Nordic Journal of Computing

SIMPLE RANDOMIZED ALGORITHMS FOR
CLOSEST PAIR PROBLEMS*

MORDECAI GOLIN RAJEEV RAMAN
Hongkong UST Department of Computer Science
Clear Water Bay, Kowloon King’s College London
Hongkong Strand
golin@cs.ust.hk London WC2R 2LS, UK

raman@dcs.kcl.ac.uk

CHRISTIAN SCHWARZ
International Computer Science Institute
Berkeley, CA 94704, USA

schwarz@icsi.berkeley.edu

MICHIEL SMID
Max-Planck-Institut fir Informatik
D-66123 Saarbricken, Germany
michiel@mpi-sb.mpg.de.

Abstract. We present a conceptually simple, randomized incremental algorithm
for finding the closest pair in a set of m points in D-dimensional space, where
D > 2 is a fixed constant. Much of the work reduces to maintaining a dynamic
dictionary. Using dynamic perfect hashing to implement the dictionary, the closest
pair algorithm runs in O(n) expected time. Alternatively, we can use balanced
search trees, and stay within the algebraic computation tree model, which yields
an expected running time of O(nlogn). In addition to being quick on the average,
the algorithm is reliable: we show that the high-probability bound increases only
slightly to O(nlogn/loglogn) if we use hashing and even remains O(nlogn) if we
use trees as our dictionary implementation. Finally, we give some extensions to the
fully dynamic closest pair problem, and to the &k closest pair problem.

CR Classification: F.2.2

1. Introduction

The closest pair problem is to find a closest pair in a given set of points. The
problem has a long history in computational geometry and has been studied
extensively. It is well known, for example, that finding the closest pair in a
set of n points requires Q(nlogn) time in the algebraic decision tree model
of computation [1] and that there are optimal algorithms which match this

* This research was supported by the European Community, Esprit Basic Research Action
Number 7141 (ALCOM II). The work was partly done while the first author was employed
at INRIA Rocquencourt, France, and visiting Max-Planck-Institut fiir Informatik, Ger-
many, and the second and the third author were employed at Max-Planck-Institut fiir
Informatik. The first author was also supported by NSF grant CCR-8918152.

Received FILL IN. Revised FILL IN.

2 GOLIN ET AL.

lower bound. It is also well known that if the model of computation is
changed appropriately then the lower bound no longer holds. This was first
shown by Rabin [16] who described an algorithm that combines the use of the
floor function with randomization to achieve an O(n) expected running time.
The expectation is taken over choices made by the algorithm and not over
possible inputs. Recently, Khuller and Matias [10] have described a radically
different algorithm that also uses the floor function and randomization to
achieve an O(n) expected running time.

In this paper, we present yet another algorithm that combines the use of
the floor function and randomization to solve the problem in O(n) expected
time. Our algorithm is conceptually simpler than the ones in [16] and [10].
It also differs from them in that it is an incremental algorithm. The other
two algorithms are inherently static.

With a data structure that delivers the closest pair of the set S; :=
{p1, p2, ---, pi} at hand, the i-th stage of the algorithm inserts p;1 com-
putes the closest pair of the set S;11 := {p1, p2, ..., pi+1}- Due to its
simplicity, the update method actually has a poor—namely linear—worst
case performance. In our algorithm, however, updating is expensive only
if the closest pair changes due to the insertion of the new point. This will
happen rarely, however, if the input points arrive in random order. We will
show this using the technique of backwards analysis, due to Seidel. See [21]
[22].

So, we analyze the algorithm under the assumption that the input sequence
P1, P2, -- -, Ppn 18 a random permutation of the n points, and the running time
becomes a random variable. (Note that this variable does not depend on a
specific distribution of the input points in D-space.) An algorithm of this
kind is called a randomized incremental algorithm in the literature, see e.g.
[4] [21] [3] [14).

One part of the data structure that has crucial impact on the efficiency
of the algorithm is a dynamic dictionary. The dictionary implementations
that we use are dynamic perfect hashing [7] and balanced search trees. The
i-th stage of the algorithm will find the closest pair of the set S;1 =
{p1, P2, ---, Pi+1} in O(1) expected time if we use hashing or in O(log1)
expected time if we use trees, compared to the (i) worst case running time
for either implementation. This leads to an overall expected running time
of O(n) or O(nlogn), respectively.

Assuming that we can generate a random permutation of the input points
in linear time, our randomized incremental algorithm gives a very simple
solution to the closest pair problem, and its expected running time—in case
of the hashing implementation—matches that of [16] [10], in the same model
of computation. Apart from that, our algorithm—whatever implementation
we take—is also much simpler than the known O(nlogn) deterministic al-
gorithms for finding the closest pair in dimensions higher than two. (See [2]
[11] [17] [23] for some of such algorithms.) There exists a simple and elegant
sweep line algorithm that runs in time O(nlogn), see [9], but this algorithm
only applies to the planar case D = 2.

SIMPLE CLOSEST PAIR ALGORITHMS 3

This paper is organized as follows.

In Section 2, we present the randomized incremental algorithm and its
analysis. As mentioned above, we have two variants, which depend on the
implementation of the underlying dynamic dictionary and run in O(n) or
O(nlogn) expected time, respectively.

The high-probability bounds of this algorithm will be investigated in Sec-
tion 3. The linear expected-time variant actually runs in O(nlogn/loglogn)
time with high probability, while the O(nlogn) expected-time variant also
runs in time O(nlogn) with high probability.

Having employed the randomized incremental algorithm to solve the clos-
est pair problem in Sections 2 and 3, we investigate its use as a dynamic
algorithm in Section 4. For this purpose, we use a model of random updates
that has become widely used in the analysis of randomized incremental al-
gorithms. Under this model, we can even support fully-dynamic updates,
that is we can efficiently maintain the closest pair under a random sequence
of insertions and deletions.

We close the paper with two extensions. First, in Section 5, we consider
the problem of returning not only the closest pair, but all the k closest pairs,
where k is an integer between 1 and (3). For this problem, there are deter-
ministic algorithms with running time O(nlogn + k), which is optimal in
the algebraic decision tree model of computation. (See [11] [17].) Combined
with randomization and the floor function, we get a simple algorithm with
expected running time O(nv/k log k), which is better than the algorithms in
[11] [17] if & = O((logn)?~¢) for any € > 0.

Second, all algorithms of this paper assume that the floor function can be
computed at unit cost. In Section 6, however, we give a variant of the closest
pair algorithm presented in Section 2 that has O(nlogn) expected running
time, even with high probability, without using this non-algebraic function.
This algorithm fits in the algebraic decision tree model of computation,
extended with the power of randomization, and is optimal in this model.

2. The closest pair algorithm

To keep our exposition simple, we give the algorithm for the two-dimensional
case and the euclidean metric. The extension to arbitrary, but fixed, dimen-
sion D > 2 and arbitrary L;-metric, 1 < t < oo, is straightforward. Let
d(p,q) denote the distance between the points p = (p*,pY) and g = (¢*, ¢¥),
ie.,

d(p,q) = /(0" —)2 + (o — ¥)2.

Let S = {p1, p2, ---, pn} be a set of points. The closest pair distance in S
is

0(S) := min{d(p,q) : p,q € S, p # q}.

