all k virtual agents are
created in triangles that are in the basin of a regional local
minimum within Vu. We define |Vu| as the total number of
triangles in region Vu, and |Vu|local as the the number of tri-
angles in Vu that converge to a regional local minimum. The
probability of event F is given by

P( F)= |Vu|local( |Vu|local − 1) ...( |Vu|local − k + 1)

|Vu|( |Vu| − 1) ...( |Vu| − k + 1)

We can therefore define “success", S, as an event that at
least one of k agents successfully converges to the regional
global minimum. The probability of the event S, P( S) is
1-P( F).

We then consider the geometric probability in a nega-
tive binomial experiment, where P( 1)= P( S) and P( 0)=
P( F). The geometric probability of ith trial is P( S) P( F)i−1.
Therefore, the expected trial number until the first appear-
ance of event S, EN ( S), is given by

EN ( S) =
∞∑

i=0

iP( S) P( F)i−1 =
∞∑

i=0

i( 1− P( F) ) P( F)i−1

=
∞∑

i=0

P( F)i = 1

1− P( F)
= 1

P( S)

The maximum lifespan of an agent in one trial is D( GD)
rounds, so the expected execution time, E( S), becomes

E( S)= EN ( S) D( GD)= D( GD)

P( S)

With this, we can show the relationship between communi-
cations bandwidth (the number of agents, k) and execution
time. In the extreme case, if each triangle creates an agent
during each trial, the number of navigation agents is |Vu|,
and P( F)= |Vu|local(|Vu|local−1)×...0...×(|Vu|local−|Vu|+1))

1+2+...+|Vu| = 0 and

the expected execution time becomes D( GD), but the mes-
sage size is |Vu|. As we reduce the number of navigation
agents, P( F) increases and the expected execution time also
increases by 1

1−P(F) D( GD).
Fortunately, it is possible to achieve a reasonable

expected execution time with a relatively small number of
navigation agents. Figures 20a–20b show simulation results
to illustrate the relationships between the expected execu-
tion time, the ratio of the number of agents k to |Vu| (β),
and the ratio of |Vu|local

|Vu| (γ ). Even in extreme environments
whose |Vu|local values are 90% of |Vu| (meaning that 90% of

triangles converge to regional local minima), the expected
execution time of all cases were below 2D( GD) using six
agents, or messages of size 0.12|Vu|. Even with one vir-
tual agent, (k=1), the expected execution time is less than
2D( GD), as long as the ratio of |Vu|local

|Vu| is less than 0.5, which
is true for many environments, including the 21 studied in
this paper.

To test navigation to the topological center, we generated
25 cases of ( 3.81, 0.31 rad)-fat triangulations. Figure 21
shows these triangulations with two robots (in red), which
create two topological Voronoi cells. Each cell uses two vir-
tual agents. As the robots move to optimal locations, the
value of the EC metric converges to the same value for both
robots. We compared topological tessellation with and with-
out navigation agents. Figure 22 shows the results of six
trials, compared to a high-resolution discretization of the
environment to approximate the continuous solution. The
trials without navigation agents often got stuck in regional
local minima, producing a high variance and larger mean.
The navigation agents nearly eliminated this problem, pro-
ducing results almost as good as the ideal solution. These
results are difficult to directly compare to existing work.
The closest work, Pasqualetti et al. (2012b), uses global
knowledge of the environment geometry, global localiza-
tion, long-range communications, and square tessellations
of the workspace. Our approach uses a triangular tessella-
tion, is fully distributed, uses local communications, and has
no shared global knowledge. However, in the limit of arbi-
trarily small tessellation elements, our two approaches will
both converge to the geodesic center.

Finally, let us recall the message size of the brute-force
algorithm stated in Section 6.3. The problem of the brute
force method lies in the size of message. Suppose that we
have n low-cost robots for triangulation, p actual robots
acting like sites in each topological Voronoi cell, k virtual
agents in each topological Voronoi cell, and |T | triangles
made by the n low-cost robots.

