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THE ULTIMATE PLANAR CONVEX HULL ALGORITHM?*

DAVID G. KIRKPATRICKf AND RAIMUND SEIDEL:

Abstract. We present a new planar convex hull algorithm with worst case time complexity O(n log H)
where n is the size of the input set and H is the size of the output set, i.e. the number of vertices found to
be on the hull. We also show that this algorithm is asymptotically worst case optimal on a rather realistic
model of computation even if the complexity of the problem is measured in terms of input as well as output
size. The algorithm relies on a variation of the divide-and-conquer paradigm which we call the "marriage-
before-conquest" principle and which appears to be interesting in its own right.
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1. Introduction. The convex hull of a finite point set S in the plane is the smallest
convex polygon containing the set. The vertices (corners) of this polygon must be
points of S. Thus in order to compute the convex hull of a set S it is necessary to find
those points of S which are vertices of the hull. For the purposes of constructing upper
bounds we define the convex hull problem, as the problem of constructing the ordered
sequence of points of S which constitute the sequences of vertices around the hull.

The convex hull problem was one ofthe first problems in the field of computational
geometry to have been studied from the point of view of computational complexity.
In fact, efficient algorithmic solutions were proposed even before the term "computa-
tional geometry" was coined. This, along with its very extensive analysis in recent
years, reflects both the theoretical and practical importance of the problem.

Of the convex hull algorithms proposed so far several have O(n log n) worst case
time bounds [4], [8], [14], [15], [17], where n is the size of the input point set. Shamos
[17] even argued that the O(n log n) time bound is worst case optimal. He observed
that a set S of n real numbers could be sorted by finding the convex hull of the planar
set S’ {(x, X2)IX E S}. But sorting, of course, has an l(n log n) lower bound on a wide
range of computational models. Yao [19] and on weaker computational models Avis
[21, van Emde Boas [7], and Preparata and Hong [15] proved the lq(n log n) bound
for a less demanding version of the convex hull problem: just the vertices of the convex
hull are to be identified, irrespective of their sequence.

In contrast to the results above, it is interesting to observe that algorithms exist
which solve the planar convex hull problem in O(nH) time, where H is the number
of vertices found to be on the hull [61, [9]. For small H, these algorithms seem to be
superior to the O(n log n) methods. (This, of course, does not contradict the previously
cited lower bound results, as H could be as large as n). It is notable, however, that
all of the lower bound arguments mentioned above are insensitive to H in that they
assume that some fixed fraction of the data points are vertices of the convex hull.

In this paper we present a convex hull algorithm with worst case time complexity
O(n log H). Thus its running time is not 0nly sensitive to both n and H, but it is also
worst case optimal in the traditional sense when the running time is measured as a
function of n only. However, we also show that our algorithm is asymptotically worst
case optimal even if the complexity of the problem is measured as a function of both
n and H.
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supported by the Natural Sciences and Engineering Research Council of Canada, grant A3583.
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288 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Our algorithm is based on a variation of the divide-and-conquer paradigm that
appears to be interesting in its own right. Traditional divide-and-conquer algorithms
adhere to the following strategy: First break the problem into subproblems (divide),
then recursively solve the subproblems (conquer), and finally combine the subsolutions
to form the global solution (marry). Our algorithm reverses the last two steps. After
dividing the problem it first determines how the solutions of the subproblems will
combine (without actually computing them!) and then proceeds to solve the subprob-
lems recursively. We thus call this approach the "marriage-before-conquest" principle.
Its advantage lies in the fact that it allows to remove parts of the subproblems that
upon merging (or marrying) turn out to be redundant. Thus it reduces the sizes of the
subproblems that are to be solved recursively. We have recently been able to apply
the marriage-before-conquest principle also successfully to the maximal vector problem
[10]. It remains to be seen whether this principle has other applications.