The closest pair problem is to find a pair of points p, g € S such that d(p,q) =
a(S).

4 GOLIN ET AL.

To begin with, we give a rough description of the data structure that
stores the points which are already processed by the incremental algorithm,
and sketch the incremental step itself. Let S; := {p1, po, ..., pi} be the set
containing the first 4 points of S. Suppose a square grid with mesh size §(S;)
is laid over the plane' and each point is stored in the grid box in which it
appears.

Now suppose we insert p;+1 and want to compute §(S;+1). The update
step is based on the simple observation that 6(S;4+1) < 6(S;) holds if and
only if there is some point p € S; such that d(p,pi+1) < 6(S;).

Let b be the grid box in which the new point p;;; is located. Then every
point in S; that is within distance §(S;) of p;11 must be located in one of
the 9 grid boxes that are adjacent to b. (We consider the box b as being
adjacent to itself.) We call these 9 boxes the neighbors of b. See Figure 2.1.

Dit1 T

Fig. 2.1: The neighborhood of a grid box b.

We note that each grid box can only contain at most four points from S;.
This is because if a grid box contained more than four points then some pair
of them would be less than §(S;) apart, contradicting the definition of 4(S;).

The above observations lead to the following generic algorithm for finding
the closest pair in S. Suppose the points are fed to the algorithm in the
order pi, po, ..., pn. The algorithm starts by calculating §(S2) = d(p1,p2)
and inserting the points of S into the grid with mesh size §(S2). It then
proceeds incrementally, always keeping set S; stored in a grid with mesh
size 6(S;). When fed point p;1 it finds the at most 36 points in the 9 grid
boxes neighboring the box in which p;;; is located and computes d;41, the
minimum distance between p; ;1 and these at most 36 points. If there are no
points in these boxes then d;;1 = oco. From the discussion above we know
that §(S;+1) = min (d;11, 0(S;)) -

If diy1 > 6(S;) then 6(S;+1) = 6(S;) and the algorithm inserts p;,; into
the current grid. Otherwise, §(Sj+1) = diy1 < 6(S;) and the algorithm

! To exactly specify the grid we shall always assume that (0,0) is one of its lattice points.

SIMPLE CLOSEST PAIR ALGORITHMS 5

discards the old grid, creates a new one with mesh size §(S;+1), and inserts
the points of S;; into this grid.

The algorithm thus calculates §(S;) for i = 2,3, ..., n, in this order. Then
it outputs the value §(S,) = d(S). An example of our algorithm is shown in
Figure 2.2.

4(S2) = d(p1, p2) d(S3) = d(p1, p2) 8(81) = d(pa, p1)
3 3 5 3
o2 o4 o2 o4 ho
o1 ol o1
d(Ss) = d(p4, p1) d(Se) = d(pa, p1) 3(87) = d(pa, p1)
8
o5 3 o5 3 o5 3
od p2 o4 2 o4 p2
o1 ol o1
¢ e | [e | [T
d(Ss) = d(p4, p1) 3(8e) = d(p9, pe) d(S10) = d(pe, ps)
- 3 3
10 10
5 3 % 3 % 3
od ho 4 02 4 o2
el 1d 1d
b7 o7 o7l
9 19 6% O 6° o

Fig. 2.2: The incremental algorithm running on a set of 10 points. In the beginning the
grid has mesh size d(pi,p2). Every new minimal distance that is computed during the
algorithm causes a refinement of the grid. To avoid clutter, we use ¢ as a shorthand for p;
in the grids.

REMARK 1. Instead of one closest pair, we can also incrementally maintain
a list of all point pairs in S; with distance §(S;), for 2 < i < n, without
additional cost. Consider the i-th stage of the algorithm, when we add
pit+1 to S;. Since the algorithm checks all points within distance §(S;) of
pit+1 anyway, we find all points ¢ in S; such that d(q,p;+1) = §(S;). The

6 GOLIN ET AL.

pairs (g, pi+1) with d(g, pi+1) = 0(S;+1)—there can be only O(1) of them—
are exactly the new closest pairs after the i-th stage of the algorithm. If
0(Si+1) = 0(Si), we add these pairs to the current closest pair list. If
0(Si+1) < 0(S;), we discard the old list and make a new list that contains
just these pairs.

To actually implement the above algorithm we need the following: let P
be a point set, d a positive real number, p a point, G a grid, and let b denote
a grid box. We define the following operations.

o Build(P,d) : Return a grid G with mesh size d that contains the points
in P.

o Insert(G,p) : Insert point p into grid G.

o Report(G,b) : Return the list containing the points in grid box b.

Pseudocode for the closest pair algorithm using these operations is presented
in Figure 2.3.

Algorithm CP(pi, p2, ..., Pn)

(1) 4 :=d(p1,p2); G := Build(S>,9);
(2) fori:=2to n—1do

(3) begm

(4) = {Report(G,b) : bis a neighbor of the box containing p;41};
(5) d - mlanV d(p1+11 q);

(6) if d > ¢ then Insert(G,pi+1)

(7) else § :=d; G := Build(Sit1,9);

(8) end;

(9) return(d).

Fig. 2.3: Pseudocode for the closest pair algorithm.

How do we actually implement these grid operations? Consider a grid G
with mesh size d, let p = (p®, p?) be a point in the plane, and denote the box
containing p in G by b,. The integer pair (|p*/d], [p¥/d]) is called the index
of b,. To store the point set, we maintain a dictionary® for the non-empty
boxes, using their indices as search keys. Moreover, with each box in this
dictionary, we store a list of all points that are contained in this box, in
arbitrary order. We refer to the whole data structure as the boz dictionary
of the grid.

To insert a point into the grid, we use the floor function to compute the
index of the grid box that contains this point. Then we perform a Lookup
operation in the box dictionary using this index. If the box is already stored
in the dictionary, then we insert the new point into the list that is stored

2 We use the term dictionary for a data structure that stores a set of items such that the
operations Lookup, Insert and Delete can be carried out.

SIMPLE CLOSEST PAIR ALGORITHMS 7

with the box. Otherwise, we insert the new grid box, together with a list
containing the new point, into the box dictionary.

What is left open is the implementation of the box dictionary. One stan-
dard way is to use balanced binary search trees, which allow query and
update operations to be carried out in logarithmic time. To store the box
indices, which are integer pairs, in a search tree, we need to have some or-
dering on them: using the lexicographical ordering on integer pairs will do.
So, using this implementation, it takes O(nlogn) time to run Build(P,d)
for |P| = n. When G stores n points, then Insert(G,p) and Report(G,b)
both cost O(logn) time. (For a call of Report, the length |b N P| of the
returned list is not charged to Report itself, but to the calling operation
that will make use of this list.)

Assume the points are available in two lists X and Y, sorted by z- and
y-coordinates, respectively. Moreover, assume that each point in Y contains
a pointer to its occurrence in X. Then the running time of Build(P,d) can
be improved to O(n): Walk along the list X and compute the value |p*/d]
for each point p. Initialize an empty bucket B(|p*/d]) for all distinct values
|p*/d]. Moreover, give each point in X a pointer to its bucket. Each bucket
corresponds to a vertical slab that contains at least one point of P. Go
through the list Y. For each point in this list, follow the pointer to its
occurrence in X and, from there, follow the pointer to its bucket. Add
(lp®/d], |pY/d]) at the end of the bucket, if it was not stored there yet.
Finally, concatenate all buckets into one list. This list contains the indices
of all non-empty boxes in the grid G, sorted in lexicographical order. Since
we can easily maintain the lists X and Y in logarithmic time for each update
of the point set, we shall employ this auxiliary data structure whenever we
use the tree implementation of the box dictionary. The complexity of Insert
remains unchanged.

