
DIVIDE-AND-CONQUER IN MULTIDIMENSIONAL SPACE

Jon Louis Bentley
Department of Computer Science
University of North Carolina

Chapel Hill, NC 275]4

and

Michael lan Shamos
Departments of Computer Science and Mathematics

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

We investigate a divide-and-conquer technique in multidimensional space which decomposes a geometric

problem on N points in k dimensions into two problems on N/2 points in k dimensions plus a single problem

on N points in k-1 dimension. Special structure of the subproblems is exploited to obtain an algorithm

for finding the two closest of N points in O(N log N) time in any dimension. Related results are discussed,

along with some conjectures and unsolved geometric problems.

Introduction

A principal failing of computational geometry

[Shamos, Shamos and Hoey] is that it has not suc-

cessfully addressed problems in greater than two

dimensions. Such a study would have important

practical and theoretical benefits -- it would shed

light on linear programming, multidimensional data

analysis, geometric optimization, and retrieval on

multiple keys, as well as provide a link between

complexity and dimensionality. Some preliminary

results are known. [Preparata and Hong] show that

the convex hull of N points can be found in

O(N log N) time in three dimensions but that

O(N 2) is a lower bound in any higher dimension.

The maxima of a set of vectors can be found in

O(N log k'2 N) time in dimension k [Kung et al.]

and we conjecture that this time suffices to ideno

tify the extreme points of a k-dimensional set.

The most basic questions, however, have not

been studied. These include finding nearest and

farthest points, determining separability of point

sets and other elementary properties. We intend in

this paper to begin a systematic investigation of

higher-dimensional geometry and its relation to

complexity.

Closest-Point Problems

In this section we will investigate a number

of problems dealing with the proximity of N points

in Euclidean k-space. The most primitive closest-

point problem is that of finding the two nearest

of the N points; we will let P(N,k) denote the

worst-case time of the best possible algorithm (the

minimax complexity) for solving the closest-pair

problem. The fixed radius-near-neighbor problem

asks for all pairs of points within some fixed dis-

tance 6 of one another. A special case of this

220

problem arises when it is known that no ball of

radius 8 in the space contains more than some con-

stant c ~ I number of points (this condition is

known as sparsity); call the minimax complexity of

the sparse fixed-radius-near-neighbor problem

S(N,k). The all-closest-points problem asks for

the nearest neighbor of each of the N points; we

will use A(N,k) for its minimax complexity. We

will assume the RAM/RASP model of computation in

measuring the complexity of these problems [Aho,

et el.].

All of these problems can be solved iN a sim-

ple-minded way by investigating each of the (2~

pairs of points; the complexity of such an algor-

ithm would be O(kN2). Algorithms that make use of

special properties of the plane have shown that

P(N,2) = A(N,2) = O(N log N) [Shamos and Hoey],

but these algorithms do not generalize to k-space.

We will present a divide-and-conquer algorithm for

the closest-pair problem in the plane, generalize

it to k-space, and extend the method to other

closest-point problems. The divide-and-conquer

method used to solve the problems is interesting

in that the recursion operates by solving two prob-

lems on N/2 points in k-space, then projecting the

remainder of the problem into a lower dimension.

In this aspect it is similar to the algorithm for

finding the maxima of a set of vectors given in

[Kung, et el.].

We now give a class of divide-and-conquer

algorithms for closest-point problems. We will

proceed by presenting the basic divide-and-conquer

algorithm for the closest-pair problem in the

plane, generalizing it, then speeding up the gen-

eralizations. The algorithms, with the analyses

of their worst-case running times, will be

presented as proofs of theorems bounding the com-

plexity of the problems. Because of its tractabil-

ity we will work in the L metric to measure the

distance between two points (the maximum coordinate

metric), but use of any other L metric would
P

change the time complexity of our algorithms only

by some multiplicative constant. The L= distance

between two points (xi,Yi) and (xj,yj) (in rectan-

gular coordinates) is given by d (i,j) =

max(Ixi-xj],lyi-Yj]).