Sections 2 and 3 of this paper describe our new algorithm. In 4 we show how
our algorithm can be randomized, and 5 deals with the lower bound aspects of the
convex hull problem. Throughout the paper, unless stated otherwise, we deal with sets
of points in the plane. For a point p, x(p) and y(p) denote its standard cartesian
coordinates. We will feel free to use loose but descriptive geometric terminology such
as "vertical line", "a point lies above a line", etc.

2. The main algorithm. In this section we show how the "marriage-before-
conquest" principle can be used for an improved convex hull algorithm. We construct
the convex hull in two pieces, the upper hull and the lower hull (see Fig. 2.1). It should
be clear that if the two chains forming the upper and lower hull are given, they can
be concatenated in constant time (at most two vertical edges may need to be inserted)
to yield the sequence of vertices around the hull. Also observe that an algorithm for
constructing the upper hull could easily be modified to constructthe lower hull also.
Therefore we concentrate at first on constructing an algorithm for finding the sequence
of vertices on the upper hull.

upper hull

lower hull

vertical edge

Exploiting the "marriage-before-conquest" principle, our convex hull algorithm
should do something like the following: First find a vertical line that divides the given
point set in two approximately equal sized parts. Next determine the "bridge" crossing
this line, i.e. the edge of the upper hull that intersects this line. Eliminate the points
that lie underneath the bridge, and finally apply the algorithm recursively to the two
sets of the remaining points on the left and right side of the vertical line.

The only difficult part in such an algorithm appears to be the construction of the
bridge. We show a linear time solution to this problem in 3.

The following PIDGIN-ALGOL routine presents our convex hull algorithm in
some detail. It takes as input a set S {Pl, , Pn} of n points in the plane and prints
the sequence of indices of the vertices on the upper hull of S. It uses the function
BRIDGE specified in 3, which given a set S c RE and a real a returns the indices to
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ULTIMATE PLANAR CONVEX HULL ALGORITHM 289

the left and right endpoint of the edge of the, upper hull that intersects the vertical
line L {(x, y)lx a}.

ALGORITHM 2.1.
Procedure UPPER-HULL(S)
1. Initialization

Let rain and max be the indices of two points in S that form the left and right
endpoint of the upper hull of S respectively, i.e.

x(p,,,) -<_ x(p,) -<_ x(p,,ax) and

y(p,,,) _-> y(p,) if x(p,,,,) x(p,),

Y(P,,,ax)>--Y(P,) if x(p,.x) =x(p,) for i= 1,..., n.

If min max then print min and stop.
Let T := {p,,,,, P,,,x} U {p SIx(pmin < x(p) < X(Pmax)}.

2. CONNECT(min, max, T)
where CONNECT (k, m, S) is
begin

2.1 Find a real number a such that
x(p,)<-_a for [Isi/2] points in S and
x(p,)-> a for /IsI/2J points in S.

2.2 Find the "bridge" over the vertical line L {(x, y)lx a}, i.e.
(i,j) := BRIDGE (S, a).

2.32 Let Slyt := {p,} U {p Six(p) < x(p,)}.
Let S,ght := {p} [-J {P Six(p) > x(p)}.

2.4 If i= k then print (i)
else CONNECT (k, i, Sleft).

Ifj rn then print (j)
else CONNECT (j, m, Sre,ht).

end.

THEOREM 2.1. Algorithm UPPER-HULL correctly determines the sequence of
vertices on the upper hull of S in O(n) space and O(n log H) time, where H is the
number of edges on the upper hull of S.

Proof. If the upper hull of S consists of only one vertex (i.e. all of S lies on one
vertical line) then the algorithm is trivially correct and reports that vertex in linear
time in step 1.

Otherwise the correctness of the algorithm follows from an inductive argument.
A call CONNECT (k, m, $) discovers a previously unknown edge (p, p) on the upper
hull. If p turns out to be the leftmost vertex of the upper hull its index will be printed,
otherwise the recursive call CONNECT (k, i, Seyt) will cause the sequence of vertices
of the upper hull from Pk up to p to be printed. Similarly, if p is the rightmost vertex
of the upper hull its index will be printed, otherwise the call CONNECT (j, m, Srht)
will cause the portion of the upper hull from p up to p,, to be printed.

