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Abstract - -  A topological method is given for obtaining 
lower bounds for the height of algebraic computation trees, 
and algebraic decision trees. Using this method we are 
able to generalize, and present in a uniform and easy way, 
almost all the known nonlinear lower bounds for algebraic 
computations. Applying the method to decision trees we 
extend all the apparently known lower bounds for linear 
decision trees to bounded degree algebraic decision trees, 
thus answering the open questions raised by Steele and Yao 
[20]. We also show how this new method can be used to 
establish lower bounds on the complexity of constructions 
with ruler and compass in plane Euclidean geometry. 

1, Introduction 
Despite the extensive research in algebraic complexity 

theory in recent years, no general lower bound method 
has been provided for algorithms that involve arithmetical 
operations and comparisons. Much less is known if we fur- 
ther allow the operation of root extraction or the algebraic 
operation of finding the root of a polynomial. Consider the 
following decision problem: 

Example 1. Element Distinctness. Given x l , . . . , x n  E R, 
is there a pair i, j with i ~ j and xi ~ xj ? 

One can solve the element distinctness problem with the 
help of any efficient sorting algorithm using O(n log n) com- 
parisons, or by computing the product I ] i~ j (x i  - -  xy) and 
comparing the computed result to zero (using O(nlogn) 
mult/div). Allowing linear operations for free, we know 
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of no previous result that indicates why more than O(1) 
operations are required to solve this problem in the model 
considered here. 

In this paper we provide a new topological method for 
obtaining lower bounds for this general type of algorithms, 
formally described as algebraic computation trees. Before 
giving the detailed computational model it is worthwhile 
to mention a concrete application of the method presented 
here. 

Theorem 1. Any algebraic computation tree that solves 
the n-element distinctness problem must have complezity of 
at least fl(n log n). 

This result extends the lower bounds of Dobkin and 
Lipton [5] for the linear decision tree model, and the lower 
bounds of Baur and Strassen [1] for the straight line com- 
plexity of the above product. 

Our new lower bound method rests heavily on a result 
from real algebraic geometry due to Milnor [11] and Thorn 
[23] that bounds the "topological complexity" of real al- 
gebraic varieties. Except for this result the proofs of 
our main theorems are elementary and require only basic 
knowledge of algebra and topology. The new method also 
provides a unified and easy way to prove nonlinear lower 
bounds for straight line computations, algebraic decision 
trees, and other previously untouchable problems such as 
lower bounds for the complexity of constructions with a 
ruler and compass in plane Euclidean geometry. 

In the next section we rigorously specify our basic com- 
putational model. The third section is devoted to a techni- 
cal result needed for our main theorems that are presented 
in section four. In section four we also show how to extend 
our computational model to allow more algebraic opera- 
tions such as taking k-th roots or computing the roots of a 
polynomial. 

In section five we show how to apply our method to the 
bounded degree algebraic decision tree model, thus solving 
the open problems in [20]. Section six is devoted to ap- 
plications and in particular to the proof of the result on 
the element distinctness problem (Theorem 1) mentioned 
above. 
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In the seventh section we show how to use our lower 
bound method to prove lower bounds on the number of ruler 
and compass operations for certain plane geometry con- 
structions. This solves the open problem posed by Shamos 

(lSl. 

2. The Algebraic Computation Tree Model 
Let W C R" be any set. The membership problem for 

W is the following: 

Given x ~ - ( x l , . . . , x , ~ ) E R  n determine i f  x E W .  

In our example 1 we can set, 

We are interested in obtaining lower bounds on algo- 
rithms for solving the membership problem for W that al- 
low both arithmetic operations and tests. Thus, a step of 
the computation in our model will be either an Arithmetic 
Operation or a Test -- comparing a computed result to 
zero (i.e. > , ~ , = ) ,  and branching according to the out- 
come of the test. 

