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Abstract. In the one-round Voronoi game, the first player chooses an n-point setW in a
square Q, and then the second player places another n-point set B into Q. The payoff for
the second player is the fraction of the area of Q occupied by the regions of the points of B
in the Voronoi diagram ofW ∪ B. We give a (randomized) strategy for the second player
that always guarantees him a payoff of at least 1

2 + α, for a constant α > 0 and every large
enough n. This contrasts with the one-dimensional situation, with Q = [0, 1], where the
first player can always win more than 1

2 .

1. Introduction

Competitive facility location studies the placement of sites by competing market players.
Overviews of different models are the surveys by Tobin et al. [9], Eiselt and Laporte [3],
and Eiselt et al. [4].

∗ Part of this research was done during a workshop supported by ITI (Project LN00A056 of the Ministry of
Education of the Czech Republic). N.L. was supported in part by a grant from the Israel Science Foundation.
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The Voronoi game is a simple geometric model for competitive facility location, where
a site s “owns” the part of the playing arena that is closer to s than to any other site. We
consider a two-player version with a square arena Q. The two players, White and Black,
place points into Q. As in chess, White plays first. The goal of both players is to capture
as much of the area of Q as possible, where the region captured by White is

R(W,B) = {x ∈ Q : dist(x,W) < dist(x,B)}

and the region captured by Black is R(B,W). Here W is the set of points of White,
B is the set of points of Black, and dist(·, ·) is the Euclidean distance. In other words,
if we construct the Voronoi diagram ofW ∪ B, then each player captures the Voronoi
regions (restricted to Q) of his point set and is rewarded proportionate to the measure of
his captured set. The payoff for White is

vol(R(W,B))
vol(Q)

and the payoff for Black is

vol(R(B,W))
vol(Q)

,

where vol(·) is the Lebesgue measure. (Of course, we can rescale the arena Q so
that vol(Q) = 1, but in the subsequent considerations a different scaling seems more
intuitive.)

Ahn et al. [1] studied a one-dimensional Voronoi game, where the arena Q is a line
segment, and the game takes n rounds. In each round, White and Black place one point
each. Ahn et al. showed that Black then has a winning strategy that guarantees a payoff
of 1

2 + ε, with ε > 0, but that White can force ε to be as small as he wishes. On the other
hand, if only a single round is played, where White first places n points, followed by
Black placing n points, then White has a winning strategy. In fact, if Q = [0, 2n] and
White plays on the odd integer points {1, 3, 5, . . . , 2n − 1}, then Black’s payoff is less
than 1

2 .
In this paper we show that in the two-dimensional case Black, rather than White, has

a winning strategy: for each set W of n points, there is a set B of n black points such
that Black’s payoff is at least 1

2 + α, for an absolute constant α > 0 and n large enough.
From now on, let Q be the square [0,

√
n]2, of area n, so that the average area per

white point is 1. To win the game, Black needs to find n points such that their average
area is at least 1

2 + α. We first show that it is very easy to find one such point—in fact, a
random point in Q\W has this property. Since this is the key idea of our proof, we first
present it in a modified setting where the arena Q has the topology of a torus, eliminating
boundary effects. We then proceed to prove this result for the square with its standard
topology, showing how to handle the square boundary, and proceed to prove the result
for n black points. Finally, we generalize the result to higher dimensions.

After a preliminary version of the present paper appeared in the Proceedings of the
18th ACM Symposium on Computational Geometry (2002), further progress on the one-
round Voronoi game was made by Fekete and Meijer [7]. In particular, for rectangular
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arenas Q they showed that White has a winning strategy if and only if n = 1, or n = 2
and ρ ≤ √3/2, or n ≥ 3 and ρ ≤ √2/n, where ρ ≤ 1 is the ratio of the sides of Q,
and Black has a winning strategy in all other cases (a winning strategy need not imply
winning by a fixed margin).

2. The Torus Case

To present the (simple) main idea of our proofs in a setting free of technical complications
due to effects near the boundary of Q, we assume in this section that the square Q has
the topology of a torus. To be precise, we identify the left and right edges of Q, as well
as the top and bottom edges, and we alter the Euclidean metric in Q accordingly.

Proposition 1. There exist constants β > 0 and n0 such that for every n-point setW
in the square arena Q with torus topology, n ≥ n0, there is a point x ∈ Q\W with

vol(R(x,W)) ≥ 1
2 + β.