Theorem]. P(N,2) ~ O(N log N).

Proof: To solve the problem for a collection of N

points, divide the points by a vertical line L

such that N/2 points lie on either side of L (Fig-

ure]) and let A denote the leftmost N/2 points

and B the rightmost. Recursively use this algo-

rithm to find 6A, the distance between the closest

points of A, and similarly for 8 B. We will show

how to obtain 8AB , the distance between the two

closest points of A U B, in O(N) time. Let

8 = min(6A,6B). Figure] shows lines parallel to

L on either side of it at distance 8. The area

between these lines is a vertical slab of width 28.

A

I

I
| •

1
I
I
I •
I
I
I
I

!

B

Figure i.

221

If there is any pair in A U B closer than 6

apart~ both points of the pair must lie in the

slab. Now consider any square of side 26 whose

center lies on L (Figure 2). Since the minimum

separation of points in the square on either side

of L is 8, the square can contain at most a con-

stant number c of points (c =]2 in this metric).

A
-]6--6

I
pe---- 6---~
|

I
I
I

I
• Q~ 25

'1 ,___el_
I

I

B

Figure 2.

Project all the points lying in the slab onto L.

Within any interval of length 28 on L there are at

most]2 points. Since projection cannot increase

the distance between two points, we can find all

pairs of points within 6 of each other in the slab

by investigating all pairs of points within 6 of

each other in the projection. If there is a pair

closer than 6 apart in A U B it will be found at

this time. By the above observations there are at

most]2N pairs within 6 in the projection, so if

the points were presorted by y-coordinate, the

checking could be done in linear time. Thus the

recurrence relation describing the algorithm is

T(N) = 2T(N/2) + O(N), giving an O(N log N) algo-

rithm. []

This procedure was discovered by [Strong] and

can be generalized to any dimension.

Let us take careful note of the strategy

behind this algorithm. The original problem deal-

ing with N points in the plane is solved by solving

two problems on N/2 points in the plane, then

"patching up" the tentative solution by reducing

the problem to one on N points in one dimension i__n

which sparsity is ~uaranteed. We gain two impor-

tant insights from this analysis: First, that di-

vide and conquer can he used in multidimensional

spaces, and seconds that sparsity~ though not pres-

ent in the original set of points, can be induced

in a subproblem. We will see later exactly how to

induce sparsity; let us now examine the sparse

problem in detail.

Theorem 2. S(N,2) K O(N log N).

Proof: We describe a divide-and-conquer algorithm

similar to that given in the proof of Theorem].

As before, we divide the points by a vertical line

L into two sets A and B, each of size N/2 (this

can be done in linear time after presorting or by

a linear median algorithm [Blum et al.]). We then

use this algorithm recursively to enumerate all

pairs within distance 6 of one another in A and

similarly for B. We must now enumerate all pairs

within distance 8 of one another with one point in

A and the other in B. To do this we consider all

points in the slab given by the area within 6 of L

(note here that 8 is fixed at the time the algo-

rithm starts execution). Instead of having to

prove sparsity as we did before (we showed c =]2),

we know from the problem statement that no square

of side 26 in the plane has more than some constant

c points (since a square of side 28 is a 8-ball in

the L metric). We now project all the points in

the slab onto L and examine all pairs within 6 of

each other on L for the property of being within 8

2 2 2

in the plane. As before, if the points were pre-

sorted by y-coordinate, then the checking could be

accomplished in linear time, giving again the re-

currence T(N) = 2T(N/2) + O(N), for an O(N log N)

algorithm. []

In the above algorithm we reduce the sparse

problem in the plane to two sparse problems on N/2

points in the plane and one sparse problem on N

points on the line. This strategy can immediately

be generalized to collections of points in k-space,

giving rise to the following theorem:

Theorem 3. S(N,k) ~ O(N log k'1 N) for k m 2.