Formally, an algebraic computation tree is a binary tree 
T with a function that assigns: 

• to any vertex v with exactly one son (simple vertex) 
an operational instruction of the form 

f v :=fvxo f~a  or f v : = c o f ~ ,  or f ~ : = V / ~  

where vi is an ancestor of v in the tree T, or fv, E 
{ x l , . . . , x n } ,  o E {-I- , - - ,  × , / } ,  and c E R is a con- 
stant. 

• to any vertex v with two sons (branching vertex) a test 
instruction of the form 

f,,, > 0  or f,,~ > 0  or f,~ =O 

where vl is an ancestor of v, or f~, E { xl . . . .  , x,~ }. 
• to any leaf an output Y E S  or NO. 

Given an input x E R ", the program traverses a path 
P(x) in the tree T down from the root. At each simple 
vertex the arithmetical operation is performed, and at each 
branching vertex a branching is made according to the test 
at the vertex. When a leaf is reached the answer Y E S  or 
NO is returned. We say that "x passes through a vertex v" 
if v is on the path P(x). We require that if an input x passes 
through a vertex v with a division instruction f .  :~--- fv~/fv2 
that f~2(x) # O, and if f~ :--= ~ that fv~(x) > O. 

We say that the computation tree T solves the member- 
ship problem for W if the answer returned is correct for 
every input x C R '~. Let cost(x, T) denote the number of 
vertices that x passes through. The complexity of T, C(T), 
is given by the maximum of cost(x, T) for any x. 

Now let C(W) be the minimum C(T) for any algebraic 
computation tree T tkat solves the membership problem for 
W. The lower bound on C(W) derived by our method will 
depend heavily on the topology of W. For this purpose we 
derive in the next section upper bounds on the topological 
complexity of sets defined by polynomial equalities and 
inequalities. 

3. Counting Connected Components 
Let V C_ R n be a set defined by the following polyno- 

mial equations 

ql(Xl,. . . ,  Xn) = O,. . . ,qm(Xl, . . . ,:r,n) =0,  
p : ( ~ , . . . , ~ , , )  > o . . . .  , p , ( x : , . . . , x , , )  > o, 

p , + l ( x ~ , . . . , x n ) _ >  o . . . .  , p h ( x l  . . . .  , x , )  > O .  

(i) 

where qi, Py E R[xl, . . . .  xn], and d = max{2, deg qi, deg py}. 

Denote by # V  the number of connected components V 
has. For any integers n, h, d we put 

fig(n, h) = max{#V [ V _C R" is defined by (I)t. 

Note that we do not bound the number of polynomial 
equalities defining V in the definition of fig(n, h), but merely 
bound their degree and the number of inequalities. 

Proving upper bounds on fin(n, h) is apparently not an 
easy matter. Fortunately, we can easily reduce the problem 
to a similar problem about algebraic varieties (defined by 
polynomial equalities) for which we can apply the known 
results of Milnor [11] and Thorn [23]. 

Theorem 2. For d ~ 2, 

fd(n, h) ~_ d(2d-- 1) n + h - 1  

Proof. Let V C R ~ be a set defined by (I). # V  
is certainly finite (see [12D, so pick a base point in every 
connected component of V. Let v l , . . . , v ,  E V be these 
points, where r ~ #V,  and set 

e-=min{pi(vj) l i =  l . . . s ,  j =  l . . . r} .  

Since all the vj are in V we know that e > 0. Let 

{ q l (x )=O' '" 'qm(x)=O'  ! 
= x E R" p~(x)  _> ~,. . . ,v°(x) > ~, 

ps+l(x) _~ 0, . . . ,qh(X) > 0.)  

then V~ C V, and vj E Vc for all j .  All the vj must be 
in distinct connected components of V~, because V~ C V, 
thus # V  _~ #V~. Now let W be the set of all solutions 
( x l , . . . , x n ,  y l , . . . , yh )  E R ~+h to the system 

q 1 ( ~ 1 , . . . ,  ~ , )  = o , .  . . . . . . .  ,q~ , (~ l ,  . . . ,  x . )  = o 

p , + l ( x l , . . . , x , )  2 = y , +  , . . . . .  p h ( x ~ ,  . . . , x , , )  = y~ 
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and let 7r : R "+h ~ R" be the projection 
"/1"(2:1,''" , Xn, Y l , . . ' ,  Yh) = ( Z 1 , . . - ,  Xn). The function 7rlw 
is continuous and It(W) ----- V,, so clearly #V~ <_ #W.  