In fact, x can be selected uniformly at random:

E[vol(R(x,W))] ≥ 1
2 + β,

where E[·] denotes expectation with respect to uniform random selection of x ∈ Q.

Proof. If there is a point p ∈ Q such that dist(p,W) >
√

n/4, then the proposition
holds: with probability bounded below by a positive constant, the point x will grab an
�(n) area, which is definitely larger than (say) 1 for sufficiently large n. In the following
we can therefore assume that no such point p exists. In this case each region in the
Voronoi diagram of W is topologically a disk, and the dual graph (where two points
p, q ∈ W are connected by an edge if their Voronoi regions have a common edge)
has no multiple edges. Any graph without multiple edges drawn on a torus has average
degree at most 6 (see for instance Proposition 4.4.4 of [8]), a fact that will be useful later.

Let IA denote the characteristic function of a set A. We have

E[vol(R(x,W))] = 1

vol(Q)

∫
Q

∫
Q

IR(x,W)(y) dy dx

= 1

n

∫
Q

vol({x ∈ Q : y ∈ R(x,W)}) dy

by Fubini’s theorem.
A point y ∈ Q lies in R(x,W) if and only if dist(y, x) < r = dist(y,W), and so

{x ∈ Q : y ∈ R(x,W)} = {x ∈ Q : dist(x, y) < r}.

Since r ≤ √n/4, this is a disk of radius r centered at y (possibly wrapping around the
edges of Q).
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Our integral thus becomes (π/n)
∫

Q dist(y,W)2 dy, a quantity that we denote by
F0(W). We split it into integrals overW’s Voronoi cells:

F0(W) = π

n

∑
w∈W

∫
cellW (w)

dist(y, w)2 dy,

where cellW(w) is the region of w in the Voronoi diagram ofW in Q.
Among all convex bodies C ⊂ R2 of area a, the integral

∫
C dist(y, w)2 dy is mini-

mized by the disk C0 of area a centered atw (somewhat informally, moving a piece of C
closer to w decreases the integral, and such a move is possible for any C but that disk).
The value of that integral over C0 is

∫
C0

dist(y, w)2 dy =
∫ √a/π

0
r2 · 2πr dr = a2

2π
.

Moreover, we will need the following intuitively obvious lemma:

Lemma 2. For every k ≥ 3 there exists a constant εk > 0 such that if C is a convex
k-gon of area a, then

∫
C dist(y, w)2 dy ≥ (1+εk)

∫
C0

dist(y, w)2 dy = (1+εk)(a2/2π).

A formal proof for arbitrary dimension will be given as Lemma 7 in Section 5.
We set aw := vol(cellW(w)). Then

F0(W) = π

n

∑
w∈W

∫
cellW (w)

dist(y, w)2 dy

≥ 1

2n

∑
w∈W

a2
w ≥

1

2n

(∑
w∈W aw

)2

n
≥ 1

2

by Cauchy–Schwarz.
We see that for a random point x , the expected region size is at least 1

2 , but we want
1
2 + β. By Lemma 2, if cellW(w) has at most k sides, then

∫
cellW (w)

dist(y, w)2 dy ≥
(1 + εk) · (a2

w/2π). Let W f ⊆ W consist of the points whose regions in the Voronoi
diagram of W have fewer than 12 sides. Since, as was mentioned earlier, the average
number of sides of a cell in the Voronoi diagram ofW is at most 6, we have |W f | ≥ 1

2 n.
So we win the factor 1 + ε11 in at least half of the regions and lose nothing in the

other regions. The only problem is that the regions ofW f could together occupy only a
tiny fraction of the area of Q and then this win would not reach the threshold β > 0 that
we seek.

Let us assume that they occupy, say, less than 1
4 of the total area. Then the average

area of the remaining regions (ofW\W f ) is at least 3
2 (at most 1

2 n regions take up area at
least 3

4 n). The Cauchy–Schwarz inequality used in the calculation above then becomes
strict and we win a constant factor in the regions ofW\W f . Namely,

F0(W) ≥ 1

2n

∑
w∈W\W f

a2
w
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≥ 1

2n

(
∑

w∈W\W f
aw)2

|W\W f |
≥ 1

2n
· 3

2
·

∑
w∈W\W f

aw ≥ 1

2n
· 3

2
· 3

4
n ≥ 9

16
.