Proof: We will once again use a divide-and-conquer

algorithm. We partition the points into two col-

lections A and B, each having N/2 points. We in-

duce this partition by P, a k-] dimensional hyper-

plane perpendicular to the x-axis (for k = 2, the

"hyperplane" was the]-dimensional line L). We

recursively enumerate all fixed-radius near-neigh-

bors in A and similarly for B. We now must enu-

merate all fixed-radius near-neighbor pairs with

one point in A and one in B. To accomplish this we

project all points within 8 of P onto P. Notice

that this new set of points is still sparse with

the same sparsity constant c. We now recursively

use this algorithm on the (up to) N points in the

(k-])-dimensional problem. Because of the projec-

tion, not all the pairs within 8 on P will be with-

in 8 in the original space, so an extra check will

have to be made to ensure their proximity in the

original space before they are reported (as well as

ensuring that they are on different sides of P).

This algorithm yields the recurrence relation

S(N,k) = 2S(N/2,k) + S(N,k-]) + O(N) (where the

O(N) is the Overhead work done in dividing the

points into the two collections A and B). Using

from Theorem 2 the fact that S(N,2) ~ O(N log N),

we see by induction on k that the worst-case run-

ning time of the algorithm is bounded above by

O(N log k-] N). D

In Theorem 3 the time-dependence on N seems

to increase with k, a depressing but not a surpris-

ing prospect. If we examine the algorithm in

closer detail, however, we see that the exponential

factor in the logarithmic term comes from our will-

ingness to solve a problem of size N in k-] dimen-

sions. If, however, we can bound the subproblem

size by some function f(N) such that f(N) log f(N)

O(N), then we can easily prove by induction on k

that S(N,k) ~ O(N log N). (The recurrence used in

the proof of Theorem 3 becomes

S(N,k) = 2S(N/2,k) + O(N) + S(f(N),k-])

= 2S(N/2,k) + O(N)

whose solution is S(N,k) = O(N log N).) Our strat-

egy in bounding the problem size of the (k-])-di-

mensional problem will involve a more intelligent

choice of the cut-plane P used to partition the

collection into the two subsets A and B. Specif-

ically, we must choose a cut-plane that ensures

two things: First, neither A nor B can contain

"too many" points -- the subproblems in k-space

must maintain balance. Second, there must be no

more than O(N/log N) points within distance 6 of P

(this condition bounds the size of the subproblem

to be solved in (k-])-space). We proceed now by

showing the existence of cut-planes with the above

properties, first in 2-space and then in general

k-space. We will then show how an algorithm can

use these desirable cut-planes to reduce S(N,k).

223

Theorem 4. (Existence of a cut-line in the plane.)

Given a sparse collection of N points in the plane,

there exists a cut llne L perpendicular to one of

the original coordinate axes with the following

properties: (]) Both of the subcollections A and

B induced by L contain at: least N/8 of the points.

(2) There are at most 2cN]/2 points within distance

8 of L.

Proof: By contradiction: We demonstrate that a

set without the properties described is at once

very dense and very sparse. Consider the points

sorted in increasing order by x-coordinate. Let

us now restrict our discussion to only the middle

3N/4 points in the x-dimension (finding a cut-plane

between two of the points in the restricted set

will ensure condition] of the theorem). Assuming

the opposite implies that every collection

of 2cN]/2 points contiguous in the x-dlmension

projects onto a segment of the x-axis less than 26

in length (if a given collection projected onto a

wider interval, its center could be used to define

a cut-line L with the desired properties). The

situation that we have described is depicted in

Figure 3. The regions R and L contain the right-

most and leftmost N/8 points, respectively. The

region C is that to which we have restricted our

discussion; it contains 3N/4 points. The region T

contains a set of 2cN]/2 points that are contiguous

in the x dimension; we know that the width of T is

no greater than 26. Since T is any collection of

2cN]/2 points in C, we can now bound the width of

C by observing that C is composed of'(3N/4)/

(2cN]/2) collections of 2cN]/2 points, and each of

these collections is of width less than or equal to

26, so we can bound the width of C by

width(C) ~ 3N~ 26 = - -
2cN~/2

L C

Figure 3.