Since W C_ R n+h 
polynomials of degree 
Milnor [11, Theorem 2] 
components. Thus 

#v < #y~ < 

is an algebraic variety defined by 
_< d, we can apply a theorem of 
to bound its number of connected 

#W ~ d ( 2 d -  i) n+h-1. I I  

Remark: Milnor [11, Theorem 3] proves that/Sa(n, h) ---- 
O((dh) '~) which is asymptotically better when h tends to 
infinity but  this bound is not useful here. 

4. The Main Theorem 
Now we are prepared to prove our main theorems that 

establish the connection between the complexity of the 
membership problem for W and its topological complexity. 

Theorem 3. Let W C_ R '~ be any set, and let T be a 
computation tree tha~ solves the membership problem for W. 
If N is the number of disjoint connected components of W,  
and h = C(T), then 

2h3 n+h > N.  

Proof. Let ~r = (v l , . . . , v , ) ,  t <_ h, be a path from the 
root r ----- vl of T to a leaf I = vt with the answer Y E S ,  and 
let V be the set of inputs x E R '~ leading to l. We now use 
the elegant method of reducing the constraints degree by 
adding new variables (see [14]). Traversing the tree down 
from the root to l, we set a system of equations F according 
to the operations (or tests) on the vertices of the path lr, 
by the following rules: 

Operation Equation 
fv, : =  fva + fvk fv, = fva -~- f ~  
f~, : =  fvj X fv ,  fm : -  fvafv~ 
fm : =  fv~/f~k fvkf~, = fvj 
f~, := ~ f l  = f~, 

and if vi is a branching vertex with a test 

fw  > 0 or fw  ~ 0 or f w  = O  

then add this equation to F if it should be satisfied, and 
add the negated equation 

--y.,>_O or - - f ~ , > O  or I~,Y~,--I=O 

accordingly otherwise. 
Let fu~ , . . . ,  f~,. be the set of new variables in F, and let 

s be the number of inequalities in r .  Then r + s _< t, since 
each step adds at most one new variable or one inequality. 
Let U be the set of solutions ( x l , . . . , x , , f u ~ , . . . , f , , , )  E 
R "+~ to the system F. It is easily seen that the projection 

of U on the x coordinate is exactly V so by the same 
argument given in the proof of theorem 2, we have # V  < 
# U .  Since the degree of F is < 2, we know by theorem 2 
that  

#V < #U </32(n + r,s) < 2.3 n+r+~-1 < 3 n+h 

Since each leaf of T is correctly labeled, each connected 
component of V must be completely contained in some 
connected component of W. Since the number of leaves 
of T _< 2 h, and each leaf has at most 3 n+h connected 
components, we have 2h3 n+h > N.  | 

From theorem 3 we immediately have 

Theorem 4. For any W C_ R",  

C(w) >_ log N log 3 - -  n ~ 0.38 log N - -  0.61n 
1 + log 3 1 + log 3 

where N = m a x { # W ,  # ( R  ~ - w ) } .  

Examining the proof of theorem 3, one can see that 
all we need for the proof to work is that the degree of 
r will not be higher than 2. Thus we can allow linear 
operations for free and count only X , / ,  x/---- operations and 
comparisons. Moreover, we can allow any bilinear operation 
on precomputed results and count it as one operation since 
this still gives an equation of degree 2. 

Using the same type of argument, we can allow the 
operation of taking k-th roots and handle it in the following 
way: Let 

80 : ~  Y, 81 ~ 82 , . . . , S t  :---~ 8i" 85 

be a straight line computation of yk of minimal length. On 
encountering the operation 

fv, : =  (fvj) ~; 
we add to F the set of equations (of degree <_ 2) 

which introduces t new variables. Thus the cost of this 
operation should be t. More generally we can allow the 
algebraic operation of taking roots of a polynomial (of any 
degree) at the cost of evaluating this polynomial at a given 
point. 