3. The Proof with Boundary Effects

The torus arena conveniently removed the need to consider the boundary effects. We
now prove the same result for the square with boundary:

Proposition 3. There exist constants β > 0 and n0 such that for every n-point set
W ⊂ Q, n ≥ n0, we have

E[vol(R(x,W))] ≥ 1
2 + β.

Proof. As in the proof of Proposition 1, we can rewrite the expected area as

F(W) = 1

n

∫
Q

vol({x ∈ Q : y ∈ R(x,W)}) dy

= 1

n

∫
Q

vol(B(y, dist(y,W)) ∩ Q) dy

= 1

n

∑
w∈W

∫
cellW (w)

vol(B(y, dist(y, w)) ∩ Q) dy,

where B(x, r) is the disk of radius r centered at x . We want to bound F(W) from below
by 1

2 + β.
We choose a large constant D (the requirements on D will become apparent later).

We call a region cellW(w) long if it has diameter at least D and short otherwise, and
we denote byW� andWs the subsets ofW corresponding to the long and short regions,
respectively. Let again aw := vol(cellW(w)).

First we consider the long regions. We note that for any w, y ∈ Q,

vol(B(y, dist(y, w)) ∩ Q) ≥ 1
2 · dist(y, w)2 (1)

(the extreme case is w and y in opposite corners of Q).
Now let w ∈ W� and write C = cellW(w). We claim that at least 1

16 of the area
of C lies at distance at least 1

4 D from w; in other words, vol(C\B(w, 1
4 D)) ≥ 1

16 aw
(the constant can be improved). Let p, q be a diametrical pair of points of C , and place
two copies Cp,Cq of 1

4 C inside C so that they share a common tangent to C at p and
q, respectively, where 1

4 C is the shape resulting from shrinking C by a factor of 4; see
Fig. 1. Clearly, the distance between Cp and Cq is D/2, and consequently, either Cp or
Cq do not intersect B = B(w, 1

4 D). Thus, the area of C not covered by B is at least
vol(Cp) = vol(Cq) = vol(C)/16.
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p

q

C

Cp

Cq

Fig. 1. At least 1
16 of the area of C is not covered by B(w, 1

4 D).

It follows that∫
cellW (w)

vol(B(y, dist(y, w)) ∩ Q) dy ≥ 1

2
· D2

16
· 1

16
aw >

D2

1000
aw

for every w ∈ W�, and so the contribution of the long regions to F(W) is at least
(D2/1000n)A�, where A� =

∑
w∈W�

aw.
Next, we consider the short regions (of diameter at most D), and among those only

the inner ones, whose distance to the boundary of Q is at least D. Let Wsi be the
corresponding subset of W . We have Asi =

∑
w∈Wsi

aw ≥ n − 8D
√

n − A�. For the
short inner regions, the disk B(y, dist(y, w)) lies completely inside Q and so their
contribution to F(W) behaves as in the proof of Proposition 1; it equals

π

n

∑
w∈Wsi

∫
cellW (w)

dist(y, w)2 dy.

As we saw above, this quantity is bounded below by

1

2n

∑
w∈Wsi

a2
w ≥

1

2n

A2
si

|Wsi| .

Now we distinguish several cases depending on the orders of magnitude of A� and |Wsi|.
(1) Suppose that A� ≥ n/2D. Then the contribution of A� alone suffices: F(W) ≥

(D2/1000n)A� ≥ D/2000 > 1
2 + β for D large enough.

(2) Now let A� < n/2D. For large n this implies Asi ≥ (1− 1/D)n. Now two cases
are distinguished according to |Wsi|.
(a) For |Wsi| ≤ (1− 4/D)n, we obtain

F(W) ≥ 1

2n

A2
si

|Wsi| ≥
(1− 1/D)2

2(1− 4/D)
≥ 1

2
+ 1

D
,

which is the desired bound.
(b) It remains to deal with the case Asi ≥ (1− 1/D)n and |Wsi| ≥ (1− 4/D)n.

If D is very large, we are essentially in the situation analyzed in the proof of
Proposition 1. We can repeat the argument from that proof: We consider the
subsetWsif ⊆Wsi consisting of points whose regions have at most 12 sides,
we get thatWsif has almost 1

2 n points, and we win a fixed constant factor for
each of the regions ofWsif, etc. The inequalities that were exactly true in the
proof of Proposition 1 may now hold only up to multiplicative factors that
tend to 1 as D→∞, but everything goes through and we get F(W) ≥ 1

2+β
in this case as well. We omit the tedious detailed calculations.
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4. The Main Result

A key ingredient in the proof of our main theorem is the following lemma, showing
that if Black throws in δn points at random, instead of one as in Proposition 3, then his
expected area gain still exceeds 1

2δn at least by a fixed fraction, provided that δ > 0 is
sufficiently small.

