
Lower Bounds For Algebraic Computation Trees

(Preliminary Report)

Michael Ben-Or)

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract - - A topological method is given for obtaining
lower bounds for the height of algebraic computation trees,
and algebraic decision trees. Using this method we are
able to generalize, and present in a uniform and easy way,
almost all the known nonlinear lower bounds for algebraic
computations. Applying the method to decision trees we
extend all the apparently known lower bounds for linear
decision trees to bounded degree algebraic decision trees,
thus answering the open questions raised by Steele and Yao
[20]. We also show how this new method can be used to
establish lower bounds on the complexity of constructions
with ruler and compass in plane Euclidean geometry.

1, Introduction
Despite the extensive research in algebraic complexity

theory in recent years, no general lower bound method
has been provided for algorithms that involve arithmetical
operations and comparisons. Much less is known if we fur-
ther allow the operation of root extraction or the algebraic
operation of finding the root of a polynomial. Consider the
following decision problem:

Example 1. Element Distinctness. Given x l , . . . , x n E R,
is there a pair i, j with i ~ j and xi ~ xj ?

One can solve the element distinctness problem with the
help of any efficient sorting algorithm using O(n log n) com-
parisons, or by computing the product I] i~ j (x i - - xy) and
comparing the computed result to zero (using O(nlogn)
mult/div). Allowing linear operations for free, we know

t Research supported by a Weizmann Postdoctoral fellowship and by
NSF grant MCS-8006938.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0080 $00.75

of no previous result that indicates why more than O(1)
operations are required to solve this problem in the model
considered here.

In this paper we provide a new topological method for
obtaining lower bounds for this general type of algorithms,
formally described as algebraic computation trees. Before
giving the detailed computational model it is worthwhile
to mention a concrete application of the method presented
here.

Theorem 1. Any algebraic computation tree that solves
the n-element distinctness problem must have complezity of
at least fl(n log n).

This result extends the lower bounds of Dobkin and
Lipton [5] for the linear decision tree model, and the lower
bounds of Baur and Strassen [1] for the straight line com-
plexity of the above product.

Our new lower bound method rests heavily on a result
from real algebraic geometry due to Milnor [11] and Thorn
[23] that bounds the "topological complexity" of real al-
gebraic varieties. Except for this result the proofs of
our main theorems are elementary and require only basic
knowledge of algebra and topology. The new method also
provides a unified and easy way to prove nonlinear lower
bounds for straight line computations, algebraic decision
trees, and other previously untouchable problems such as
lower bounds for the complexity of constructions with a
ruler and compass in plane Euclidean geometry.

In the next section we rigorously specify our basic com-
putational model. The third section is devoted to a techni-
cal result needed for our main theorems that are presented
in section four. In section four we also show how to extend
our computational model to allow more algebraic opera-
tions such as taking k-th roots or computing the roots of a
polynomial.

In section five we show how to apply our method to the
bounded degree algebraic decision tree model, thus solving
the open problems in [20]. Section six is devoted to ap-
plications and in particular to the proof of the result on
the element distinctness problem (Theorem 1) mentioned
above.

80

In the seventh section we show how to use our lower
bound method to prove lower bounds on the number of ruler
and compass operations for certain plane geometry con-
structions. This solves the open problem posed by Shamos

(lSl.

2. The Algebraic Computation Tree Model
Let W C R" be any set. The membership problem for

W is the following:

Given x ~ - (x l , . . . , x , ~) E R n determine i f x E W .

In our example 1 we can set,

We are interested in obtaining lower bounds on algo-
rithms for solving the membership problem for W that al-
low both arithmetic operations and tests. Thus, a step of
the computation in our model will be either an Arithmetic
Operation or a Test -- comparing a computed result to
zero (i.e. > , ~ , =) , and branching according to the out-
come of the test.

Formally, an algebraic computation tree is a binary tree
T with a function that assigns:

• to any vertex v with exactly one son (simple vertex)
an operational instruction of the form

f v :=fvxo f~a or f v : = c o f ~ , or f ~ : = V / ~

where vi is an ancestor of v in the tree T, or fv, E
{ x l , . . . , x n } , o E {-I- , - - , × , / } , and c E R is a con-
stant.