Formally we associate with each operation a cost. Thus 
addition, subtraction, and multiplication by constants have 
cost 0, multiplication, division, taking square roots, any 
bilinear operation and comparisons all have cost 1, taking 
k-th roots costs O(log k), and solving a polynomial has the 
cost of the complexity of evaluating it at a given point. 

Let T be a computation tree (with or without the new 
operations), and let M(x, T) denote the sum of the costs 
of the operations along the path P(x). The multiplicative 
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complexity of T, M(T) ,  is the maximum of M(x, T) for any 
x E R n, and the (multiplicative) complexity of W, M(W),  
is the minimum M(T) for any algebraic computation tree 
tha t  solves the membership problem for W. 

Theorem 5. For any W C_ R n, 

M ( W )  = n(log N - -  n) 

where N = m a x { # W ,  #(R"  - -  W)). 

Since our method applies to computations with real 
numbers we can easily extend our lower bound technique 
to computations with complex numbers by representing the 
complex number z as x -q- iy, with x, y E R. This way, 
multiplication is represented by two bilinear operations. 
Let  Re(z) and Ira(z) denote the real and imaginary parts 
of the complex number z. 

Theorem 6. Let W C__ C n be any set, and let T be 
an algebraic computation tree that solves the membership 
problem for W, using the functions Re,Ira with cost 0 and 
comparisons on real numbers with cost 1, then 

M(T)  = f2(log N - -  n) 

where N = max{#W,  #(C '~ - -  W)).  

By continuity arguments we can extend our method to 
deal also with the rational numbers. 

Theorem 7. Let W C_ Qn be any set, and let T be a 
computation tree that solves the membership problem for W. 
Then 

M(T)  -~ O(log N - -  n) 

where N is the number of connected components of W in R n 
with non null interior. 

5. The Decision Tree Model 
Another model of computation used to prove worst- 

ease lower bounds is the decision tree model. Although 
this model is less interesting from the computational point 
of view, many worst-ease lower bounds have been proved 
for this model. In this model algorithms are presented as 
trees, in which every vertex of the tree has the form of a 
comparison 

f( inputs) : 0 

where f is some function from a class of allowed functions. 
For linear decision trees several powerful techniques are 

known (e.g. Reingold [15], Dobkin [3], Dobkin and Lipton 
[4,5], Yao [24], and Yao and Rivest [26]). Less is known 
on algebraic decision trees, and the results of Rabin [13], 
Steele and Y ~  [20], and Jaromczyk [8,9], fail to give non- 
linear lower bounds for some of the problems discussed here. 
Following Steele and Yao [20], we define: 

A d-th order decision tree T for testing if x E W C R n, 
is a decision tree where the functions allowed are polyno- 

minis of degree at most d, each leaf of T contains the answer 
Y E S  or NO, and for any x E R ~, T decides correctly if 
x E W. Denote by Cd(W) the minimum height for any d-th 
order decision tree for the set W. 

Theorem 8. Let W C R n be any set, and let T be a 
d-th order algebraic decision tree that solves the membership 
problem for W. If N is the number of disjoint connected 
components of W, and h is the height of T, then 

2~Z~(n, h) > g .  

Thus for fixed d, Ca(W) = fl(log g - -  n). 

6. Applications 
As a first example to the strength of our method let us 

return to our example 1, the element distinctness problem. 
It is easy to see that  for the W defined in section 2, # W  --~- 
n!, since each region 

{ ( ~ l , . . . , x , )  I Xocl) < xoC21 < - . .  < XoC,)} 

is a maximal connected component of W for each permuta- 
tion a. Thus by theorems 4, 5 and 8 we have that  C(W), 
MCW), and CaCW) are all at least ~(n log n). 