Lemma 4. For every sufficiently large constant D, there exist constants β1 > 0, δ > 0,
and n0 such that for every n-point set W ⊂ Q, n ≥ n0, if B ⊂ Q is obtained by δn
independent random draws from the uniform distribution on Q, then

E[vol(R(B,W))] ≥ ( 1
2 + β1)δn.

If the total area A� of the long regions (of diameter at least D) exceeds n/2D, then

E[vol(R(B,W))] ≥ 2δn.

Proof. This is very similar to the proof of Proposition 3. Intuitively, for small δ, the δn
independent random points are likely to interact very little and their expected area gain
is likely to be nearly (δ − O(δ2))n times the expected area gain of a single point.

This time we have

E[vol(R(B,W))] =
∫

Q
Prob [y ∈ R(B,W)] dy.

Here P(y) = Prob [y ∈ R(B,W)] is the probability with respect to the random choice
of the set B. Namely,

P(y) = Prob [B ∩ B(y, dist(y,W)) �= ∅]
= 1− (Prob [x �∈ B(y, dist(y,W))])δn

= 1−
(

1− 1

n
· vol(B(y, dist(y,W)) ∩ Q)

)δn
.

We write ρ(y) = (1/n) · vol(B(y, dist(y,W)) ∩ Q). If y lies in a short region of the
Voronoi diagram ofW , then ρ(y) ≤ CD/n with CD depending only on D, and δCD can
be made as small as desired by choosing δ sufficiently small. Then we obtain

P(y) = 1− (1− ρ(y))δn ≥ δnρ(y)+ O((δnρ(y))2) ≥ δnρ(y) · (1− γ )

with γ a small constant. Thus, the contribution of a short Voronoi region to E[vol(R(B,
W))] is at least (1 − γ )δn times the contribution of that region to the expected area
gained by a single random point as in Proposition 3. All the calculations involving short
regions can be done in exactly the same way. It remains to show that if the total area
A� of the long regions is at least n/2D, then these regions contribute at least 2δn to
E[vol(R(B,W))].

In the proof of Proposition 3, equation (1), we have shown ρ(y) ≥ (1/2n)·dist(y, w)2

for y ∈ cellW(w). We also know that dist(y, w) ≥ 1
4 D for y in at least 1

16 of the area of



132 O. Cheong, S. Har-Peled, N. Linial, and J. Matoušek

Fig. 2. Two points of Black can take over almost a complete cell of White.

each long region. For these y, we have P(y) ≥ 1−e−ρ(y)δn ≥ 1−e−D2δ/200 ≥ D2δ/400
(assuming δ < D−2). The integral over all the long regions together is then at least
1
16 A� ≥ n/32D times this quantity, and therefore larger than 2δn with ample room to
spare.

We can now prove our main theorem.

Theorem 5. There exist constants α > 0 and n0 such that for every n ≥ n0, Black can
always win at least 1

2 + α in the Voronoi game. That is, for every n-point setW ⊂ Q
there exists an n-point set B ⊂ Q\W with vol(R(B,W)) ≥ ( 1

2 + α) vol(Q).

Proof. Letw ∈W . A takeover ofw’s region means that Black places two of his points
very close to w with w as the center of symmetry; see Fig. 2. In this way he captures
almost all of cellW(w). This suggests the following strategy for Black: a takeover of the
1
2 n largest White regions guarantees Black a payoff arbitrarily close to 1

2 n. This does not
prove the theorem, in general, but it fails to do so only if almost all of White’s regions
have almost the same area. Thus, if more than εn White regions have area below 1− ε,
for some constant ε > 0, then the takeover strategy implies the theorem. It therefore
suffices to describe a strategy1 for Black when all but εn of White’s regions have area at
least 1− ε.

First Black chooses a setB0 of δn points as in Lemma 4; that is, with vol(R(B0,W)) ≥
(1+ β1)δn and even with vol(R(B0,W)) ≥ 2δn if A� ≥ n/2D.