Another way to implement the box dictionary is by using dynamic perfect
hashing [7] instead of balanced trees to organize the indices of the currently
non-empty grid boxes. Then, we can implement Build in O(n) expected
time, Insert in O(1) expected time and Report in O(1) deterministic time.

We should point out that dynamic perfect hashing as described by [7] does
not permit the insertion of totally arbitrary items into a lookup table. It
requires that the universe containing the items be known in advance, and
that we have a prime exceeding the size of the universe. In terms of grids, the
first requirement translates into having a bound on the indices of possible
non-empty grid boxes. As mentioned above, the index of the box containing
p = (p*,pY) in a grid with mesh size d is the integer pair (|p®/d], |p¥/d])-
Suppose we know a range [~z 7,z 7| x [-y~,y"], where z7,z",y,yT are
positive real numbers, that contains all the inputs points for our algorithm.
We refer to this range as the frame in the following. Then, for a grid of
mesh size d, the box indices will be in the range [—|z /d]... |z /d]] x
[—ly~/d]...|y"/d]]- So, when building a grid of mesh size d during the
algorithm, we have a bound on the possible indices that will ever occur in
the box dictionary before we start gridding.

8 GOLIN ET AL.

In the static closest pair problem, which we are discussing in this section,
all the points are given in advance and so the above frame assumption is triv-
ially fulfilled. (If, however, we want to use the algorithm in a truly dynamic
fashion, the need to know a frame that contains the points actually becomes
a restricting requirement for the hashing implementation. See Section 4.)

The second requirement for dynamic perfect hashing mentioned above was
that we also need to know a prime exceeding the size of the universe. In
an actual implementation, we can expect moderate universe sizes due to
the limitations to d given by machine precision, and would therefore use a
precomputed lookup table to find the desired prime number. In the following
paragraph, we discuss how this can be done if such a table is not available,
using results of Dietzfelbinger et. al. [5].

Suppose we have to build a dictionary initially containing n keys. We
proceed in two steps. First we apply a universe reduction to our input
keys. This is a function that maps the keys to a smaller range such that the
probability of a “collision”, i.e. the event that two input keys are mapped to
the same reduced key, is very small. In [5], a whole class of possible mappings
is given, which allows us to choose the range of the reduced keys. There is
a tradeoff between the degree of the compression and the reliability of the
reduction. For example, if we want to reduce a set of n keys to a range that
is polynomial in n, we can do this with a failure® probability that decreases
polynomially fast in n. The only precondition that we need for this technique
is to know a power of two exceeding all input keys in advance. If we assume
that we can compute EXP and LOG in O(1) time, then we can find this
number in constant time, by calculating 2llogul where u is our bound on
the keys. Also, computing powers of two is the only non-standard operation
coming up in the universe reduction mapping itself, so using the above
assumption the mapping can be evaluated in constant time for each input
key. Now suppose we have reduced a set of n keys to a polynomially-bounded
range. Then, another result in [5] allows us to compute a prime exceeding
this range in time O(log® n), again with polynomial failure probability, as for
the previously applied universe reduction. This running time is dominated
by the (linear) time that is needed anyway to actually build the dictionary
containing n items. During the operation of the dynamic dictionary, we also
apply the universe reduction mapping first, and then use the reduced key
in the hashing scheme provided by [7]. Further details on the application
of these hashing techniques to our gridding algorithm are beyond the scope
of this article. They are covered in detail in [19]. Let us only remark that
the additional effort made in each dictionary operation in order to fulfill the
aforementioned requirements of dynamic perfect hashing does not affect the
complexities for our grid operations stated above, namely O(1) deterministic
time for Report, O(1) expected time for Insert and O(n) expected time for
Build.

3 We actually reapply the whole procedure until we get the desired behavior, so the term
“failure” only denotes the fact that we need more than one trial to achieve our goal.

SIMPLE CLOSEST PAIR ALGORITHMS 9

We now analyze the cost of the closest pair algorithm. Let Q(n), U(n)
and P(n) be the time for Report, Insert and Build for a data structure of
size n, respectively. Refer to Figure 2.3.

Let i be fixed. The update step to compute §(S;+1) upon insertion of p; 1
includes lines 4-7. Line 4 of the algorithm calls Report 9 times to find at
most 36 points. Therefore lines 4-5 use O(1 + Q(i)) = O(Q(4)) time. Lines
6 and 7 take time U(i) and P(i + 1), respectively. Note that line 7 is called
if and only if 6(S;41) < §(S;). We capture this with the following definition.

DEFINITION 1. For any set V of points and any point p € V, define
1 if6(V) <o(V
Xy =} TA0) <60\ 7D

0 otherwise.

Denoting the running time for the i-th stage of the algorithm by T;, we
have
T; :O(Q(’L) +U(Z) +X(pi+1,si+1) P(Z-I—l)) (2.1)

An input sequence that causes the closest pair to change at each stage will
lead to quadratic running time, since P(i + 1) = (z) for both of our antic-
ipated dictionary implementations.

Let us now analyze the case that the points are fed to the algorithm in
random order pi, pa, ..., Py, i.€., each of the n! possible orders is equally
likely. Then, for each stage i, X(pi+1,S;+1) is a random variable and by
Definition 1,

E[X (pit1, Si41)] = Pr[6(Sit1) < 6(S3)]-

We will prove in Lemma 1 below that this probability is at most 2/(i + 1),
and thus we get the following for the expected running time of the i-th stage:

E[T:] = OE[Q()] + E[U@)] +2/(i + 1) - E[P(i + 1)]). (2.2)

Note that for the hashing-based implementation, the random variable P(i +
1) depends on the random choices made by the hashing algorithm. These
random choices have nothing to do with the variable X (p;;+1, Si+1). There-
fore, the two random variables are independent and we can multiply their ex-
pectations and get E[X (pit1, Siy1)-P(i+1)] = E[X (piy1, Siy1)]- E[P(i+1)] =
2/(i+1)-E[P(i+1)].

We can now fill in the running times of the basic grid operations for each of
the two implementations. Using trees, Insert and Report take logarithmic
time, and Buwild runs in linear time, ie. Q(n) = U(n) = O(logn) and
P(n) = O(n) for a set of n points. All running times are deterministic.
Thus, the i-th stage takes O(logi) deterministic time plus O(1) expected
time in the tree implementation. This separation of deterministic time and
expected time will be crucial for the high-probability running time of the
algorithm, to be discussed in Section 3.

Using dynamic perfect hashing, Report takes O(1) deterministic time,
Insert takes O(1) expected time, and Build takes O(n) expected time.
Therefore we have E[T;] = O(1).

10 GOLIN ET AL.

In summary, to find §(S) = §(S,), the algorithm uses O(nlogn) expected
time for the tree-based implementation, and O(n) expected time if we use
dynamic perfect hashing.

It remains to prove Lemma 1.