• to any vertex v with two sons (branching vertex) a test
instruction of the form

f,,, > 0 or f,,~ > 0 or f,~ =O

where vl is an ancestor of v, or f~, E { xl , x,~ }.
• to any leaf an output Y E S or NO.

Given an input x E R ", the program traverses a path
P(x) in the tree T down from the root. At each simple
vertex the arithmetical operation is performed, and at each
branching vertex a branching is made according to the test
at the vertex. When a leaf is reached the answer Y E S or
NO is returned. We say that "x passes through a vertex v"
if v is on the path P(x). We require that if an input x passes
through a vertex v with a division instruction f . :~--- fv~/fv2
that f~2(x) # O, and if f~ :--= ~ that fv~(x) > O.

We say that the computation tree T solves the member-
ship problem for W if the answer returned is correct for
every input x C R '~. Let cost(x, T) denote the number of
vertices that x passes through. The complexity of T, C(T),
is given by the maximum of cost(x, T) for any x.

Now let C(W) be the minimum C(T) for any algebraic
computation tree T tkat solves the membership problem for
W. The lower bound on C(W) derived by our method will
depend heavily on the topology of W. For this purpose we
derive in the next section upper bounds on the topological
complexity of sets defined by polynomial equalities and
inequalities.

3. Counting Connected Components
Let V C_ R n be a set defined by the following polyno-

mial equations

ql(Xl,. . . , Xn) = O,. . . ,qm(Xl, . . . ,:r,n) =0,
p : (~ , . . . , ~ , ,) > o , p , (x : , . . . , x , ,) > o,

p , + l (x ~ , . . . , x n) _ > o , p h (x l , x ,) > O .

(i)

where qi, Py E R[xl, xn], and d = max{2, deg qi, deg py}.

Denote by # V the number of connected components V
has. For any integers n, h, d we put

fig(n, h) = max{#V [V _C R" is defined by (I)t.

Note that we do not bound the number of polynomial
equalities defining V in the definition of fig(n, h), but merely
bound their degree and the number of inequalities.

Proving upper bounds on fin(n, h) is apparently not an
easy matter. Fortunately, we can easily reduce the problem
to a similar problem about algebraic varieties (defined by
polynomial equalities) for which we can apply the known
results of Milnor [11] and Thorn [23].

Theorem 2. For d ~ 2,

fd(n, h) ~_ d(2d-- 1) n + h - 1

Proof. Let V C R ~ be a set defined by (I). # V
is certainly finite (see [12D, so pick a base point in every
connected component of V. Let v l , . . . , v , E V be these
points, where r ~ #V, and set

e-=min{pi(vj) l i = l . . . s , j = l . . . r} .

Since all the vj are in V we know that e > 0. Let

{ q l (x)=O' '" 'qm(x)=O' !
= x E R" p~(x) _> ~,. . . ,v°(x) > ~,

ps+l(x) _~ 0, . . . ,qh(X) > 0.)

then V~ C V, and vj E Vc for all j . All the vj must be
in distinct connected components of V~, because V~ C V,
thus # V _~ #V~. Now let W be the set of all solutions
(x l , . . . , x n , y l , . . . , yh) E R ~+h to the system

q 1 (~ 1 , . . . , ~ ,) = o , ,q~ , (~ l , . . . , x .) = o

p , + l (x l , . . . , x ,) 2 = y , + , p h (x ~ , . . . , x , ,) = y~

8 1

and let 7r : R "+h ~ R" be the projection
"/1"(2:1,''" , Xn, Y l , . . ' , Yh) = (Z 1 , . . - , Xn). The function 7rlw
is continuous and It(W) ----- V,, so clearly #V~ <_ #W.

Since W C_ R n+h
polynomials of degree
Milnor [11, Theorem 2]
components. Thus

#v < #y~ <

is an algebraic variety defined by
_< d, we can apply a theorem of
to bound its number of connected

#W ~ d (2 d - i) n+h-1. I I

Remark: Milnor [11, Theorem 3] proves that/Sa(n, h) ----
O((dh) '~) which is asymptotically better when h tends to
infinity but this bound is not useful here.

4. The Main Theorem
Now we are prepared to prove our main theorems that

establish the connection between the complexity of the
membership problem for W and its topological complexity.