If A� ≥ n/2D, then White now has n regions of total area AW ≤ (1−2δ)n and Black
still has (1− δ)n points to place. He takes over the 1

2 (1− δ)n largest among the current
regions of White. In this way Black has captured at least an area arbitrarily close to

n − AW + 1
2 (1− δ)n ·

AW
n
= n − 1

2 (1+ δ)AW > 1
2 (1+ δ)n.

Next, we suppose that A� < n/2D. We consider a point w ∈ Ws defining a short
region and call w contaminated if Black has captured some point of cellW(w) by the
set B0. A short region can be contaminated only by a point b ∈ B0 if dist(b, w) ≤ 2D.
Therefore, the total area of contaminated short regions is O(D2δn) < n/3, say, and so

1 A similar trick would also simplify the proof of Proposition 3 if we did not want to prove the claim about
a random point but only the existence of a point capturing at least 1

2 + β.
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regions of total area at least n/2 remain uncontaminated. Now we use the assumption that
all but εn of White’s regions have area at least 1− ε. Black can now take over the 1

2 (1−
δ)n largest uncontaminated regions. This implies that the number of uncontaminated
regions of size ≥ 1 − ε is at least n/2 − εn. Thus, Black can now occupy at least
min(n/2− εn, (1− δ)n/2) ≥ 1

2 (1− δ) n − εn cells, to gain total area at least

( 1
2 + β1)δn + ( 1

2 (1− δ) n − εn)(1− ε)
= ( 1

2 + β1)δn + 1
2 (1− δ − 2ε)(1− ε)n.

If ε is very small compared with δ and β1, then the expression above is at least ( 1
2 +α)n

with α close to β1δ. This concludes the proof of the theorem.

5. The Higher-Dimensional Case

The proof of Proposition 1 (and therefore of Lemma 4) exploited the fact that the Voronoi
diagram is a planar graph, and therefore at least half of all Voronoi cells have at most
11 edges. In higher dimensions, though, the average number of facets of a Voronoi cell
cannot be bounded by any constant, and so we must argue differently in order to show
that the Voronoi cells cannot be all arbitrarily similar to a ball.

Definition 6. A convex body C is (1+µ)-spherical with center p, for µ > 0, if there
exists a radius r > 0 such that B(p, r) ⊆ C ⊆ B(p, r(1+ µ)).

Lemma 7. If a convex body C in Rd is not (1+ µ)-spherical with center p, for some
p ∈ Rd and µ > 0, then there exists a constant β > 0 depending only on µ and d such
that ∫

C
cd · dist(y, p)d dy ≥ (1+ β)L ,

with

L =
∫
�

cd · dist(y, p)d dy = vol(C)2

2
.

Here� is a ball of the same volume as C centered at p, and cd is the volume of the unit
ball in Rd .

Proof. Let � = B(p, R), where R = (vol(C)/cd)
1/d . Then

L =
∫
�

cd · dist(y, p)d dy =
∫ R

0
(cdrd) · (cd drd−1) dr

= c2
d

2
R2d = vol(C)2

2
.

As for the other claim, let r ′ (resp. R′) be the largest (resp. smallest) radius so that
B(p, r ′) ⊆ C ⊆ B(p, R′). Since C is not (1 + µ)-spherical with center p, it follows
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that there exists a positive constant β1 such that (1 + β1)R ≤ R′. In particular, this
implies that there exists a constant β2, such that vol(K ) ≥ β2 vol(C), where K =
C\B(p, R(1+ β1/4)). Namely,

∫
C

cd · dist(y, p)d dy ≥
∫
�

cd · dist(y, p)d dy +
∫

K
cd

((
R

(
1+ β1

4

))d

− Rd

)
dy

≥ (1+ β)
∫
�

cd · dist(y, p)d dy = (1+ β)L ,

where β > 0 is an appropriate constant that depends only on d and µ.

Lemma 8. Let Q be a hypercube in Rd , and let P be a set of points in Q. Let V (P)
denote the decomposition of Q into convex cells by the Voronoi diagram of P restricted
to Q. Then there exists a constant µ > 0, which depends only on d , such that the total
volume of the cells that are (1+ µ)-spherical with respect to their defining site in P is
bounded by vol(Q)/2.

Proof. Consider a cell Cp of V (P) that is (1+µ)-spherical with center p. Let B(p, r)
be the largest ball with center p that is contained inside Cp. Let N (p) be the set of points
of P whose Voronoi cells have a common boundary with Cp.