cut

I
!

i I 0
!
i 0 I

I

I

i •

T

_<25

3N]/2 8
4c

R

Q

We have thus far considered only Cx, the center

points in the x-dimension; similar arguments could

be made concerning %, the center 3N/4 points in

the y-dimension. Let us now examine Cxy , the inter-

section of C and C . Since at most N/8 points are
x y

in each of Lx, Ly, Rx, and Ry, t h e r e must be a t

least N/2 points in Cxy. On the other hand, since

the length of the sides of C is bounded by
3Ni/2 xy

• the total area of C is bounded above by
4c

9N~ 2xy
that length squared, or By sparsity we know

]6c 2 "
that the number of points in C is therefore

xy

bounded above by -- • --= 962 c 9N/64c. We have now
16c 2 482

shown that C contains at least N/2 points (by
xy

hypothesis), but at most 9N/64c points for c ~ I,

which is a contradiction. Thus, the required cut-

line exists. []

Theorem 5. (Existence of a cut-plane in k-space.)

Given a s~arse collection of N points in k-space,

there exists a cut-plane P perpendicular to one of

the original coordinate axes with the following

properties: (1) Both of the subcollections A and

B induced by P contain at least N/4k of the points.

(2) There are at most kcN I-I/k points within dis-

tance 8 of P.

224

Proof: The proof proceeds in the same manner as

that of Theorem 4. Assuming the converse of

the theorem leads us to the contradiction that the

hypercube in k-space corresponding to C x contains

at least N/2 points, but at most • cN

points, which is less than N/2 for k > 1, c ~ 1.

We will now show how the existence of cut-

planes with the given properties allows us to speed

up the sparse fixed-radius near-nelghbor algorithm.

Theorem 6. S(N,k) ~ O(N log N).

Proof: We will modify the algorithm given in the

proof of Theorem 3 to make use of the cut-planes of

Theorem 5. The preprocessing of the points will

include sorting them on each of the k coordinates;

this can be done in O(k N log N) time. The recur-

sire algorithm to enumerate all fixed-radius near-

neighbor pairs will choose its cut-plane P by

scanning each of the k sorted sequences until a

point in some sequence is found that will define

cut-plane -- Theorem 5 guarantees that such a cut

plane exists. The scan involves investigating the

middle N(I -]/4k) points in each dimension until

a collection of kcN]-]/k contiguous points is

I

found which projects onto an interval of at most

26; this scan can be done in O(kN) time. We now

enumerate all fixed-radius near-neighbor pairs in

each of A and B, recursively. The cost of this

step will be greatest when the problem sizes are

most unbalanced which (by Condition] of Theorem

5) will be S(N/4k,k) + S(N(|-]/4k),k). We now, as

before, project all points within 6 of P onto P.

Notice (by condition 2 of Theorem 5) that at most

kcN~'l/k points will survive. Solving the subprob-

lem in k-] dimensions will therefore cost at most

S(kcN]-I/k,k-1~. Thus the recurrence for the

recursive algorithm is

S(N,k)~S(N/4k,k)+S(N(]-]/4k,kl+O(kN)+S(kcN]-]/k,k4).

For any fixed k, the above recurrence yields

S(N,k) ~ O(N log N). The proof of this, by induc-

tion on k, is based on the fact that if S(N,k-])

O(N log N), then S(kcN]']/k,k-]) ~ O(N). Theorem

2 gives the basis for the induction.

We end our discussion of the sparse fixed-

radius near-neighbor problem by pointing out that

sparsity is necessary in order to solve the problem

in O(N log N) time. If the sparsity is not guaran-

teed, then it is possible to have all the points

within some very small volume, giving O(N 2) pairs

of fixed-radius near-neighbors. Any correct algo-

rithm to enumerate all such pairs would have time

complexity greater than or equal to O(N2).