Theorem 3. Let W C_ R '~ be any set, and let T be a
computation tree tha~ solves the membership problem for W.
If N is the number of disjoint connected components of W,
and h = C(T), then

2h3 n+h > N.

Proof. Let ~r = (v l , . . . , v ,) , t <_ h, be a path from the
root r ----- vl of T to a leaf I = vt with the answer Y E S , and
let V be the set of inputs x E R '~ leading to l. We now use
the elegant method of reducing the constraints degree by
adding new variables (see [14]). Traversing the tree down
from the root to l, we set a system of equations F according
to the operations (or tests) on the vertices of the path lr,
by the following rules:

Operation Equation
fv, : = fva + fvk fv, = fva -~- f ~
f~, : = fvj X fv , fm : - fvafv~
fm : = fv~/f~k fvkf~, = fvj
f~, := ~ f l = f~,

and if vi is a branching vertex with a test

fw > 0 or fw ~ 0 or f w = O

then add this equation to F if it should be satisfied, and
add the negated equation

--y.,>_O or - - f ~ , > O or I~,Y~,--I=O

accordingly otherwise.
Let fu~ , . . . , f~,. be the set of new variables in F, and let

s be the number of inequalities in r . Then r + s _< t, since
each step adds at most one new variable or one inequality.
Let U be the set of solutions (x l , . . . , x , , f u ~ , . . . , f , , ,) E
R "+~ to the system F. It is easily seen that the projection

of U on the x coordinate is exactly V so by the same
argument given in the proof of theorem 2, we have # V <
U . Since the degree of F is < 2, we know by theorem 2
that

#V < #U </32(n + r,s) < 2.3 n+r+~-1 < 3 n+h

Since each leaf of T is correctly labeled, each connected
component of V must be completely contained in some
connected component of W. Since the number of leaves
of T _< 2 h, and each leaf has at most 3 n+h connected
components, we have 2h3 n+h > N. |

From theorem 3 we immediately have

Theorem 4. For any W C_ R",

C(w) >_ log N log 3 - - n ~ 0.38 log N - - 0.61n
1 + log 3 1 + log 3

where N = m a x { # W , # (R ~ - w) } .

Examining the proof of theorem 3, one can see that
all we need for the proof to work is that the degree of
r will not be higher than 2. Thus we can allow linear
operations for free and count only X , / , x/---- operations and
comparisons. Moreover, we can allow any bilinear operation
on precomputed results and count it as one operation since
this still gives an equation of degree 2.

Using the same type of argument, we can allow the
operation of taking k-th roots and handle it in the following
way: Let

80 : ~ Y, 81 ~ 82 , . . . , S t :---~ 8i" 85

be a straight line computation of yk of minimal length. On
encountering the operation

fv, : = (fvj) ~;
we add to F the set of equations (of degree <_ 2)

which introduces t new variables. Thus the cost of this
operation should be t. More generally we can allow the
algebraic operation of taking roots of a polynomial (of any
degree) at the cost of evaluating this polynomial at a given
point.

Formally we associate with each operation a cost. Thus
addition, subtraction, and multiplication by constants have
cost 0, multiplication, division, taking square roots, any
bilinear operation and comparisons all have cost 1, taking
k-th roots costs O(log k), and solving a polynomial has the
cost of the complexity of evaluating it at a given point.

Let T be a computation tree (with or without the new
operations), and let M(x, T) denote the sum of the costs
of the operations along the path P(x). The multiplicative

82

complexity of T, M(T) , is the maximum of M(x, T) for any
x E R n, and the (multiplicative) complexity of W, M(W),
is the minimum M(T) for any algebraic computation tree
tha t solves the membership problem for W.

Theorem 5. For any W C_ R n,

M (W) = n(log N - - n)

where N = m a x { # W , #(R" - - W)).

Since our method applies to computations with real
numbers we can easily extend our lower bound technique
to computations with complex numbers by representing the
complex number z as x -q- iy, with x, y E R. This way,
multiplication is represented by two bilinear operations.
Let Re(z) and Ira(z) denote the real and imaginary parts
of the complex number z.

Theorem 6. Let W C__ C n be any set, and let T be
an algebraic computation tree that solves the membership
problem for W, using the functions Re,Ira with cost 0 and
comparisons on real numbers with cost 1, then

M(T) = f2(log N - - n)

where N = max{#W, #(C '~ - - W)).