For the complexity bounds first observe that step 1 of the algorithm can easily be
implemented to run in linear time. Thus it remains to show that the procedure

In the case that two edges of the upper hull, (p, p) and (p, pk), intersect L, i.e. vertex p lies on L,
BRIDGE will return (j, k).

Stft contains p and the points of S to the left of the vertical line through p. M. McQueen from
McGill University has pointed out that Slft could be restricted to contain pk, p and all the points of S
above the straight line through Pk and p. Sash, can be restricted analogously.
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290 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

CONNECT takes no more than O(n log Hu) time. Note that using the median finding
algorithm of Blum et al. 1, p. 99] and using our bridge finding algorithm of 3, steps
2.1 to 2.3 can be implemented to run in linear time. Thus the running time ofCONNECT
is determined by f([S[, H) where the function f must satisfy the recurrence relation

f(n,h)<{cn= { ()(+n )}
ifh=2,

cn + max f
n

ht f hr if h > 2,
hl+hr= h

where c is some positive constant and n >-h > 1.
We claim that f(n, h) O(n log h). To prove this we show that f(n, h) cn log h

satisfies the above recurrence relation. This is trivially true for the base case h 2. For
h > 2 note that

f(n,h) <cn+ max c logh+c loghr

cn +- cn max (log (hih)}.
hl+hr=h

Using elementary calculus it is easy to verify that the maximum is realized when
hi h hi2. Thus

f n, h) <= cn +- cn log cn + cn log

cn + cn log h cn cn log h.

The linear space bound is trivial. Q.E.D.
COROLLARY. The convex hull of a set of n points in the plane can be found in time

O(n log H) using O(n) space, where H is the number of vertices found to be on the hull

3. Finding the Iridge. We are given a set S of n points in the plane and a vertical

line L which has points of S to its left and right. We are to find the edge of the upper
hull of S that intersects L. If two edges intersect L, i.e. L contains a vertex v of the

upper hull, we want to identify the edge for which v is the left endpoint. Call this

edge the bridge and its endpoints bridge points (see Fig. 3.1). Let us define a supporting

FIG. 3.1

line of $ to be a nonvertical straight line which contains at least one point of S but
has no points of S above it. Obviously the bridge must be contained in some supporting
line. Call this line b and let Sb be the slope of b.

For our purposes, finding the bridge means identifying the two bridge points. One
possible way of achieving this is to successively eliminate points from S as candidates
for bridge points. For this purpose we pair up the points of S into In/21 couples. The

D
ow

nl
oa

de
d 

09
/2

9/
15

 to
 1

28
.1

12
.6

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ULTIMATE PLANAR CONVEX HULL ALGORITHM 291

following two lemmas show how forming pairs of points facilitates the elimination of
candidates for bridge points.

LEMMA 3.1. Let p, q be a pair ofpoints of S. If x(p)=x(q) and y(p) > y(q) then
q cannot be a bridge point.

Proof. Trivial.
LEMMA 3.2. Let p, q be a pair of points of S with x(p)<x(q), and let Spq be the

slope of the straight line h through p and q.
(1) If Spq > Sb then p cannot be a bridge point.
(2) If Spq < Sb then q cannot be a bridge point.
Proof (for case (1); the proof for case (2) is symmetrical). Assume p was a bridge

point. By virtue of Spq > Sb and x(p)< x(q), q would lie above the bridge line b which
would contradict the fact that b is a supporting line of $ (see Fig. 3.2). Q.E.D.

FIG. 3.2

These two lemmas can be used to eliminate a bridgepoint candidate from every
one of the [n/2J pairs. However, it is not clear at first how a condition like Spq> Sb
can be tested without explicitly knowing Sb, the slope of b, and hence knowing the
bridge, which after all is the entity that we want to compute. The solution to this
problem is suggested by the following lemma.