Now that we have some powerful tools with

which to deal with the sparse flxed-radius near-

neighbor problem, let us return to the closest-

pair problem. The following theorem shows how one

can employ the fast sparse fixed-radius near-neigh-

bor algorithm to find closest pairs.

Theorem 7. P(N,k) ~ O(N log 2 N)

Proof: We will generalize the algorithm given in

the proof of Theorem] to k-space. To solve the

closest-pair problem for a collection of N points,

divide the points by a plane P perpendicular to

the x-axis such that N/2 points lie on either side

of P in regions A and B. Recursively use this al-

gorithm to find 6A, the distance between the two

closest points in A, and similarly for 6 B. We will

now show how to employ Theorem 6 to find 6AB , the

distance between the two closest points in A U B

in O(N log N) time. Let 6 = min(6A,%). Just as

225

in Theorem] we showed that no 8-ball in the plane

can contain more than]2 points, a similar argu-

ment shows that no 8-ball in k-space can contain

more than 4(3 k-I) points. This same sparsity con-

stant is preserved as we project all points within

8 of P onto P. If there is any pair in the space

closer than 8 apart, that pair is now within 8 on

P. We can find all the fixed-radius near-neighbor

pairs in P in time O(N log N), (by Theorem 6), and

check these to determine which are closer than 8

apart in k-space. The recurrence for this algo-

rithm is P(N,k) = 2P(N/2,k) + S(N,k-]) + O(N);

using Theorem 6 we can show that P(N,k)

O(N log 2 N). []

The logarithmic te~nn in Theorem 7 is squared

for the same reason that the logarithmic term in

Theorem 3 is exponentiated -- we are willing to

solve a subproblem in k-1 dimensions on as many as

N points. We reduced the complexity of the sparse

fixed-radius near-neighbor algorithm by an appro-

priate choice of cut plane; we can use a similar

strategy for this problem. This will be a bit

trickier, since sparsity is not guaranteed in the

original set and we do not have a convenient value

of 8 as before.

Theorem 8. P(N,k) ~ O(N log N).

Proof: Our proof will proceed in three stages. We

will first show how the bound given in the theorem

is achieved if an appropriate cut-plane can be

found. We then demonstrate the existence of and a

linear method for locating such a cut-plane in 2-

space. The third stage of the proof demonstrates

existence and shows how to find a suitable cut-

plane in k-space.

We will modify the algorithm used in the

proof of Theorem 7 to use a cut-plane P with the

following properties (I) Both A and B (the sub-

collections induced by P) contain at least N/4K of

the points. (2) After 8 = min(8 A,8 B) has been
!

found, there will be not more than kcN I-I/k points

within 8 of P. If these conditions are ensured,

then the recurrence used in the proof of Theorem 7

becomes

P(N,k) ~ P(N/4k,k)+P(N(I-I/4k),k)+S(kcN 1"I/k,k-])
+ O(N)

= e(N/4k,k)+P(N(1-1/4k),k) + O(N)

which gives P(N,k) ~ O(N log N).

We will now give a method for finding a cut-

plane with the above properties for the case of

k = 2 (we will find a cut-line in the plane); we

will later extend this method to arbitrary k. Let

L be the line dividing the collection into parts

with at least N/8 points which maximizes the length

m needed to cover the projection of 2cN I/2 contig-

uous points onto one of the coordinate axes (c =12

for k = 2). The following is a linear algorithm

to find L, given that the lists are presorted:

Consider every collection of 2cN I/2 points contig-

uous when projected on some axis. Let m be the

interval between the extreme points in the projec-

tion. The cut line L associated with the collec-

tion is defined by the arithmetic mean of the ex-

treme points. This situation is depicted in Fig-

ure 4. The area labelled T contains a collection

of 2cN1/2~points contiguous in the x-dimension;

the cut-line associated with T is labelled L. The

linear scan to determine the maximum value of m

starts in the second octile of the list and pro-

ceeds by keeping two pointers to points 2cN I/2

elements apart on the sorted list. The distance

between these two points is noted and the interval

226

m so observed is retained. The cut-line correspond-

ing to largest such m is used to divide the prob-

lem and the algorithm proceeds as before, solving

the two subproblems recursively. To show that

there are at most 2cN I/2 points within 8 of L it

suffices to show that m ~ 26 (for we know that

there are only 2cN]/2 points within m/2 of L). If

we assume that m < 26, then we know that any pro-

jection of 2cN]/2 points projects onto an interval

of length at most 28; otherwise the value of m we

found would not be the maximum. But this condi-

tion on any collection of 2cN]/2 points which pro-

ject onto a 28 interval on one of the coordinate

axes is what leads to a contradiction in our proof

of Theorem 4. A similar argument at this point

can lead us to the same contradiction here. We

have thus shown that m > 26, and we can find an

appropriate cut-line for the closest point prob-

lem in the plane.

We can generalize this argument to k-space in

the same way in which we generalized Theorem 4 to

yield Theorem 5. The linear scan will bound the

problem size by N/4k, and choose the cut plane P

maximizing the distance m needed to cover kcN 1-]/k

contiguous points (where c = 4(3k-1)). It is easy

to show that after 6 is found, m a 26, and thus the

size of the (k-])-dimensional subproblem is bound-

ed by kcN]']/k. We have thus justified the recur-

rence given in the first stage of the proof and

have the theorem as follows.

Our progress from Theorem] to Theorem 8 re-

veals a good deal about multidimensional algorithms.

We have seen how divide-and-conquer can be employed

in multidimensional spaces and have developed an

interesting class of "doubly recursive" algorithms.

We have demonstrated a relationship between the

Figure 4.

T

iL
i-
i
I
I

~---m

closest-point problem and the sparse fixed-radius

near-neighbor problem. Sparsity can be induced in

problems for which it is not an input condition by

judicious recursive subdivision. We have seen the

merit of choosing cut planes wisely to limit the

size of the subproblems to be solved in a space of

reduced dimensionality. We might wonder if there

exist more techniques that we might use to further

reduce the bound on P(N,k). The following theorem

tells us that we cannot reduce the bound; the al-

gorithm given in the proof of Theorem 8 is optimal

with respect to its dependence on N.

Theorem 9. P(N,k) = O(N log N) and this is optimal.

Proof: That O(N log N) is a lower bound on the

time required to determine the two closest of N

points in dimension one or higher is Theorem] of

[Shamos and Hoey]. The proof uses the fact that

O(N log N) is a lower bound on the element-unique-

ness problem even if comparisons among linear func-

tions of the input are allowed. We can use the

closest-pair algorithm in k-space to test for ele-

ment uniqueness by embedding the nunDers to be

tested for uniqueness on a line in k-space and

then finding the closest pair in that space. The

elements are unique if and only if the separation

227

of closest pair is non-zero. []

Corollary 9.7. O(N log N) is a lower bound on the

time necessary to find a minimum spanning tree on

N points in any dimension.

Our analyses of both the closest pair problem

and sparse fixed radius near neighbor problem have

thus far centered about the total number of RAM/

RASP operations as the measure of complexity. We

gain an interesting insight into the problem, how-

ever, if we instead count the number of interpoint

distance calculations performed during the execu-

tion of the algorithms. We will let Pc(N,k) and

Sc(N,k) denote the minimax number of pointwise

comparisons made by the closest-point and sparse

fixed-radius near-neighbor algorithms, respective-

ly. We then obtain the following unexpected re-

suit.

Theorem 70. Pc(N,k) ~ O(N) and Sc(N,k) ~ O(N).