By continuity arguments we can extend our method to
deal also with the rational numbers.

Theorem 7. Let W C_ Qn be any set, and let T be a
computation tree that solves the membership problem for W.
Then

M(T) -~ O(log N - - n)

where N is the number of connected components of W in R n
with non null interior.

5. The Decision Tree Model
Another model of computation used to prove worst-

ease lower bounds is the decision tree model. Although
this model is less interesting from the computational point
of view, many worst-ease lower bounds have been proved
for this model. In this model algorithms are presented as
trees, in which every vertex of the tree has the form of a
comparison

f(inputs) : 0

where f is some function from a class of allowed functions.
For linear decision trees several powerful techniques are

known (e.g. Reingold [15], Dobkin [3], Dobkin and Lipton
[4,5], Yao [24], and Yao and Rivest [26]). Less is known
on algebraic decision trees, and the results of Rabin [13],
Steele and Y ~ [20], and Jaromczyk [8,9], fail to give non-
linear lower bounds for some of the problems discussed here.
Following Steele and Yao [20], we define:

A d-th order decision tree T for testing if x E W C R n,
is a decision tree where the functions allowed are polyno-

minis of degree at most d, each leaf of T contains the answer
Y E S or NO, and for any x E R ~, T decides correctly if
x E W. Denote by Cd(W) the minimum height for any d-th
order decision tree for the set W.

Theorem 8. Let W C R n be any set, and let T be a
d-th order algebraic decision tree that solves the membership
problem for W. If N is the number of disjoint connected
components of W, and h is the height of T, then

2~Z~(n, h) > g .

Thus for fixed d, Ca(W) = fl(log g - - n).

6. Applications
As a first example to the strength of our method let us

return to our example 1, the element distinctness problem.
It is easy to see that for the W defined in section 2, # W --~-
n!, since each region

{ (~ l , . . . , x ,) I Xocl) < xoC21 < - . . < XoC,)}

is a maximal connected component of W for each permuta-
tion a. Thus by theorems 4, 5 and 8 we have that C(W),
MCW), and CaCW) are all at least ~(n log n).

Example 2. Set Equality and Inclusion. Given two sets
A ~ (x l , . . . , x,~}, B = {Yl , . . . , yn}, determine whether or
not (a) A . ~ B, or (b) A C B.

Any computation tree that solves any of these problems
will correctly decide the case when B ~-- {1, 2 , . . . , n}. Now
for problem (a) set

w, = {(~(1), ~(2) , . . . , ~(n)) I ~ ~ S,} .

Since W contains n! distinct points # W ~ nk Thus
C(Wa),M(Wa),Cd(Wa) ~- fl(n log n).

For problem (b) set

wb = { (x l , . . . , ~ ,) I { ~ 1 , . . . , ~ ,) _ { 1 , 2 , . . . , ~ } } .

W = n" so again C(Wb), M(Wb), Cd(Wb) = fl(n log n).

Example 3, Set Disjointness. Given two sets A =
{x l , . . ~ , xn} and B = {Yl,... ,Y,~}, determine whether or
not A A B -~ 0.

For this problem set

I t is easy to see that # W ~ (n!) 2, so again we know that
C(W), M(W), Cd(W) = n(n log n).

These lower bounds extend the lower bounds under the
linear decision model due to Reingold [15].

83

Example 4. The Measure problem. Given a list of 2n
real (or rational) numbers a l , . . . , an and b l , . . . , b n , com-

pute the measure of Ui[ai , bi].

Any algorithm that salves the measure problem can be
used to decide whether

I.J[zi, zi + el = ne
i

for any x i , . . . , Z n E R and e > 0. For this problem set

w = ((x x , . . . , x , ~) l l x , - zsI > e for all i ~ - j } .

Again #W = n!, thus C(W), M(W), Ca(W) =- f l (n log n).
This extends the lower bound under the linear decision tree
model due to Fredman and Weide [6].

Example 5. Extreme Points. Given n points in the plane

does the convez hull formed by them possess n vertices ~.