LEmMA 1. Let p1, p2, --., pn be a random permutation of the points of S.
Let S; := {pl, D2y ey pi}. Then PI‘[&(SH_l) < 5(51)] < 2/(2 + 1).

PrROOF. We use Seidel’s backwards analysis technique. (See [21] [22].)
Consider S;, pi+1 and S;y1 = S; U {pi41}- Let

A:={p € Sit1 : Jq € Si+1 such that d(p,q) = §(Si+1)},

i.e., A is the set of points that are part of some closest pair in S;;1. If |[A| = 2
then there is exactly one closest pair in S;;1; and

5(82'—1—1) < 5(52) if and only if Pi+1 € A.

If |A| > 2 there are two possibilities. The first is that there is a uniquep € A
that is a member of every closest pair in S;y1. In this case

0(S;+1) < 6(S;) if and only if p; 11 = p.

The other possibility is that there is no such unique p. In that case, S; must
contain some pair of points from A and, therefore, 6(S;41) = 6(S;)-

We have just shown that, regardless of the composition of S;,1, there are
at most 2 possible choices of p;+1 which will permit 6(S;+1) < §(S;). Since
P1,D2,---,Pn 1S a random permutation, the point p;;1 is a random point
from S; ;1. Therefore, the probability that 6(S;41) is smaller than §(S;) is
at most 2/(i +1). O

As mentioned at the beginning of this section, our algorithm works for
points in any dimension and for any Ls;-metric, 1 < ¢t < oo. Suppose S is a
collection of D-dimensional points, where D > 2. We modify the algorithm
by extending the definition of a grid to be D-dimensional and define the
neighbors of a grid box to be the 3” grid boxes that adjoin it. The algorithm
and analysis proceed as before. Note that a box in a grid with mesh size
0(S;)—which now is the minimal L;-distance in S;—contains at most (D +
1)P points of S;. (See [23].)

We summarize our result:

THEOREM 1. Let S be a set of n points in D-space.

(1) Using a balanced search tree to implement the box dictionary, the al-
gorithm of Figure 2.3 finds a closest pair in S in O(nlogn) ezpected
time.

(2) Using dynamic perfect hashing to implement the boz dictionary, the
algorithm of Figure 2.3 finds a closest pair in S in O(n) expected time.

SIMPLE CLOSEST PAIR ALGORITHMS 11

3. High probability bounds

In this section we will prove that the closest pair algorithm runs quickly
with high probability. To achieve this result, we apply a method due to
Clarkson, Mehlhorn and Seidel [3] for obtaining tail estimates on the space
complexity of some randomized incremental constructions. While we only
needed expected-time bounds for dynamic perfect hashing in the previous
section, we shall now use the stronger high-probability bounds that were
actually proven in the paper of Dietzfelbinger and Meyer auf der Heide [7].

In each iteration of the closest pair algorithm of Figure 2.3, some (relatively
cheap) work is done no matter which point is added or which points have
been added before, such as inserting the new point into the data structure
or computing the new closest pair. More interesting for the probabilistic
analysis is the expensive rebuilding operation that has to be performed—
depending on the point that is added and the points that have been added
before—with low probability. From Equation 2.1, the rebuilding cost of the
i-th stage of the algorithm is X (p;t1,Si+1) - P(i+1), for 2 <i <n—1. The
sum of these variables describes the overall rebuilding cost of the algorithm.
The expected value of this variable was studied in the previous section. Now
we are aiming at a tail estimate.

According to Definition 1, we define, for any set V' and any point p € V,

VI ifo(V) <6(V\ {p})

cost(p,V) := X(p, V) -|V| = { 0 otherwise.

(3.1)
That is, if we already have inserted the points of V' \ {p}, then cost(p, V)
expresses the rebuilding cost of the closest pair algorithm when inserting p.

Let S be a set of n points. We define a random variable Ys as fol-
lows: Let pi, po, ..., p, be a random permutation of the set S and let
S; = {p1, p2, ---, pi} for 1 <i < n. Then

n
Ys := Zcost(pi, Si)-
=3
LEMMA 2. Forallc>1,

e2

1 c
Pr[Ys > <=|=].
r[Ys > en] < = (c)
Our proof of this tail estimate follows the general line of the tail estimate
proof in [3]. We will obtain a bound on the probability generating function
of Yg and use this to obtain a bound on the probability that Ys exceeds the
value cn.

DEeFINITION 2. Let Y be a non-negative random variable that takes only
integer values. The probability generating function (pgf) of Y is defined by

Gy(z) =) _ PrlY =j]-a’.
3>0

12 GOLIN ET AL.

CLamM 1. Foranyh>0anda >1

Pr[Y > h] < Gy (a)/a".

PROOF.
Gy(a) = ZPr[Y =j]-a’
>0
> > PrY =j]-d
i>h
> "> Pry =
i>h
Od

By this fact, we can use bounds on the pgf of Y to obtain a tail estimate for
Y

Now let us look at the pgf Gy, (z) of our random variable Yg. We will use
Ggs(z) as a short form for Gy, (z).

CLAM 2. For all z > 1, and for all sets S, |S| = n,

Gsa) <mal@) = [(1436 -1)).

1<i<n

PrROOF. The proof is by induction on n, the size of §. For n = 1 and 2,
the claim holds, because then Gg(z) = 1 and the product on the right-hand
side is at least equal to one.

Let n > 3 and assume the claim holds for n — 1. Since p1, p3, ..., pp iS a
random permutation of S, p, is random element of S, and so

1
Gs(z) ==Y aP5Gg (1 ().

n peES

Applying the induction hypothesis yields

GS(~T) < 7Tn_1($) Za:cost(p,S)_
n

peES

From Lemma 1 we know that there are at most two points p in S such that
cost(p, S) = n. For the other points p, cost(p,S) = 0. Therefore,

Tn—1(T) (

Gs(z) < 22" +n —2) = mp_1(x) (1 + %(x” — 1)) = mn(z).

SIMPLE CLOSEST PAIR ALGORITHMS 13

Proof of Lemma 2: We apply the above claims:

Pr[Ys > en] < Gg(a)/a™
for any a € IR>1 by Claim 1

2 .
< 14+ —-(a* -1 a
(H (143))) /
by Claim 2
{2
1<i<n

since 1 +x < e*

(%) < exp(2(a" —1))/a™"
since 2(a' — 1) < 2(a™ — 1)
for each 1 <n and each a > 1

1 [é? ¢

with a = ¢!/,

a

We can now analyze the closest pair algorithm, first turning our attention
to the tree-based implementation. The i-th stage of the algorithm requires
O(logi) time for searching points in neighboring boxes, inserting p;;+1 into
the lists that maintain the points sorted by all their coordinates, and (possi-
bly) inserting p;;+1 into the grid. If §(S;11) < §(S;) then it regrids the points
in O(i) time. Thus the full work done by the i-th stage of the algorithm
is described by O (logi + cost(piy1,Si+1)) and the total work performed by
the algorithm is O (nlogn + Yg).

Let s be a positive integer. We apply Lemma 2 with ¢ =2-s-Inn/Inlnn.
Then, for n sufficiently large, we have 2¢ — clnc < —slnn and therefore

1 1
— _e2cfclnc < _2€fslnn — O(nis).

e? e

1 2
Pr[Ys > 2snlnn/Inlnn| < — <6—>
e c

This shows that Ys = O(nlogn/loglogn) with probability 1 — O(n~%) for
any s. That is, the tree-based implementation runs in O(nlogn) time with
probability 1 — O(n~*%) for any positive integer s.