LEMMA 3.3. Let h be the supporting line of S with slope Sh.
(1) Sh < Sb iff h contains only points of S that are strictly to the right of L.
(2) Sh Sb iff h contains a point of S that is strictly to the right of L and a point of

S that is to the left of or on L.
(3) Sh > Sb iff h contains only points of S that are to the left of or on L.
Proof. Trivial.
Thus to test whether Spq > Sb it suffices to find the supporting line h of S with

slope Spq and to determine whether h contains points of S to the right or to the left
of L. Of course, finding this supporting line h requires linear time which is clearly too
expensive to be done for every one of the In/2] pairs individually. However, this
problem can be overcome by judiciously choosing a slope Sh with the property that if
Sh > Sb then Spq > Sh (and hence Spq > Sb) for a large number of pairs p, q and, if Sh < Sb
then Spq < Sh (and hence Spq < Sb) for a large number of pairs p, q. A natural choice for
an Sh with this property is the median of the slopes of the lines defined by the [n/2J
pairs of points.

Now we are ready to give a more detailed PIDGIN-ALGOL description of our
bridge finding algorithm. The function BRIDGE(S, a) takes as parameters a set
S--{Pl,"" ", Pn} of n > 1 points and a real number a representing the vertical line
L= {(x, y)lx a}. It is assumed that the point P,,in in $ with minimum x-coordinate
is unique and that x(pmi,) <- a. Similarly, the point P,,ax in S with maximum x-coordinate
is assumed to be unique and with x(pmax)> a. BRIDGE (S, a) returns as its value a
pair (i,j), where p and pj are the left and right bridge point respectively.
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292 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

ALGORITHM 3.1.
Function BRIDGE (S, a)
O. CANDIDATES :=
1. If IS1=2 then return ((i,j)), where S={p,,pj} and x(p,)<x(pj).
2. Choose [[S[/2] disjoint sets of size 2 from S.

If a point of S remains, then insert it into CANDIDATES.
Arrange each subset to be an ordered pair (Pi, P), such that x(pi)<-x(p).
Let PAIRS be the set of these ordered pairs.

3. Determine the slopes of the straight lines defined by the pairs.
In case the slope does not exist for some pair, apply Lemma 3.1, i.e."

For all (p, p) in PAIRS do
if x(p) x(p) then delete (p, pj) from PAIRS

if y(p) > y(p) then insert pi into CANDIDATES
else insert p into CANDIDATES

else let k(p,, p) := Y(P’)-Y(P)
x(p,) x(pj)"

4. Determine K, the median of {k(p, P)I(P, P) PAIRS}.
5. Let SMALL:= {(p,, p) PAIRS]k(p,, p) < K}.

Let EQUAL:= {(p,, pj) PAIRSIk(p,, p)- K}.
Let LARGE := {(p,, p) PAdRSIk(p,, p) > K}.

6. Find the set of points of S which lie on the supporting line h with slope K, i.e.:
Let MAX be the set of points p S, s.t. y(p)-K x(p) is maximum.
Let Pk be the point in MAX with minimum x-coordinate.
Let p,, be the point in MAX with maximum x-coordinate.

7. Determine if h contains the bridge, i.e."
if X(pk) <---- a and x(p,,) > a then return((k, m)).

8. h contains only points to the left of or on L:
if x(p,,) -<_ a then

for all (p, p) LARGE [_J EQUAL insert pj into CANDIDATES.
for all (pi, p) SMALL insert p and p into CANDIDATES.

9. h contains only points to the right of L:
if X(pk) > a then

for all (p, p) SMALL [.J EQUAL insert p into CANDIDATES.
for all (p, p) LARGE insert pi and pj into CANDIDATES.

10. return(BRIDGE (CANDIDATES, a)).

THEOREM 3.1. The function BRIDGE correctly determines the left and right bridge
point in O( n) worst case time and space.

Proof. The algorithm is trivially correct if S contains only two points. As long as
S contains more than two points, BRIDGE either finds the bridge in step 7 or discards
redundant points of S applying the rules of Lemmas 3.1 and 3.2 (steps 3, 8, 9) and
calls itself recursively with a smaller pointset.