Proof: The proof of this theorem proceeds by in-

duction on k. With presorting it is obvious that

Pc(N,7) ~ O(N) and SC(N,]) ~ O(N). If we have

established that Sc(N,k-]) ~ O(N), then the recur-

rence from the proof of Theorem 6, modified to

count the number of pointwise comparisons, becomes

Sc(N,k) ~Sc (N/4k,k)+Sc(N(7 -7/4k) ,k)+Sc(kCN 7 "7/k,k-7)

=S C (N/4E ,k) +S C (N (7 -7/4k,k) +O (N 7 -7/k)

which gives Sc(N,k) = O(N). A similar argument

shows that Pc(N,k) = O(N).

Though this theorem is of little use in im-

proving the running time of the algorithm, it is

interesting to note that most of the work of the

algorithm is going into the presorting and the book-

keeping involved in recursion (along with choosing

cut planes). Empirical tests have shown that the

number of distance calculations used in solving

the closest point problem in the plane is often

strictly less than N.

All Closest Points and Minimum Spanning Trees

Theorem 9 says that we must spend O(N log N)

time, in the worst case~ in order to find the two

closest points. Fortunately, a great deal more

information can be obtained with very little addi-

tional work.

Theorem 77. A(N,2) = O(N log N). That is, for N

points in the plane, the nearest neighbor of each

can be found in O(N log N) time.

Proof: This result was obtained in [Shamos and

Hoey] by Voronoi techniques which, although appli-

cable in all dimensions, have only lead to fast

algorithms in the plane. We give here a different

method for two dimensions which immediately gener-

alizes to k dimensions.

Partition the set of points via a vertical

line L into subsets A and B, as in Theorem 7.

Solve A(N/2,2) twice recursively, so at this stage

we know, for each point in A its nearest neighbor

in A and for each point in B its nearest neighbor

in B. We must now find every point that is closer

to some point in the other set than to any point

in its own set. Let r(p) be the distance from p to

its nearest neighbor in its own subset. By the re-

cursive step, all the r(p) are known. For every

point p, consider the r(p)-ball centered at p. In

how many of these spheres centered in A does a

given point % of L lie? Figure 5 shows that this

number is four in two dimensions under the L 2

(Euclidean) metric. (This follows from the maximum

density of a point packing.) In any dimension k

228

and L metric the maximum number of balls cover-
P

ing % is some constant c(k,p). Project every point

a of A onto L. Let ~(a) be the image of a on L.

be the time necessary to find a minimum spanning

tree on N points in k dimensions under any L
P

metric.

A B

£

Figure 5.

In order to find the nearest neighbor of a in B,

it is only necessary to examine those b whose

r(b)-spheres contain ~(a). This means that for

each of the N points of A U B, only a constant num-

ber other points need be examined. If the points

are presorted by y-coordinates all of the checking

can be accomplished in linear time and A(N,2) =

2A(N/2,2) + O(N) = O(N log N). []

k-1
Corollary 11.1. A(N,k) ~ O(N log N)

Proof: Analogous to the proof of Theorem 3. []

A solution to the all nearest neighbors prob-

lem defines a graph in which points i and j are

joined by a straight line iff i is a nearest

neighbor of j or vice-versa. (If i has more than

one nearest neighbor, only one is considered and

without loss of generality the resulting graph is

acyclic.) The graph is a minimal spanning forest,

so A(N,k) solves the minimal spanning forest prob-

lem. A minimum spanning tree results if the all-

nearest-neighbors graph is connected, but this

normally does not happen fortuituously. Let T(N,k)

Theorem 12. T(N,2) = O(N log N)

Proof: [Shamos and Hoey] []

Theorem 13. T(N,k) ~ A(N,k).

Proof: Immediate. It follows from the fact that

the nearest-neighbor graph is a subgraph of the

minimum spanning tree. []

Conjectures and Unsolved Problems

The structure of the closest-point algorithms

in high dimensions leads us to conjecture that

T(N,k) = O(N log N). Some credence is given to

this prediction by the studies of [Bentley and

Friedman] who show that a "nearly minimal" span-

ning tree can be constructed in any constant dimen-

sion in O(N log N) time.