It has been shown by Steele and Yao [20], that this set
W C_ R 2" satisfies # W _> (n - - 1)!, thus C (W) , M (W) ,
Ca(W) = f l(n log n). This generalizes the result of Yao [25]
where he showed that C2(W) --~ f l (n log n).

Example 6(a). The Knapsack Problem. Given real

numbers X l , . . . , xn , decide if there exists some subset S C

{ 1, 2 , . . . , n } such that)-~ies xi = 1.

In this case,

It was shown in Dobkin and Lipton [4] that # W ~ 2 '~2/2,
thus C(W), M(W), C~(W) ----- n(n2).

Example 6(b). The e-Approximation Knapsack Prob.
lem. Given real (or rational) numbers x l , . . . , xn and e > O,
decide i f there exists some subset S C_ { 1, 2 , . . . , n } such

that

[E x , - 11 < e
iES

For any e > 0, define

If e is small enough ~W~ ----- #W0 >_ 2 n~/2, thus any
algorithm for our problem must have complexity n(n2).

Examples 6 (a) and (b) extend the results under the
bounded degree algebraic decision tree model due to Steele
and Yao [20].

Example 7. Sign of an Ordering Permutation. Given
z x , . . . , x n • R, is there a permutation of odd parity that

orders the zi ?

The set defined by this problem is connected but we can
derive lower bounds by looking at its complement. Define

w = { (z ~ , . . . , z ,) I zoo) < " < to(-) for some ~ • An}

Once again # W ~ n!/2 so any algorithm for this problem
has complexity fl(n log n).

Example 8. Symmetric Functions. Given x l, . . . , xn • R,
Compute the elementary symmetric funct ions

, , (z , , . . . , x ,) , . . . , o , (~ i , . . . , z ,) .

Let ai = ai(1 ,2 , . . . ,n) . Any algorithm that com-
putes the elementary symmetric function can be used to
test, using n more steps, whether a i (x l , . . . , Xn) ---- ai for
all i. Since this is true if and only if {x l , . . . ,Xn} =
{1 , . . . ,n} , we know from example 2 that the algorithm
requires fl(nlogn) steps. This extends the result due to
Strassen [21], since checking whether ai(x) = ai may ac-
tually be easier than computing the values of ai(x).

Example 9. Discriminant. Given x x , . . . , x n E R , com-
pute the discriminant I] i # j (x i - - x~).

Any algorithm for this problem can, in one more step,
test if the discriminant yd 0, and this happens if and only
if all the x i are distinct. So by example 1 the algorithm
must make fl(n logn) steps. This extends the result due to
Baur and Strassen [1].

Example 10. Resultant. Given x l , . . . , Xn, Y x , . . . , Yn E R ,
compute the resultant I-Iid(xi - - yj).

Any algorithm for this problem can, in one more step,
test if the resultant ~ 0, and this happens if and only
if the sets {x i} and {yi} are disjoint. So by example 3
the algorithm must make fl(n log n) steps. This extends
another result due to Banr and Strassen [1].

Example U . Interpolation polynomial. Given (xl,yl),
. . . , (Xn, Yn) E R 2, compute the unique interpolating polyno-
mial through those points.

One can prove an fl(n log n) lower bound for this prob-
lem by reducing the problem to the symmetric function
computation, because the coefficients of the interpolation
polynomial through the points

(~1, 0), (z 2 , 0) , . . . , (x , , o), (0, + X l Z 2 . . - z ,)

are the elementary ~ymmetric functions of z , , . . . , z , .
To show how to prove this directly by our method we

note that even if we restrict the input to satisfy z~ < . . . <
x. , a straight line algorithm that correctly computes the
coefficients of the interpolating polynomial for this type
of input must give the correct answers even when the xi
are any complex numbers because of analytic continua-
tion. In particular the algorithm gives the correct answers

84

when the xi are not ordered. Let p(t) -~ a,~_lt '~-1 -q-
• . . -~ ao be the interpolation polynomial through the points
(1, 2), (2, --2), . . . , (n, q-2) and let

y~ = 1 and the interpolation~
W -~ CXl, Y l , . . . , x , , Y ' *) polynomial ~-~ pCt) J

Since p(t) = -4-1 has n - - 1 distinct real roots it is easy to see
that W contains (2n--2)!/(n--2)T distinct points. Since any
algorithm that computes the interpolation polynomial can
be used, with n more steps, to recognize W it must require
f l (nlogn) arithmetical operations. This extends another
result due to Strassen [21].