Using the linear time median algorithm of Blum et al. [1, p. 99], the body of
BRIDGE without the recursive call can be executed in linear time and space. Further-
more, at least one quarter of the points of S are eliminated and not contained in
CANDIDATES. Thus the worst case time and space requirements for the algorithm
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ULTIMATE PLANAR CONVEX HULL ALGORITHM 293

are bounded by

fO(1), n=2,

f(n)=lf(-) +O(n), n>2.

But it is well known that such a recursive function is O(n) [1, p. 64]. Q.E.D.
At this point we want to mention that our bridge finding algorithm was inspired

by the linear time two variable linear programming algorithms of M. Dyer [5] and N.
Megiddo [13]. A closer look even shows that the bridge problem can be formulated
as a linear programming problem. However, for the sake of simplicity and completeness
it seems worthwhile to spell out the bridge finding algorithm explicitly.

4. The expected time case. The divide-and-conquer algorithms in the two preceding
sections are not terribly complicated. At first sight it even seems possible to actually
implement these algorithms in some high level programming language in an hour’s
time, or so. However, one quickly discovers that the major obstacle to doing so is the
median find algorithm. Thus quite naturally the question arises whether it is possible
to do without it.

The median find algorithm is used in our algorithms to find a vertical line that
divides a given point set evenly. What happens if we follow the example of Quicksort
and choose a separating line at random? Ample experimental results have shown that
Quicksort is one of the fastest sorting algorithms and these results have been supported
by a careful theoretical analysis of the.algorithm 11 ], 16]. As it turns out the method
of choosing a separator at random can also be successfully applied to our algorithms,
thus changing the worst case time complexity to O(n2) but retaining the O(n log H)
expected case time complexity.

THEOREM 4.1. If step 2.1 in Algorithm 2.1 is replaced by

2.1. Let a x(pi), where pi is randomly chosen from S-{pm} such that the choice
of every point in S--{pm} is equally likely.

then the modified algorithm has O(n log Hu) expected case time complexity.
Proof The expected case running time of the modified algorithm can be bounded

by the function g that must satisfy the following relation:

g(n’h)<{bn if n ->_ h 2,

max {g(i,h)+g(n-i, hr)} ifn>=h>2,
hl+hr h

where b is some positive constant.
We claim that g(n, h)= O(n log h), i.e. there is positive real constant c, such that

for all n >- h >_- 2, g(n, h) <- cn log h.3 We prove our claim by induction.
The claim is trivially true for all n if h 2 and for all n-< 5 otherwise. Now we

want to show the claim for some n > 5 and h < n on the assumption that g(n’, h’)<-_
cn’ log h’ for all n’ < n and h’ < h. By definition of g and our inductive assumption we
thus have

1
g(n,h)<-bn+ max {ciloght+c(n-i) loghr}.

n 1 1=’1< hl+hr=h

In this proof we use w.l.o.g, the natural logarithm.
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294 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Using elementary calculus it is easy to show that for every the maximum is realized
when h= ih/n and hr=(n-i)h/n. Therefore

g(n,h)<=bn+
n-1 1_<. n

=bn+
2c h

/log i-
(n- 1) l<=i<n n

2c h 2c

=bn+(n 1,log) iq /logi.
n 1_-<,<. (n 1) l<_i<n

As E 1_-<,<,, log <= 1/2n 2 log n -1/4n 2 (see 1, p. 94]) and E 1=<,<,, 1/2n(n 1) we have

g( n, h) <= bn + cn log h cn log n +c
n c n2

n log n--
n-1 2n-1

c log n
<= bn n +cn+cn log h.

2 n-1

As log n/(n- 1)< 1/2 for all integers n > 5, there exists a real constant c > 0 such that
bn-1/2cn+cn(log n/(n-1))<O for all n> 5 and hence

g( n, h) <- cn log h. Q.E.D.

The median find algorithm is used on one more occasion in our algorithms: in
the bridge finding procedure. Again we can dispense with the median find algorithm
and use random choice instead. The worst case complexity of such a modified bridge
finding procedure is O(n2); however the expected case running time is still O(n).