Let us move to the comparison of message size between
the brute-force and the virtual agent method. For simplic-
ity, we assume that p = 1, so that there is only one Voronoi
cell in a triangulated space. First, the brute-force algorithm
computes the maximum hop count from all triangles and
elects the minimum hop count among them to compute the
center. In other words, all |T | triangles in a triangulation
become source triangles and build |T | BFS trees to compute
the maximum hop count from each source triangle. While
all triangle owners construct |T | BFS trees simultaneously,
each robot keeps receiving and broadcasting a message con-
taining |T | distinctive hop values from |T | source triangles.
Therefore, the size of a message used for the brute-force
method becomes at least |T | × 8 bits (uint8, 16 bits for
uint16 or 32 bits for uint32) = O( |T |). Note that the size
of a message is proportional to the number of triangles (or
the number of owner robots). This reduces the advantage of
a distributed approach, including algorithm scalability; if
the population of robots increases, the size of message also
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Fig. 20. Expected execution times given number of |Vu|. β and γ indicate the ratio k
|Vu| and |Vu|local|Vu| , respectively. In all cases, just a

small increase in β or small decrease in γ results in a huge reduction of the competitive ratio of the expected execution time (i.e. the
expected execution time rapidly converges to the O( D( GD) ) rapidly).

Fig. 21. Resulting Voronoi tessellation in a dumbbell-shaped (a) and A-shaped environment (c). Yellow triangles and red dots indicate
triangles containing virtual agents and actual robots, respectively. Maximum hops of all topological Voronoi cells at each round in a
dumbbell-shaped (b) and A-shaped (d) environment. As actual robots move toward the desired centroids, the maximum hop graphs of
each cell converge to the similar value with each other.

becomes impractical and a robot has to broadcast a large
message within limited communication bandwidth.

On the other hand, the virtual agent method requires
constant-size messages. Each message contains p variables
to select which Voronoi cell each triangle should belong to
and k variables to compute the minimum max-hop count
virtual agent by building k BFS trees from each virtual
agent in a Voronoi cell. Therefore, the size of a single
message in the virtual agent method becomes O( p + k).
Note that this work considers a scenario in which a large

number of low-cost robots supports a few more powerful
robots. Therefore, p should be much smaller than |T | or n
(n > 3|T | >> p). For the k variable, however, there is
a trade-off between the message size and algorithm per-
formance; if we use a large size message with large k
value, the expected execution time, E( S), decreases. For-
tunately, it turns out that a relatively small message size k
is enough to achieve a good E( S), as shown in Figure 20.
For instance, in Figure 20b, E( S) for k = 5 (i.e. E( S)k=5) is
only 10.7% larger than E( S)k=100. The brute-force method



1258 The International Journal of Robotics Research 35(10)

Fig. 22. A plot that shows an error distance (in hop) between
the triangle containing the geodesic center in continuous space
and the triangle containing an actual robot at every round in A-
shaped environment. Red, blue, and green lines indicate the hop
count error with two virtual agents in approximation of continu-
ous space, two virtual agents in triangulation, and no virtual agents
in triangulation, respectively.

for E( S)k=100 requires 25 times larger messages (|T |=100, if
p=1). In summary, the virtual agent algorithm significantly
reduces the required message size (O( |T |) >> O( k + p)).
In addition, k and p are user definable and are not related to
the number of robots, n. Therefore, the virtual agent method
preserves algorithm scalability of a distributed method.

7. Conclusion

This paper presents distributed algorithms for the construc-
tion of a triangulation using a multi-robot system and its
applications. Instead of enhancing a single robot to be more
powerful, we make the environment smarter by deploying
many low-cost robots in a structured way, to form a tri-
angulated robot network. Data stored in the triangles is
embedded in the physical world, creating a physical data
structure.

The triangulation maps useful geometric features of its
surrounding environment into topological features, notably
to the dual graph of adjacent triangles. The physical data
structure allows a set of robots with limited capability
accomplish complex tasks, including the computation of
Voronoi tessellation and patrolling, without powerful sen-
sors or a geometric map of the environment.

The key feature of our work is that it combines methods
from robotics, sensor networks, and algorithmics, provid-
ing an analytic and experimental framework for further,
high-level approaches. In an ongoing project, we investi-
gate distributed topology extraction by using the triangles
to identify corridors, junctions, and dead-ends in a maze-
like environment. One of the tasks involved is to fully

understand and control the relationship between the qual-
ity of a triangulation and the accuracy of extracted topol-
ogy. Another challenge is to extend the aspects of robust-
ness: while our algorithms that use the triangulation are
robust to robot failures and communications errors, the tri-
angulation itself is not self-stabilizing. Thus, rebuilding the
physical data structure after robot failures and movements
deserves further investigation; we are considering a variety
of different approaches for this.
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