Now let us analyze the hashing-based implementation. Instead of the
expected-time bounds used in the previous section, Dietzfelbinger and Meyer
auf der Heide actually proved the following stronger result:

LeMMA 3. ([7]) LetU =1[0...u—1], u prime, be the universe, and assume
we perform at most n update operations on an initially empty set S. Then
there is a data structure using O(n) space that implements a dictionary with
the following properties:

14 GOLIN ET AL.

(i) Each LOOKUP takes O(1) time in the worst case,

(ii) each of the n update operations INSERT and DELETE takes O(1) time
in the worst case,
and the probability that (ii) is not fulfilled is O(n™t) for any fized positive
integer t. The setup time for the data structure is constant.

So, in particular, the dictionary guarantees this bound on the failure prob-
ability for each single update operation. Thus, for any 1 < ¢ < n, we
can build a dictionary that initially contains ¢ items in O(7) time with n-
polynomial failure probability, such that each of the following up to n — 4
update operations takes O(1) time with n-polynomial failure probability.
We overcome the requirements of dynamic perfect hashing stated in the
lemma as we did in the previous section. Specifically, if we do not have
access to a prime exceeding the size of the universe, then we can find one in
time O(log* n).

To sum up, we obtain the following running times for our basic grid op-
erations. Let 1 < ¢ < n be fixed. The time for Report, denoted by Q(i),
is O(1) in the worst case, and the times for Build and Insert, denoted by
P(i) and U (i), respectively, are P(i) = O(i +log* n) and U(i) = O(1), each
with probability 1 — O(n™") for any fixed integer .

To determine the running time for the whole closest pair algorithm, we
simply add the failure probabilities occurring in each single stage. Note that
the work for all rebuildings in the first log* n stages is bounded by O(log® n),
with a failure probability of at most O(log* n-n~*) = O(n'~*). Therefore, the
total work performed by the algorithm is O(n+ >, cost(pi, Si)) = O(n+Ys)
with probability 1 — O(n!~t).

We saw already that, for any positive integer r, Y¢ = O(nlogn/loglogn)
with probability 1 — O(n™").

Therefore the algorithm runs in O(nlogn/loglogn) time with probability
1—O(n't+n") for any t,r > 1. So for any s > 1, we can choose t = s+ 1
and r = s to obtain the running time with probability 1 — O(n~%).

We summarize our results:

THEOREM 2. Let S be a set of n points in D-space. The tree-based imple-
mentation of the closest pair algorithm runs in O(nlogn) time with proba-
bility 1 —O(n™*) for any s. The hashing-based implementation of the closest
pair algorithm runs in O(nlogn/loglogn) time with probability 1 — O(n™*)
for any s.

4. A fully-dynamic algorithm

From the previous two sections, we see that the randomized incremental
algorithm is a dynamic algorithm by its design, if we do not have to take
care for creating a random permutation of the input points at the beginning.
Furthermore, our grid data structure can handle deletions of points in a way
completely analogous to insertions.

SIMPLE CLOSEST PAIR ALGORITHMS 15

The deletion algorithm

To obtain a deletion algorithm for the data structure as a whole, it remains
to discuss how to maintain the closest pair.

The minimal distance in the set increases if a closest pair point is deleted
and there is no other pair that attains the minimal distance. (We can check
this by maintaining a list of all closest pairs, as described in Section 2.) If
the minimal distance remains unchanged, the point is deleted from the grid
and the closest pair list is updated, if necessary. If, however, the minimal
distance increases due to the deletion, then we cannot use the data structure
to find a new closest pair, as we were able to in the insertion case (Figure 2.1).
Rather, the algorithm is forced to recompute the closest pair from scratch.
After that, we can, as in the insertion case, build a new grid data structure
whose mesh size is the minimal distance.

REMARK 2. It is natural to re-run the randomized incremental algorithm
itself to compute the closest pair from scratch. In this case, the latter step of
building the new grid data structure is obsolete, because the grid is already
built during the recomputation of the closest pair.

With an analysis similar to the one in Section 2, using the same notation,
we get that the running time of the deletion algorithm is

0(Q(n) +U(n) + X(p,S) - P(n))

where X (p, S) is as defined in Definition 1. While Q(n) and U(n) are the
same as in Section 2, P(n) now additionally includes the running time of a
static closest pair algorithm on a set of n points in case of a deletion.

Using the randomized incremental algorithm of Section 2 itself for this
purpose, Theorem 1 yields P(n) = O(n) expected for the hashing-based
implementation and P(n) = O(nlogn) expected for the tree-based imple-
mentation. This is optimal as long as expected running times are concerned.

Using the running times for the grid operations as stated in Section 2, we
obtain

LEMMA 4. Let S be a set of n points in D-space.

(1) In the hashing-based implementation, we can maintain the closest pair
in S under insertions and deletions of points such that an insertion
takes O(1 + X (p,S U {p}) - n) ezpected time and a deletion takes
O(1 + X(p,S) - n) expected time, under the assumption that the al-
gorithm knows in advance a frame containing all points that will ever
be inserted.

(2) In the tree-based implementation, we can maintain the closest pair in
S under insertions and deletions of points such that an insertion takes
O(logn + X (p, S U {p}) - n), deterministic time and a deletion takes
O(logn + X(p,S) - nlogn) expected time.

16 GOLIN ET AL.

REMARK 3. Note that X(p,S) is not yet considered as a random variable
at the moment. The expectations in the time bounds of Lemma 4 come
from the expected values of U(n) and P(n). Also, the frame assumption
discussed in Section 2 has to be made since we are no longer assuming to
know all input points in advance.

Random updates

The randomized incremental algorithm in Section 2 was analyzed under the
assumption that the input points are in random order. For this purpose,
we generated a random permutation of the inputs points at the beginning.
If we use the algorithm in a dynamic fashion, we make assumptions on
the order in which the input is processed and call an update sequence that
fulfills these assumptions a random one. We treat insertions and deletions.
The assumptions that we make are the ones that are usually made in the
literature, see e.g. [12] [13] [18] [8] [14]. For a detailed description, see [14,
pp. 126-128].

Let S be the set of all points that are involved in an update operation.
Suppose we perform a sequence of n updates. We denote the point involved
in the i-th update by p;, the point set after the i-th update by S;, and the
size of S; by m;.

The sequence is called a random update sequence if

(1) Each p € S is equally likely to be p;.

(2) Each S; is a random subset of S of size m;.

REMARK 4. Note that, for the special case when only insertions are per-
formed, this just means that all permutations of S are equally likely. This
was the assumption under which we analyzed the insertion algorithm in
Section 2.

By symmetry, we have

FAacT 1. Let S be a random update sequence, with p;,S;, 0 < i < n, as
defined above.

(1) If the i-th update is an insertion, then p; is a random point of S; =
Si—1U{pi},

(2) If the i-th update is a deletion, then p; is a random point of S; 1 =
Si U {pi}.