We claim that all the points of N (p) lie inside a “thin” spherical shell centered at p,
and, furthermore, the points of N (p) are dense inside this spherical shell. This implies
that their Voronoi cells must be long and skinny, and as such they cannot be µ-spherical,
for µ small enough.

Indeed, observe that the distance of any point of N (p) to p is at least 2r and at most
2r(1+µ). Furthermore, any angular cone of angular angle 4

√
µ emanating from p must

include a point of N (p). Indeed, consider such a cone Z with a ray ρ as its rotational
axis and angular radius 4

√
µ, where ρ emanates from p. Let s denote the intersection

of ρ with the spherical shell B(p, (1+µ)r)\B(p, r). Since one endpoint of s is outside
Cp, and the other is inside Cp, it follows that there must be a point q ∈ P , so that the
bisector of p and q intersects s. See Fig. 3.

We claim that q is inside Z . Indeed, the angle α between pq and ρ is maximized when
the bisector between p and q is tangent, at a point v, to B(p, r), and it passes through
the far endpoint u of s. Clearly, ∠pvu = π/2, dist(p, v) = r , dist(p, u) = (1 + µ)r ,
and dist(u, v) = r

√
(1+ µ)2 − 1 = r

√
2µ+ µ2 ≤ r

√
3µ, for µ small enough. Now,

sin(α) = dist(u, v)/dist(p, u) ≤ √3µ/(1 + µ) ≤ 2
√
µ, for µ small enough. Finally,

α ≤ 2 sin(α) ≤ 4
√
µ, for sin(α) small enough. Implying that q ∈ Z . See Fig. 4.

This implies that N (p) is dense. Indeed, consider a point t ∈ N (p). Its nearest point
in N (p) is at distance at most 2r(1 + µ) · 2 · 4√µ = O(r

√
µ). On the other hand,

the Voronoi cell Ct of t has a point on its boundary at distance ≥ r from t (as it shares
a boundary point u′ with Cp, dist(u′, p) ≥ r , and dist(u′, t) = dist(u′, p)). (This also
implies that Cp is not adjacent to the boundary of Q, as this would imply that some of
the points of N (p) lie outside Q.)

That is, Cq is not (1 + γ )-spherical, where γ = �(r/r
√
µ − 1) = �(1/√µ). By

making µ small enough, we can ensure that Cq is not (1+ µ)-spherical with center q.
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r

r(1 + �)

2r

2r(1 + �)

p

r

r(1 + �)

2r(1 + �)

�

s
�

p

(a) (b)

Fig. 3. (a) If the Voronoi cell Cp is (1+ µ)-spherical with center p, then the neighboring sites must be in a
spherical shell around p. (b) The sites of N (p) are densely spread in this spherical shell, since there must be
a site inside the intersection � between the spherical shell and any cone of angular radius 4

√
µ.

We have shown that every (1+µ)-spherical cell in V (P) is surrounded by cells that
are not (1+µ)-spherical. We will charge the volume of such a (1+µ)-spherical cell to its
surrounding cells as follows. For a point p ∈ P whose Voronoi cell is (1+µ)-spherical
with center p, let rp be the radius of the largest ball contained inside Cp centered at p,
and let Up = B(p, 1.8rp) be the region of influence of p. Clearly, Up ∩ P = {p} and
vol(Up) ≥ (1.8/(1 + µ))dvol(Cp) ≥ 2 vol(Cp), for µ sufficiently small. By picking µ
small enough, we can also guarantee that the regions of influence of the (1+µ)-spherical
cells of V (P) are disjoint. We charge the volume of a (1+µ)-spherical cell to its region
of influence, establishing the claim.

Theorem 9. There exist constants α > 0 and n0 depending only on the dimension d ,
such that for every n ≥ n0, Black can always win at least 1

2 + α in the Voronoi game
played on arena Q, the d-dimensional hypercube of volume n. That is, for every n-point
setW ⊂ Q there exists an n-point setB ⊂ Q\W with vol(R(B,W)) ≥ ( 1

2+α) vol(Q).

Proof. The argumentation follows the two-dimensional case closely, so we sketch it
only. First, we consider Q to have the topology of a torus, by identifying any two extreme
faces, in the same dimension, of Q with each other. Using Lemma 8, we know that at
least half of Q is covered by cells of the Voronoi diagram ofW which are not “round.”
As such, following the argumentation of Proposition 1 and using Lemma 7, we get that
for a random point x , we have E[vol(R(x,W))] ≥ 1

2 + β, where β is an appropriate
constant.