THEOREM 4.2. If step 4 of Algorithm 3.1 is replaced by

4. Randomly choose an element (pi, Pj) from PAIRS such that the choice of every
element is equally likely, and let K := k(pi, pj),

then the modified algorithm has expected case time complexity O( n).
Proof. In the worst case no points are eliminated in step 3 of the modified function

BRIDGE, and all the slopes k(p, p;) generated in that step are distinct. By the random
choice of K, the cardinalities of SMALL and LARGE are uniformly distributed
between 0 and N-1, where N= tlsI/2J, the cardinality of PAIRS.

Assume pessimistically that whenever ISMALL[ <- N/2, the supporting line h
contains only points to the right of L, and by step 9 only ISMALLI+ 1 points are
eliminated. Symmetrically, assume that if ILARGEI < N/2, h contains only points to
the left or on L, and step 8 is applied.

With these pessimistic assumptions the expected case running time of the modified
algorithm is bounded from above by the function f, where for some positive
constant b

bn

4f(n)
bn +- E

FI l<_i<_n/4

if n -<_ 2,

f(n-i) ifn >2.

It is an easy exercise in induction to show that f(n)= O(n). Q.E.D.
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ULTIMATE PLANAR CONVEX HULL ALGORITHM 295

5. Lower bounds. The results of this section demonstrate that our O(n log H)
upper bound for the convex hull problem is the best possible on a quite general model
of computation. Specifically, we prove an (n log H) lower bound for this problem
on dth order algebraic decision trees, for any fixed d.

There exist at least four variants of the convex hull problem characterized by
increasingly stringent conditions on the form of the output. Let S {Pl," ", Pn} be a
set of points in RE, and let ext(S) denote the set of vertices of the convex hull of S.
The convex hull sequence problem asks for the elements of ext(S) in consecutive cyclic
order. The convex hull set problem asks for the elements of ext(S) in arbitrary order.
The convex hull multiset problem asks for a listing, in arbitrary order, of elements of
S that coincide with elements of ext(S). (This differs from the set problem only if S
is a multiset). Finally, the convex hull size problem asks for the cardinality of ext(S)
(i.e. H).

It should be clear that the algorithm outlined in 3 can be adapted to solve all
of these problem variants in worst case time O(n log H). Furthermore, since the
sequence variant is at least as hard as the set variant, which in turn is at least as hard
as the size variant, it will suffice to demonstrate a lower bound on the convex hull size
problem, preferably using input point sets with no multiplicities. In fact we establish
a lower bound on the even weaker convex hull size verification problem: given S and
H, confirm that [ext(S)]-H. We show that any dth order algebraic decision tree
algorithm for this verification problem must take l)(n log H) steps in t.he worst case,
even if it can be assumed that all input points are distinct.

We follow Steele and Yao [18] and Ben-Or [3] in adopting algebraic decision
trees as our model of computation. A dth order algebraic decision-tree algorithm
(hereafter a tree algorithm) T for testing membership in a set Wc R is a rooted tree
whose internal nodes are labelled by multivariate polynomials of degree at most d and
whose leaves are labelled either YES or NO. Each internal node has out-degree three;
the edges are labelled <, =, and > reflecting possible outcomes on comparison with
0. Every input R" determines a unique root to leaf path in T in the obvious way.
We say that T decides membership in W if, for every R", : leads to a YES leaf of
T if and only if W.

Yao [19] establishes an (n log n) worst case lower bound for the convex hull
set problem on algebraic decision trees of order two. This result is generalized by
Ben-Or [3], who demonstrates the same fl(n log n) lower bound for the convex hull
size problem on algebraic decision trees of any fixed order d. Ben-Or’s result is just
one of a number of applications of the following general theorem concerning tree
algorithms.

THEOREM 5.1 [3, Thm. 8]. Let Wc R" be any set and let T be any dth order
algebraic decision tree that solves the membership problem for W. If W has N disjoint
connected components, then T must have height (and hence worst case complexity)
l)(log N n).