This fact gives us the conditions that we needed for Lemma 1. It follows
that

E[X (pi, 5i)] = Pr[6(Si) < 6(Si-1)] < 2/mi, (4.1)

for an insertion, and

SIMPLE CLOSEST PAIR ALGORITHMS 17

BLX (i, Si U {pi})] = Prd(Si1) < 8(S)] < 2/(m; +1) < 2/my, (4.2)

for a deletion.

We can now analyze the expected running times of Lemma 4 with the ran-
dom variables X (p;, S;) and X (p;, S;U{p;}) given in (4.1) and (4.2), respec-
tively. The running time of an insertion is dominated by that of a deletion,
which is proportional to

1+ E[X (pi, S; U{pi}) - P(mi)] <1+ 2/m;-O(m;) = O(1)

for the hashing-based implementation. Note that, as in the analysis of the
i-th stage of the incremental algorithm in Section 2, the random variables
X (pi, Si U{p}) and P(m;) are independent and we can thus multiply their
expectations.

Similarly, the expected running time of a deletion in the tree-based imple-
mentation is proportional to log m; + 2/m; - O(m;log m;) = O(log m;).

THEOREM 3. Let S be the set of points that is involved in a sequence of n
Sfully-dynamic random updates, and let R be a random subset of S of size m.
Consider a random update on R.

(1) The hashing-based implementation maintains the closest pair of R in
O(1) expected time, under the assumption that a frame containing all
the elements of S is known in advance.

(2) The tree-based implementation maintains the closest pair of R in ex-
pected time O(logm).

REMARK 5. Note that we talk about an update sequence only for the matter
of analysis. The algorithm is dynamic, it does not know anything about S—
except the mild restriction that we need to know a frame containing all the
points of S for the hashing based implementation—and it does not need to
know the number of updates performed either.

High probability bounds

We can extend the tail estimate for the randomized incremental algorithm
given in Section 3 to a sequence of fully-dynamic random updates. This
is achieved by a simple modification of the proof in Section 3. In the case
where only insertions are performed, we have |S;| = i for all 4, where 7 is the
size of the point set after the i-th update operation. We essentially rewrite
the proof with m; := |S;| denoting the size of the set after the i-th update
instead of 4.

Since in general m; < 1, it is not so useful to give bounds for a sequence of
updates in terms of the total number of operations. Rather, we consider a
random subset R C S, whose size is conveniently denoted by 7, and look at
a sequence of n/2 random updates p1,...,p, /2 that are performed, starting

18 GOLIN ET AL.

implementation of the grid structure
tree hashing
[16] nlogn nlogn/loglogn
Theorem 2 | nlog?n/loglogn * | n(logn/loglogn)?

TABLE I: High probability bounds of the fully-dynamic algorithm for the time to execute
a sequence of n/2 random updates starting with a set of size n. The tree-based variants
do not need to know a frame containing all the points in advance, and the algorithm *
can be modified to fit in the algebraic decision tree model, using a technique that will be
explained in Section 6.

with R. Then, all the set sizes occurring in the sequence are of the same
order of magnitude.

We omit the details, which can be found in [19], and only give the results.
The running times depend on the algorithm that is used to recompute the
closest pair when this is needed after the deletion of a point. We show
two variants. One uses Rabin’s algorithm, which still runs in linear time
with very high, in fact exponential, probability. The other variant uses the
randomized incremental algorithm itself. See Table 1.

5. The k closest pairs problem

In this section we describe how to modify the closest pair algorithm of Sec-
tion 2 to provide a simple solution for the k closest pairs problem. Let
S = {p1, p2, ---, Pn} be a set of n points in the plane. Enumerate all (%)
distances between pairs of points and sort them as e; < ey <... < e(n). Set

2
8%(8) := ey to be the k-th closest pair distance in the set S. The k closest
pairs problem is to find k pairs of points that are at most 6*(S) apart.

Let p1, po, ..., p, be given to us in a random order. For 7 > 1, let S; =
{p1, p2, ---, pi}. Our algorithm incrementally calculates §*(S;). It differs
from the closest pair algorithm only in that it uses a mesh size of §*(S;)
instead of §(.S;) for the grid that stores .S;.

Assume the algorithm has already seen the first ¢ points. Moreover, assume
that the algorithm

(1) has stored S; in a grid with mesh size §%(S;), and

(2) has a binary search tree, called the D-tree, which contains k pairs of
points from S; that are at most 6%(.S;) apart, sorted in increasing order
by distance.

The algorithm now performs the i-th stage, i.e., it gets p;11 and wants to
update the information it is storing.

It does this by finding all points having distance less than 6% (S;) to p;i1.
Note that all these points must be in one of the 9 grid boxes neighboring
pi+1. Also note that each grid box can contain at most 8/k points from S;:
If a box contained more than 8v/k points, then more than k pairs of points

SIMPLE CLOSEST PAIR ALGORITHMS 19

would be less than distance 6% (S;) from each other which is impossible. We
can therefore use 9 Report operations as described in Section 2 to find all of
the at most 72vk points within these boxes. The algorithm then calculates
all distances between these points and p; 1 and inserts them into the D-tree.

For each inserted distance, we delete the maximal element stored in the
D-tree. In this way, the D-tree still contains k elements, which form the k
closest pairs in S; ;1. Moreover, 0%(S;,1) is known at this moment. All this
takes O(vklogk) time.

If 6%(S;41) = 0%(S;) then the algorithm inserts p;; 1 into the current grid.
If 6%(S;41) < 6%(S;) then the algorithm discards the current grid and inserts
all points of S;;; into a new grid with mesh size 6¥(S;,1).

An analysis similar to the one performed in Section 2 to establish Lemma 1
shows that—if the points are fed to the algorithm in a random order—the
probability of the k-th smallest distance changing in the i-th stage is at most
2k/(1 4+ 1).

Therefore, the expected cost of inserting the (i 4+ 1)-st point is O(k + log i)
if trees are used and O(k) if dynamic perfect hashing is used.

We can speed up the running time of an insertion in the amortized sense,
by the following simple modification. The data structure no longer has a grid
size § = 6% (S;) at the i-th stage, but one that satisfies 6*(S;) < § < §2%(S;).
Also, we store the ordered sequence of the £ smallest distances in the point
set S; in the D-tree, where £ may vary between k and 2k. None of these
distances is greater than §. Additionally, we maintain a pointer to the item
stored at the k-th position. In this way, we can still identify the k-th smallest
distances in the set.

The algorithm to insert p;11 is as follows. First, it finds all points having
distance less than § of p; 1, exactly as before. Since § < §%#(S;), the number
of points found increases only by a constant factor compared to the method
described before, i.e. it is still O(\/E) For each of these points, we calculate
its distance to p;4+1 and insert it into the D-tree. Contrary to the original
method, we do not delete the maximal distance stored in the D-tree in
exchange for this newly inserted distance. Rather, we move the pointer
indicating the k-th position if necessary. Having processed all distances
between p;; 1 and the points in its neighboring boxes, we know 6*(S; 1) and
the k closest pairs of S;y1. The time used for this part of the insertion
algorithm is still O(vklogk).

If I < 2k, we finish the operation by inserting p; ;1 into the current grid, at
a cost of O(logi) in the tree-based implementation or O(1) in the hashing-
based implementation, respectively. Otherwise, we discard the current grid
and insert all points of S;;1 into a new grid with mesh size 6% (S;,1). Also,
only the k smallest distances remain in the tree. This can be achieved
in time O(logk) by splitting the tree at the k-th position. (Recall that we
maintain a pointer to this position during the algorithm.) This computation
is dominated by the vklogk term that comes up for every insertion, not
only for those that build a new grid. Thus, we need O(i) extra time for the

20 GOLIN ET AL.

insertion of p;;; if a new grid is built.