�
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s
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q

�

Fig. 4. Illustration of the proof of Lemma 8.
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As in the two-dimensional case, our next step is to remove the assumption about
the torus topology. The proof of Proposition 3 can be followed closely. We omit the
straightforward details. (Note that as the dimension increases, the boundary effect is
more pronounced. However, taking n0 to be large enough, this has no impact on the
proof, except for making the constants somewhat worse.)

Finally, the proofs of Lemma 4 and Theorem 5 are “dimension independent” and
apply verbatim in the higher-dimensional case.

6. Conclusions and Open Problems

We considered the Voronoi game on a square or hypercube board Q, played in a single
round: White starts by placing n pointsW in Q, then Black places another n points B
disjoint fromW , and finally the winner is determined.

Our considerations appear to generalize without much change to sufficiently “fat”
convex arenas in the plane. On the other hand, when the arena degenerates to a line
segment, we have reached the one-dimensional case where White, not Black, has a
winning strategy [1]. Fekete and Meijer [7] have analyzed the behavior of the game as
function of the aspect ratio of the rectangle, as we mentioned in the Introduction. Their
analysis is strongly dependent on the arena being a rectangle, and it would be interesting
to see if similar results can be obtained for more general arenas.

What happens when the number of points played by White and Black are not identical?
Specifically, let λ be a real number between 0 and 2. Consider the game where White
plays n points and Black plays λn points. Let f (λ, n) be the payoff to Black in this
Voronoi game. It is not hard to show that f (0, n) = 0 and that limn→∞ f (2, n) = 1. We
know that f (λ, n) > ( 1

2 + ε)λ for some positive ε and n large enough, as long as λ is
bounded away from 0 and 2. It would be interesting to get a better idea of the behavior
of f . Does limn→∞ f (λ, n) exist for all λ?

We have shown that for any set of n white points, there is a black point that grabs a
“large” Voronoi cell. It would be interesting to find configurations of the white points
for which no black point can do too well. Obvious candidates are grid arrangements of
the white points, such as the square grid or hexagonal grid.

In fact, if we ask for a configuration of the white points that minimizes the payoff of
a random black point, it is known that the hexagonal grid is optimal if n is large enough.
This follows from a result on the two-dimensional quantizer problem. In the quantizer
problem we want to quantize two-dimensional input values from a continuous domain (a
ball B ⊂ R2, say) using log n bits. This is done by choosing a discrete quantizer set P of
n points in B, and replacing the input value x ∈ B by the closest point from P . Assuming
uniform distribution of the input values, the mean squared error of a quantizer P is

1

vol(B)

∑
p∈P

∫
cell(p)

dist(x, p)2 dx,

where cell(p) is the Voronoi cell of p in the Voronoi diagram of P (see [2]). Fejes



The One-Round Voronoi Game 137

Tóth [5] (see also [6]) showed that if n is sufficiently large, then the error is minimized
by choosing P to be the hexagonal grid.

In the proof of Proposition 1, we showed that the expected payoff of a random black
point is

π

n

∑
p∈W

∫
cell(w)

dist(x, w)2 dx,

with the slight twist that here we assume torus topology. Assuming n is so large that we
can ignore the difference in topology, this is proportional to the quantization error ofW ,
and so Fejes Tóth’s result implies that the optimal choice ofW is the hexagonal grid. An
interesting open question is whether the hexagonal grid is also optimal if we consider
the maximum possible area that a black point can grab.

The original version of the Voronoi game [1] is played in more than one round: White
and Black alternate placing points on the board Q. The value of this game and the optimal
strategies are still unknown for dimensions higher than one. If the arena Q is centrally
symmetric, but the symmetry has no fixed point in Q, then Black can respond to each
move of White with a point placed in the symmetric location. This guarantees a payoff
of 1

2 . Many obvious questions remain open: Can Black actually win the game for large
n? What happens with asymmetric boards?

We note that our analysis is somewhat sloppy in relation to the constants. Of specific
interest is the margin in which the second player wins over the first player. Currently,
it seems that our techniques are too limited to yield any bound remotely close to the
truth. In particular, a more promising venue for estimating those constants is either by
simulation, or by investigating special configurations (that is, points placed on a lattice).

Finally, we believe that the strategy of the Black player in the one-round Voronoi game
suggested by our proofs can be derandomized (yielding a polynomial-time algorithm)
using a sliding grid argument. We have not elaborated this in detail, though.
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