A serious difficulty with these "fast" algo-

rithms is that their complexity is exponential in

k, the dimension. This is particularly annoying

because naive algorithms for the nearest neighbor

and minimum spanning tree problem run in O(k~)

time, linear in dimension. We know of no way to

avoid the exponential explosion in dimension that

occurs when we attempt to develop an algorithm

that is of optimal order in N. The issue comes to

a head in the problem of finding the two closest

of N points in N dimensions. The naive algorithm

requires O(N 3) time and there are N 2 independent in-

puts. We conjecture that an O(N 2 log N) algorithm

exists and is optimal.

The connection between closest and farthest

points is curious. If F(N,k) denotes the time

229

required to find the two farthest of N points in

k dimensions, we have O(N) = F(N,I) < P(N,]) =

O(N log N). That is, in one dimension, finding

farthest points is easier than finding closest

points. In two dimensions, they have the same

complexity [Shamos and Hoey]. However, no divide-

and-conquer algorithm is known for the farthest-

points problem that generalizes to higher dimen-

sions. There is some iI~ication that F(N,3) =

O(N log N) (see [Preparata and Hong]) but it has

not even been shown that F(N,k) < O(N 2) for k > 3.

It is natural when considering closest and

farthest pairs to ask how quickly the mth closest

pair can be found in k dimensions. For m = N/2

this is the median interpoint distance, whose mini-

max time complexity we denote by M(N,k). The

problem can be solved in one dimension in O(N log N)

time but M(N,k) is not known to be less than O(N 2)

for k > 1.

Stmmnary

We have tried to broaden the scope of computa-

tional geometry by extending its reach to an arbi-

trary number of dimensions. Using a method of re-

cursion in both problem size and dimension has en-

abled us to improve radically the time bounds on

multidimensional problems. Unfortunately, at each

recursion step we are only able to reduce the di-

mension by one, while the number of points is re-

duced by half. This means that the algorithms are

much more sensitive to an increase in the number

of dimensions than they are to an increase in the

number of data points. This effect appears to be

a general feature of geometric algorithms.

Acknowledgments

J. L. B. would like to thank Andrew and

Frances Yao and Charles T. Zahn for helpful dis-

cussions. This work was performed while he was a

National Science Foundation Fellow and was visit-

ing at the Stanford Linear Accelerator Center and

at Carnegie-Mellon University.

Mo I. S. is indebted to H. R. Strong for an

elegant idea which gave rise to all of the algo-

rithms presented here.

References

Aho, A. V., Hopcroft, J. and Ullman, J. D.
Design and Analysis of Computer Algorithms.
Addison-Wesley (]973).

The

Bentley, J. L. and Friedman, J. Fast Algorithms
for Constructing Minimal Spanning Trees in Coordi-
nate Spaces. SLAC Technical Report.

Blum, M., et al. "Time Bounds for Selection."
JCSS 7 (1973), 448-46].

Kung, H. T., Luccio, F. and Preparata, F. Po "On
Finding the Maxima of a Set of Vectors." JACM 22
(1975), 469-476.

Preparata, F. P. and Hong, S. J. Convex Hulls of
Finite Planar and Spatial Sets of Points. Report
R-682, Coordinated Science Laboratory, University
of Illinois (April, 1975).

Shamos, M. I. "Geometric Complexity." Proc. 7th
Annual Symposium in Theory of Computing. May, 1975.

Shamos, M. I. "Geometry and Statistics: Problems
at the Interface." Proc. Symposium on Algorithms
and Complexity, Carnegie-Mellon University. April,
1975.

Shamos, M. I. "Problems in Computational Geometry."
Unpublished manuscript.

Shamos, M. I. and Hoey, D. J. "Closest-Point
Problems." Proe. 16th Annual Symposium on Founda-
tions of Computer Science. October,]975.

Strong, H. R. Private cormnunication.

230