Example 12. Sum of Powers. Given z l , . . . , z n E C,
compute the sum z~ q- . . . -4- zkn.

let zi ---~ xi -I-- Yl, and set

An algorithm to compute our function can be used with
O(n) more steps to solve the membership problem for W.
It is easy to see that (zl , z ,) E W if and only if all
the zi are k-th roots of unity, so W contains k n discrete
points. Since # W ~-~ k n the complexity of the algorithms
is fl(n log k). This extends another result due to Banr and
Strassen [1], and the results of Schnorr [17].

Example 13. Integer parts. Given Xx, . . . , x,~ E [0, M],
'compute the sum [xx] q - . . . - q - [zn] , where [x] is the integer
part of x.

Let

Any algorithm for our problem can solve the membership
problem for W using O(n) more steps. # W -~- (M -4- 1) '~,
so the algorithm has complexity fl(n log M). This extends
the result of Schmitt [17] where he showed that computing
the integer part of x requires fl(log M) operations.

Remark: All the above lower bounds are tight Cup to
constant factors) except for examples 6(a) and (b) where
the best upper bound is O(n 4 log n), a recent result due to
Meyer anf der Heide (these proceedings).

7. Constructions in Euclidean geometry
The questions of constructibility by the Euclidean ruler

and compass (such as trisecting an angle) were raised in
ancient times by the Greek mathematicians. With the ad-
vent of Galois theory in the early nineteenth century a
complete characterization of those problems solvable with
ruler and compass became available. Hilbert, in his Founda-
tions of Geometry [7], explains how to reduce the construe-
tibility problem to an algebraic problem. By introducing a
coordinate system in the plane, he shows how the elemen-
tary geometric operations correspond with the operations of

addition, subtraction, multiplication, division, and square
root extraction.

While elegant and simple constructions were always
regarded as desirable, the first systematic study of the
complexity of Euclidean constructions was undertaken only
early in this century by Lemoine [10]. His work is the only
known attempt to count operations in geometry, but he
was unable to prove any lower bounds.

More recently Shamos in his work on computational
-geometry [18] studied a number of fundamental problems in
this area, and was able to give upper and lower bounds for
problems involving set of points, lines, and polygons in the
plane. The lower bounds in Shamos's work were all under
the linear decision tree model and were proved by reduction
to some of the problems we gave above. Since our algebraic
computation tree model can handle the operation of taking
square roots most of the lower bounds from Shamos's work
can be extended to lower bounds on the complexity of
solving the problems with the aid of a ruler and compass.

We allow the following elementary operations:
1. Drawing a line through two points.
2. Drawing a circle (with or without a given radius).
3. Intersecting a circle/line with a circle/line.
4. Determine whether a point is on the right/left side or

on a directed line.
5. Determine whether a point is in/out or on a circle.

Thus for example we can prove

Theorem 9. Any algorithm using the above elementary
operation that solves the Extreme Points problem (example
5) has worst-case complexity of at least fl(nlogn) opera-
tions.

Theorem 10. Any algorithm that determines for any
n -{- 1 given points, Po , . . . , Pn, whether Po is colinear with
any two other points has worst-case complexity of fl(n log n)
elementary operations.

Other lower bounds for the problems mentioned in [19]
can be proved as well.

8. Remarks

1. Since our lower bound theorems are based on [11,23] it
is worthwhile noting that the bounds provided by Miinor
and Thorn actually bound the sum of the betti numbers of
algebraic varieties and not only the number of connected
components. Thus it may be possible to use the dimension
of the higher cohomology groups to establish lower bounds
on straight line computations.

2. In some of the applications in section 6 we can easily
extend the lower bound to the average case complexity.
Thus for example we can prove:

85

Theorem 11. Let x l , . . . , xn be independent random vari-
ables uniformly distributed in the interval [0, 1], then the ex-
pected complexity for solving the element distinctness prob-
lem for the xi by any algebraic computation tree is at least
12(n log n).