Since k insertions into the D-tree are performed between two successive
rebuildings, the amortized cost of regridding is O(i/k) for each distance
inserted into the D-tree. It remains to bound the expected number of in-
sertions into the D-tree for the i-th stage of the algorithm. New values are
brought into the D-tree only if there are points p € S; with d(p,pi+1) < 4.
Note that § = §¢(S;), where £ is the number of distances in the D-tree before
the insertion of p;;1, and that § is the unique maximal distance stored in
the tree, i.e. 671(S;) < 6%(S;). Hence, 6¢(S;11) < 6%(S;) if and only if new
distances enter the D-tree in the i-th stage. Since £ < 2k, the probability
that the D-tree is modified in the i-th stage is bounded by 4k/(i + 1). Fur-
thermore, since at most O(v/k) distances can be inserted into the D-tree in
a single stage, the expected number of such distances is O(kv/k/4) in the
i-th stage. We have seen above that the amortized rebuilding cost is O(i/k)
for each new distance in the D-tree, so the expected amortized rebuilding
cost of the i-th stage is O(Vk).

To sum up, the expected amortized running time for the whole algorithm
to insert p;41 is O(logi + Vklogk) in the tree-based implementation and
O(\/E log k) in the hashing-based implementation. Thus, the expected time
to find 6%(S) = 0%(S,) is O(n(vklogk + logn)) or O(nVklogk), respec-
tively.

THEOREM 4. The tree-based implementation of the k closest pairs algorithm
runs in O(n(vklogk+logn)) expected time, whereas the hashing-based im-
plementation runs in O(nvklogk) expected time.

6. An algebraic decision tree implementation

In the previous sections, we stored the non-empty grid boxes using binary
trees or perfect hashing. Both implementations, however, use the non-
algebraic floor function: We need this function for computing the grid box
that contains a given point. It is well known that the floor function is very
powerful: For the maximum-gap problem, there is an Q(n logn) lower bound
for the algebraic decision tree model. Adding the floor function, however,
leads to an O(n) algorithm. (See [15].)

In this section, we sketch how to obtain an O(nlogn) expected time al-
gorithm for the closest pair problem that fits in the algebraic decision tree
model. The data structure that we use is called “degraded grid”. Origi-
nally due to Lenhof and Smid [11], this method was significantly simplified
by Datta et. al. [6]. Their degraded grid looks very much like a standard
grid, has basically the same properties, but one can build it and search in
it without using the floor function. Here, we slightly modify and dynamize
that method.

As in the previous sections, we restrict ourselves to the planar case for
simplicity. The method also works for arbitrary dimension D, however. To

SIMPLE CLOSEST PAIR ALGORITHMS 21

give an intuitive idea, consider a standard grid of mesh size d, or d-grid for
short. There, we divide the plane into slabs of width d and fix (0,0) as a
lattice point. This suffices to specify the grid completely and gives rise to
an implicit storage of the slabs: for any point p in the plane, we can identify
the vertical or horizontal slab containing it by computing |p®/d] or |p¥/d],
respectively.

A degraded grid depends on the point set, say S, that is being stored. We
still divide the plane into horizontal and vertical slabs. To avoid the use of
the floor function, we store these slabs explicitly, by keeping a dictionary
for the coordinates of the endpoints. We call these dictionaries the slab
dictionaries. We implement a slab dictionary using a balanced search tree.
The endpoints of slabs are not necessarily multiples of d, as it was the case
for the standard grid. Also, the width of a slab need not be exactly d. In a
degraded d-grid storing S, we maintain the following invariant:

(1) Each slab has width at least d.
(2) Each slab containing a point of S has width at most 2d.

(3) There are no two empty slabs that are adjacent.

Note that by the third condition, the number of slabs per dimension is at
most 2n, where n is the number of points being stored. Thus, the degraded
grid only needs linear storage. Figure 6.1 shows an example.

af aj aj ay af ag ay

aj P—)

: . >'d, < 2d

a I

>d

Y

a¥ < | &

r ’ L] ¢) . d

a¥ > y
<-->d --» <-d -»

Fig. 6.1: Example of a degraded d-grid. It is dependent on the point set stored in it.

Now, if we are given point p, and want to find out the box containing it
in the degraded grid, we do this by determining the horizontal and vertical
slab containing it. We only need to locate each coordinate of p in the
corresponding slab dictionary. This takes O(logn) time.

22 GOLIN ET AL.

We modify a degraded d-grid for S upon insertions or deletions of points,
as follows. Suppose we want to insert a new point p. If the slabs containing
p have width at most 2d, then nothing needs to be done. Otherwise, assume
w.l.o.g. that the vertical slab containing p has a width exceeding 2d. Ac-
cording to the invariant, this slab was previously empty, and it now needs to
be partitioned such that each of the resulting slabs has width at least d and
the slab containing p has width at most 2d. We can achieve this because
the width of the slab which is partitioned is greater than 2d. The partition
of the slab is implemented by inserting one or two new slab boundaries into
the corresponding slab dictionary.

Maintaining the degraded grid upon deletion of a point p from S is analo-
gous. If a slab becomes empty due to the deletion of a point p, and if one of
the neighboring slabs is also empty, then we remove garbage from the slab
dictionary by combining these two intervals to one, thereby reestablishing
item 3 of our invariant. Thus, the degraded grid can be maintained under
insertions and deletions in O(logn) time.

Also note that the slab dictionaries can be built in linear time if sorted
lists X and Y containing the z- and y-coordinates of the points, respectively,
are available: the sorted lists of slab endpoints can be obtained by a linear
scan through the lists X and Y. Moreover, given the sorted lists of slab
endpoints, we can construct a lexicographically ordered list of non-empty
boxes in linear time, in a way that is similar to the procedure described
for grids in Section 2. The buckets correspond to the non-empty vertical
slabs. Consider the walk through the list Y, where we distribute the box
indices of the points into the buckets. We maintain a pointer to the currently
last horizontal slab that has been reached. If a new point falls outside this
slab, then it must be in a slab with a larger y-coordinate, and we simply
scan upwards through the sorted list of slabs until we have found the slab
containing the point. Thus, we walk through this list only once during the
whole construction, and the time spent is still linear.

Let us now turn to the closest pair algorithm and the grid operations
needed for it. We consider the tree implementation for the box dictionary,
and to store the set S; = pi, po, ..., pi, we replace the standard grid of
mesh size §(S;) by a degraded §(S;)-grid. To run the algorithm as shown in
Figure 2.3, we need to extend the notion of neighborhood to degraded grids.
Note that the degraded grid retains the standard grid property that each
box b is adjacent to exactly 9 boxes, where b is considered to be adjacent to
itself. Thus, we do not need to change the notion of neighborhood for the
degraded grid. Also note that since the side length of each box is at least
0(.S;) in a degraded 6(S;)-grid, the property that all points within distance
0(S;) of pi41 can be found by checking the boxes in the neighborhood of the
box containing p;;1 is preserved, which establishes the correctness of the
algorithm.