Example 2. Set Equality and Inclusion. Given two sets 
A ~ ( x l , . . . ,  x,~}, B = {Yl , . . . ,  yn}, determine whether or 
not (a) A . ~  B, or (b) A C B. 

Any computation tree that  solves any of these problems 
will correctly decide the case when B ~-- {1, 2 , . . . ,  n}. Now 
for problem (a) set 

w,  = {(~(1), ~(2) , . . . ,  ~(n)) I ~ ~ S,} .  

Since W contains n! distinct points # W  ~ nk Thus 
C(Wa),M(Wa),Cd(Wa) ~- fl(n log n). 

For problem (b) set 

wb = { ( x l , . . . , ~ , )  I { ~ 1 , . . . , ~ , )  _ { 1 , 2 , . . . , ~ } } .  

# W  = n" so again C(Wb), M(Wb), Cd(Wb) = fl(n log n). 

Example 3, Set Disjointness. Given two sets A = 
{x l , . . ~ , xn}  and B = {Yl,... ,Y,~}, determine whether or 
not A A B  -~ 0. 

For this problem set 

I t  is easy to see that  # W  ~ (n!) 2, so again we know that 
C(W), M(W),  Cd(W) = n(n  log n). 

These lower bounds extend the lower bounds under the 
linear decision model due to Reingold [15]. 
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Example 4. The Measure problem. Given a list of  2n 
real (or rational) numbers a l , . . . ,  an and b l , . . . , b n ,  com- 

pute the measure of Ui[ai , bi]. 

Any algorithm that salves the measure problem can be 
used to decide whether 

I.J[zi, zi + el = ne 
i 

for any x i , . . . , Z n  E R  and e > 0. For this problem set 

w = ( ( x x , . . . , x , ~ ) l l x , -  zsI > e for all i ~ - j } .  

Again #W = n!, thus C(W), M(W), Ca(W) =- f l (n log n). 
This extends the lower bound under the linear decision tree 
model due to Fredman and Weide [6]. 

Example 5. Extreme Points. Given n points in the plane 

does the convez hull formed by them possess n vertices ~. 

It has been shown by Steele and Yao [20], that  this set 
W C_ R 2" satisfies # W  _> (n - -  1)!, thus C ( W ) , M ( W ) ,  
Ca(W) = f l(n log n). This generalizes the result of Yao [25] 
where he showed that C2(W) --~ f l (n log n). 

Example 6(a). The Knapsack Problem. Given real 

numbers X l , . . .  , xn ,  decide if there exists some subset S C 

{ 1, 2 , . . . ,  n } such that )-~ies xi = 1. 

In this case, 

It was shown in Dobkin and Lipton [4] that # W  ~ 2 '~2/2, 
thus C(W), M(W), C~(W) ----- n(n2). 

Example 6(b). The e-Approximation Knapsack Prob. 
lem. Given real (or rational) numbers x l ,  . . . , xn and e > O, 
decide i f  there exists some subset S C_ { 1, 2 , . . . , n }  such 

that 

[ E  x , -  11 < e 
iES 

For any e > 0, define 

If e is small enough ~W~ ----- #W0 >_ 2 n~/2, thus any 
algorithm for our problem must have complexity n(n2). 

Examples 6 (a) and (b) extend the results under the 
bounded degree algebraic decision tree model due to Steele 
and Yao [20]. 

Example 7. Sign of an Ordering Permutation. Given 
z x , . . . , x n  • R, is there a permutation of odd parity that 

orders the zi ? 

The set defined by this problem is connected but we can 
derive lower bounds by looking at its complement. Define 

w = { ( z ~ , . . . ,  z , )  I zoo) < "  < to(-) for some ~ • An} 

Once again # W  ~ n!/2 so any algorithm for this problem 
has complexity fl(n log n). 

Example 8. Symmetric Functions. Given x l,  . . . , xn • R,  
Compute the elementary symmetric  funct ions 

, , ( z , , . . . ,  x , ) , . . . ,  o , ( ~ i , . . . ,  z , ) .  