3. A basic limitation to our method is the fact that it is a
"degree" based method. Given a polynomial p of degree d in
n variables, the best lower bound that can be derived by our
method to the complexity of evaluating p is of order n log d.
Thus for example the O(n 2) lower bound for the knapsack
problem follows because the degree of the polynomial there
is 2 n - i. Any general method that can pass this limitation
would be of great interest.

Finally, we presented a fairly general and realistic model
of computation and provided basic tools for proving lower
bounds for a large variety of problems under this model.
Our method provides a uniform way to deal with straight
line computations, decision trees, and algebraic computa-
tion trees. We hope that together with the results of Rabin
[13] it serves to clarify the tradeoffs involved between arith-
metical operations and comparisons.

References

[1] W. Baur and V. Strassen, The complexity of partial
derivatives, to appear (1982).

[2] A. Borodin and I. Munro, Computational complexity
of algebraic and numeric problems. American Elsevier,
1975.

[3] D. Dobkin, A nonlinear lower bound on linear search
tree programs for solving knapsack problems. JCSS 13,
(1976) 69-73.

[4] D.P. Dobkin and R.J. Lipton, A lower bound of ½n 2 on
linear search programs for the knapsack problem. JCSS
16, (1978) 413-417.

[5] D.P. Dobkin and R.J. Lipton, On the complexity of
computations under varying sets of primitives. JCSS
18, (1979) 86-91.

[6] M.L. Fredman and B. Weide, On the complexity of
computing the measure of U[ai, bi]. CACM 21, (1978)
540-544.

[7] D. Hilbert, Foundations of geometry, 1899. Edited and
reprinted by Open Court, 1971.

[8] J.W. Jaromczyk, Lower bounds for problems defined
by polynomial inequalities. Inter. FCT conference,
Hungary, August 1981, F. Gecseg Ed. (Lecture Notes
in Computer Science 117), Springer--Verlag, 165-172.

[9] J.W. Jaromczyk, An extension of Rabin's complete
proof concept. Mathematical Foundations of Com-
puter Science 1981, J. Gruska and M. Chytill Ed.
(Lecture Notes in Computer Science 118), Springer--
Verlag, 321-326.

[10] Lemoine, Gdomdtrographie, 1907.

[11] J. Milnor, On the betti numbers of real algebraic varieties.
Proc. AIdS 15, (1964) 275-280.

[12] J. Milnor, Singular points of complex hypersurfces. Prin-
ceton Univ. Press, 1968.

[13] M.O. Rabin, Proving simultaneous positivity of linear
forms. JCSS 6, (1972) 639-650.

[14] M.O. Rabin, unpublished lecture notes (1977).
[15] E.M. Reingold, On the optimality of some set algo-

rithms. JACM 19, (1972) 649-659.

[16] A. Schmitt, On the computational power of the floor
function. Info. Proe. Let. 14, (1982) 1-3.

[17] C.P. Schnorr, An extension of Strassen's degree bound.
SIAM J. Comput. 10, (1981) 371-382.

[18] M.I. Shamos, Geometric complexity. Proc. 7th ACM
STOC, Albuqueque, New Mexico, (May 1975) 224-233.

[19] M.I. Shamos, Problems in computational geometry, 1975.

[20] J.M. Steele and A.C. Yao, Lower bounds for algebraic
decision trees. J. Algorithms 3, (1982) 1-8.

[21] V. Strassen, Die Berechnungskomplezitiit yon elemen-
tarsymetrischen funktionen und yon interpolationsko-
eff~zienten. Numer. Math. 20, (1.973) 238-251.

[22] V. Strassen, The computational complexity of continued
fractions. Proc. of the 1981 ACM symposium on
symbolic and algebraic computation, Utah, (August
1981) 51-67.

[23] R. Thorn, Sur l'homologie des varidtds algdbriques rdelles.
Differential and Combinatorial Topology, Ed. S.S.
Cairns, Princeton Univ. Press, 1965.

[24] A.C. Yao, On the complexity of comparison problems
using linear functions. Proc. 16th STOC, Berkeley
1975, 85-89.

[25] A.C. Yao, A lower bound to finding convex hulls. Stan-
ford Computer Science Report STAN-CS-79-733, (1979).

[26] A.C. Yao and R.L. Rivest, On the polyhedral decision
problem. SIAM J. Comput. 9, (1980) 343-347.

86