The analysis of the closest pair algorithm remains the same as before,
except that we now need logarithmic time to identify the box containing
a given point, and to modify the degraded grid upon insertion or deletion

SIMPLE CLOSEST PAIR ALGORITHMS 23

of a point. However, having identified the box containing a point, this box
must be found in the box dictionary in operation Report. Likewise, the
grid operations Insert and Delete may need to modify the box dictionary.
Since search and update operations on the box dictionary already take log-
arithmic time in the tree implementation, the aforementioned additional
computations needed for the degraded grid do not affect the complexities of
the grid operations.

Finally, the side length of a non-empty box in a degraded 46(.S;)-grid is at
most 26(S;), which means that the number of points returned by operation
Report is still constant.

THEOREM 5. Let S be a set of n points in D-space. The degraded grid im-
plementation of the randomized incremental algorithm computes a closest
pair in S in O(nlogn) expected time. This algorithm fits in the algebraic
decision tree model of computation extended with the power of randomiza-
tion, and is therefore optimal. Moreover, this algorithm runs in O(nlogn)
time with probability O(n~*) for any s.

PROOF. The claimed time bounds follow from the results of Sections 2
and 3 and the discussion above. It remains to show that the algorithm is
optimal.

Note that the algorithm is of Las Vegas type, i.e. it always computes a
correct output—the running time of the algorithm is a random variable.
The Q(nlogn) for the element uniqueness problem in the algebraic decision
tree model (from which the lower bound for the closest pair problem follows
by reduction) not only holds for the worst case, but also for the expected
running time of an input drawn from a uniform distribution, see [1]. A
Las Vegas algorithm is a deterministic algorithm for any fixed sequence
of coin flips. So, for any distribution of inputs, the average running time
of a Las Vegas algorithm—where the average is taken over the inputs of
the distribution and over the coin flips—cannot be smaller than the best
average running time that is achievable by a deterministic algorithm for this
distribution. Since the average case complexity of a Las Vegas algorithm for
some input distribution cannot be larger than the worst case (w.r.t. inputs)
running time of this algorithm, Q(n logn) is a lower bound for the expected
(w.r.t. coin flips) running time of a Las Vegas algorithm that computes the
closest pair. This shows that the algorithm of Theorem 5 is still optimal. O

7. Conclusion

In this paper, we have presented a simple data structure to maintain the
closest pair in a set of points. With this structure, we can find the new
closest pair after the insertion of a point efficiently. This is not the case for
deletions: the minimal distance has to be recomputed from scratch, if it is
changed by the deletion. However, both insertions and deletions require a
rebuilding of the data structure when the closest pair changes. The extreme

24 GOLIN ET AL.

dependence of the running time on a change of the closest pair leads to the
model of random updates. In this model, the probability of a closest pair
change is very small, which leads to good results. Given all points at the
start of the computation, we can guarantee random updates by generating
a random permutation of the inputs.

If we use the algorithm in a truly dynamic fashion, the results may be
interpreted as the algorithm’s behavior on a typical update sequence. Even
more interesting from this point of view are high probability bounds. They
show that the algorithm performs well except for very rare occasions. See
Mulmuley [14, pp. 127-128] for a discussion of this issue.

Again, it is important that the randomization is solely with respect to the
order of the updates and has nothing to do with the positions of the points
in the input space.

Many algorithms using the randomized incremental construction paradigm
are substantially simpler than their deterministic counterparts, as described
in [12] [13] [18] [8] [14]. The algorithms in this paper are another strong
example for this phenomenon. This leads to the question whether one can
transform the conceptual simplicity into a practically efficient algorithm that
is competitive with the methods that have been implemented previously.
This issue is addressed in a current project [20], where several static and dy-
namic closest pair algorithms are implemented and compared under various
input distributions.

Acknowledgements

The authors would like to thank Ian Munro for useful discussions and Kurt
Mehlhorn for turning our attention to the tail estimate in [3], and Torben
Hagerup for pointing us to [5].

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM
Sympos. Theory Comput., pages 80-86, 1983.

[2] J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional space. In
Proc. 8th Annu. ACM Sympos. Theory Comput., pages 220-230, 1976.

[3] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental
constructions. In Proc. 9th Sympos. Theoret. Asp. Comp. Sci., volume 577 of Lecture
Notes in Computer Science, pages 463-472. Springer-Verlag, 1992.

[4] K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls
that are optimal, randomized, and incremental. In Proc. 4th Annu. ACM Sympos.
Comput. Geom., pages 12-17, 1988.

[5] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable ran-
domized algorithm for the closest-pair problem. Unpublished manuscript, November
1992.

[6] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-
point clustering problems. In Proc. 8rd Workshop on Algorithms and Data Structures,
volume 709 of Lecture Notes in Computer Science, pages 265—276. Springer-Verlag,
1993.

SIMPLE CLOSEST PAIR ALGORITHMS 25

[7] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions
and dynamic hashing in real time. In Proc. 17th Internat. Collog. Autom. Lang. Prog.,
volume 443 of Lecture Notes in Computer Science, pages 6—19. Springer-Verlag, 1990.

[8] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in
logarithmic expected time per operation. Comput. Geom. Theory Appl., 2(2):55-80,
1992.

[9] K. Hinrichs, J. Nievergelt, and P. Schorn. Plane-sweep solves the closest pair problem
elegantly. Information Processing Letters, 26:255-261, 1988.

[10] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair
problem. In Proc. 8rd Canad. Conf. Comput. Geom., pages 130-134, 1991.

[11] H.-P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. In Proc. 33rd
Annu. IEEE Sympos. Found. Comput. Sci., pages 380—-386, 1992.

[12] K. Mulmuley. Randomized multidimensional search trees: dynamic sampling. In
Proc. Tth Annu. ACM Sympos. Comput. Geom., pages 121-131, 1991.

[13] K. Mulmuley. Randomized multidimensional search trees: Lazy balancing and dy-
namic shuffling. In Proc. 82nd Annu. IEEE Sympos. Found. Comput. Sci., pages
180-194, 1991.

[14] K. Mulmuley. Computational Geometry — An Introduction Through Randomized Al-
gorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

[15] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York Berlin Heidelberg Tokyo, second edition, 1988.

[16] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Com-
plezity, pages 21-30. Academic Press, New York, NY, 1976.

[17] J. S. Salowe. Enumerating interdistances in space. Internat. J. Comput. Geom. Appl.,
2:49-59, 1992.

[18] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proc.
32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 197-206, 1991.

[19] C. Schwarz. Data structures and algorithms for the dynamic closest pair problem.
PhD thesis, Universitit des Saarlandes, Saarbriicken, Germany, 1993.

[20] C. Schwarz. Dynamic closest pair algorithms: implementation and application. Un-
published manuscript, 1994.

[21] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Dis-
crete Comput. Geom., 6:423-434, 1991.

[22] R. Seidel. Backwards analysis of randomized geometric algorithms. Technical Report
TR-92-014, Dept. Comput. Sci., Univ. of California Berkeley, Berkeley, CA, 1992.

[23] C. Schwarz, M. Smid, and J. Snoeyink. An optimal algorithm for the on-line closest-
pair problem. Algorithmica, 12:18-29, 1994.

https://www.researchgate.net/publication/47842747