Let ai = ai(1 ,2 , . . . ,n) .  Any algorithm that com- 
putes the elementary symmetric function can be used to 
test, using n more steps, whether a i (x l , . . . ,  Xn) ---- ai for 
all i. Since this is true if and only if {x l , . . . ,Xn} = 
{1 , . . . ,n} ,  we know from example 2 that the algorithm 
requires fl(nlogn) steps. This extends the result due to 
Strassen [21], since checking whether ai(x) = ai may ac- 
tually be easier than computing the values of ai(x). 

Example 9. Discriminant. Given x x , . . . , x n  E R ,  com- 
pute the discriminant I ] i # j ( x i  - -  x~). 

Any algorithm for this problem can, in one more step, 
test if the discriminant yd 0, and this happens if and only 
if all the x i are distinct. So by example 1 the algorithm 
must make fl(n logn) steps. This extends the result due to 
Baur and Strassen [1]. 

Example 10. Resultant. Given x l , . . . ,  Xn, Y x , . . . ,  Yn E R ,  
compute the resultant I-Iid(xi - -  yj). 

Any algorithm for this problem can, in one more step, 
test if the resultant ~ 0, and this happens if and only 
if the sets {x i}  and {yi} are disjoint. So by example 3 
the algorithm must make fl(n log n) steps. This extends 
another result due to Banr and Strassen [1]. 

Example U .  Interpolation polynomial. Given (xl,yl),  
. . . ,  (Xn, Yn) E R 2, compute the unique interpolating polyno- 
mial through those points. 

One can prove an fl(n log n) lower bound for this prob- 
lem by reducing the problem to the symmetric function 
computation, because the coefficients of the interpolation 
polynomial through the points 

(~1, 0), ( z 2 , 0 ) , . . . ,  (x , ,  o), (0, + X l Z 2 . . - z , )  

are the elementary ~ymmetric functions of z , , . . . ,  z , .  
To show how to prove this directly by our method we 

note that even if we restrict the input to satisfy z~ < . . .  < 
x. ,  a straight line algorithm that correctly computes the 
coefficients of the interpolating polynomial for this type 
of input must give the correct answers even when the xi 
are any complex numbers because of analytic continua- 
tion. In particular the algorithm gives the correct answers 
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when the xi are not ordered. Let p(t) -~ a,~_lt '~-1 -q- 
• . . -~  ao be the interpolation polynomial through the points 
(1, 2), (2, --2), . . . ,  (n, q-2) and let 

y~ = 1 and the interpolation~ 
W -~ CXl, Y l , . . . ,  x , ,  Y ' * )  polynomial ~-~ pCt) J 

Since p(t) = -4-1 has n - - 1  distinct real roots it is easy to see 
that  W contains (2n--2)!/(n--2)T distinct points. Since any 
algorithm that  computes the interpolation polynomial can 
be used, with n more steps, to recognize W it must require 
f l (nlogn)  arithmetical operations. This extends another 
result due to Strassen [21]. 

Example 12. Sum of Powers. Given z l , . . . , z n  E C, 
compute the sum z~ q- . . .  -4- zkn. 

let zi ---~ xi -I-- Yl, and set 

An algorithm to compute our function can be used with 
O(n) more steps to solve the membership problem for W. 
It is easy to see that  (zl . . . .  , z , )  E W if and only if all 
the zi are k-th roots of unity, so W contains k n discrete 
points. Since # W  ~-~ k n the complexity of the algorithms 
is fl(n log k). This extends another result due to Banr and 
Strassen [1], and the results of Schnorr [17]. 

Example 13. Integer parts. Given Xx, . . . ,  x,~ E [0, M], 
'compute the sum [xx] q - . . . - q - [ zn ] ,  where [x] is the integer 
part of x. 

Let 

Any algorithm for our problem can solve the membership 
problem for W using O(n) more steps. # W  -~- (M -4- 1) '~, 
so the algorithm has complexity fl(n log M). This extends 
the result of Schmitt [17] where he showed that  computing 
the integer part  of x requires fl(log M) operations. 

Remark: All the above lower bounds are tight Cup to 
constant factors) except for examples 6(a) and (b) where 
the best upper bound is O(n 4 log n), a recent result due to 
Meyer anf der Heide (these proceedings). 

7. Constructions in Euclidean geometry 
The questions of constructibility by the Euclidean ruler 

and compass (such as trisecting an angle) were raised in 
ancient times by the Greek mathematicians. With the ad- 
vent of Galois theory in the early nineteenth century a 
complete characterization of those problems solvable with 
ruler and compass became available. Hilbert, in his Founda- 
tions of Geometry [7], explains how to reduce the construe- 
tibility problem to an algebraic problem. By introducing a 
coordinate system in the plane, he shows how the elemen- 
tary geometric operations correspond with the operations of 

addition, subtraction, multiplication, division, and square 
root extraction. 

While elegant and simple constructions were always 
regarded as desirable, the first systematic study of the 
complexity of Euclidean constructions was undertaken only 
early in this century by Lemoine [10]. His work is the only 
known attempt to count operations in geometry, but  he 
was unable to prove any lower bounds. 

More recently Shamos in his work on computational 
-geometry [18] studied a number of fundamental problems in 
this area, and was able to give upper and lower bounds for 
problems involving set of points, lines, and polygons in the 
plane. The lower bounds in Shamos's work were all under 
the linear decision tree model and were proved by reduction 
to some of the problems we gave above. Since our algebraic 
computation tree model can handle the operation of taking 
square roots most of the lower bounds from Shamos's work 
can be extended to lower bounds on the complexity of 
solving the problems with the aid of a ruler and compass. 

We allow the following elementary operations: 
1. Drawing a line through two points. 
2. Drawing a circle (with or without a given radius). 
3. Intersecting a circle/line with a circle/line. 
4. Determine whether a point is on the right/left side or 

on a directed line. 
5. Determine whether a point is in/out  or on a circle. 

Thus for example we can prove 

Theorem 9. Any algorithm using the above elementary 
operation that solves the Extreme Points problem (example 
5) has worst-case complexity of at least fl(nlogn) opera- 
tions. 

Theorem 10. Any algorithm that determines for any 
n -{- 1 given points, Po , . . . ,  Pn, whether Po is colinear with 
any two other points has worst-case complexity of fl(n log n) 
elementary operations. 

Other lower bounds for the problems mentioned in [19] 
can be proved as well. 

8. Remarks 

1. Since our lower bound theorems are based on [11,23] it 
is worthwhile noting that  the bounds provided by Miinor 
and Thorn actually bound the sum of the betti numbers of 
algebraic varieties and not only the number of connected 
components. Thus it may be possible to use the dimension 
of the higher cohomology groups to establish lower bounds 
on straight line computations. 

2. In some of the applications in section 6 we can easily 
extend the lower bound to the average case complexity. 
Thus for example we can prove: 
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Theorem 11. Let x l , . . . , xn be independent random vari- 
ables uniformly distributed in the interval [0, 1], then the ex- 
pected complexity for solving the element distinctness prob- 
lem for the xi by any algebraic computation tree is at least 
12(n log n). 

3. A basic limitation to our method is the fact that it is a 
"degree" based method. Given a polynomial p of degree d in 
n variables, the best lower bound that can be derived by our 
method to the complexity of evaluating p is of order n log d. 
Thus for example the O(n 2) lower bound for the knapsack 
problem follows because the degree of the polynomial there 
is 2 n -  i. Any general method that can pass this limitation 
would be of great interest. 

Finally, we presented a fairly general and realistic model 
of computation and provided basic tools for proving lower 
bounds for a large variety of problems under this model. 
Our method provides a uniform way to deal with straight 
line computations, decision trees, and algebraic computa- 
tion trees. We hope that together with the results of Rabin 
[13] it serves to clarify the tradeoffs involved between arith- 
metical operations and comparisons. 
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