We use the following generalization of the element distinctness problem [3] to
establish our lower bound. The multiset size verification problem asks to confirm, given
a multiset Z {zl,. ., z,} c R and an integer k, that Z has k distinct elements.

COROLLARY 5.1. The multiset size verification problem requires l)( n log k) steps in
the worst case, with any dth order decision algorithm.

Proof. It suffices to prove that the set

Mk ={(Zl,’’’, zn)Rnll{Zl, z}l= k}
has at least k! kn-k disjoint connected components.
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Consider all tuples (Zl," ", Zn) with zl," ", Zk set to distinct integers between 1
and k, and Zk+I," ", Zn set to arbitrary integers in that range. There are k! kn-k such
tuples and each of them must lie in a different connected component of Mk. Q.E.D.

We are now prepared to demonstrate our lower bound.
THEOREM 5.2. The convex hull size verification problem requires (n log H) steps,

in the worst case, with any dth order decision tree algorithm.
Proof. We reduce the multiset size verification problem to the convex hull size

verification problem in the following obvious way: Let Z-(z,..., z} and k be an
instance of the multiset size verification problem. Define S-(Pl,’",P}C R2 by
Pi (zi, z). Then the set ext(S) has exactly k elements if and only if Z has exactly k
distinct elements. Q.E.D.

The proof of the above theorem is somewhat disappointing in that the convex
hull problem formed in the reduction has multiplicities on the convex hull. This
straightforward reduction leaves open the possibility that there exists an algorithm
solving the convex hull size verification problem (or any of the other variants) in
o(n log H) steps for point sets that are known a priori to contain no duplicates.
Fortunately, we can strengthen our lower bound to include tree algorithms based on
this rather dubious assumption as well. We will show that a convex hull algorithm
that is only guaranteed to be correct when the input points are distinct could be used
to solve a certain perturbed convex hull problem without input restrictions. An
algorithm for this perturbed problem in turn yields a solution for the multiset size
problem.

For the sake of notation let (, fi) be shorthand for (x,..., x, y,..., y) and
let g and denote (l/n) i= x and (l/n) "i=1 Y’ respectively. We call a tuple (, fi)
center-free iit (, ) (x, y) for 1 -< <_- n. Define

Cn {(, fi) R2" ]ext({(x,, y,)]l -<_ i_< n}) H} and

Pn {(, ) R2" [ext({(x, + i(x,- g)e, Yi + i(y,-fi)e)]l -< _-< n})l H}
for all e > 0 sufficiently small.

Note that testing membership in CH is the convex size verification problem. The
intuitive meaning for PH is the following: Pn encodes the point sets {(x, y) RE11 =< =<
n) with the property that if each point p- (x, yi) moved radially away from ff (, )
for sufficiently small but positive time e at speed proportional to the index and
proportional to the distance from p to/, then the convex hull of the new point set
would have H extreme points. Observe therefore, that if (, fi) CH and the encoded
2-dimensional point set has no point on a convex hull edge, then (, fi) P/.

The following lemma shows that the convex hull size verification problem with
this dubious distinctness restriction is no easier to solve than the general membership
problem in PH for center-free tuples.

LEMMA 5.1. Let T be any dth order decision tree algorithm for deciding membership
in CH, assuming that all of the points (x, y), 1 <-_ <- n, are distinct. Then there exists a
dth order decision tree T’, with height (T’) <- d + 1) height (T), that decides membership
of center-free tuples in PH without the distinctness assumption.

Proofi We define a transformation on every subtree of T. The leaves of T are not
changed (i.e. they retain their YES.-NO labels). Consider an arbitrary subtree rooted
at a vertex vj with label f(, fi) (see Fig. 5.1). Define the multivariate polynomials
f.o,f,l," ", f,d by the equality

fj()t, fit) fj,0(), ) ._A1 () )E -’’" "+’fj,d (), )Ed,
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where

FIG. 5.1

;’=(Xl+(X-g)e, x2+2(x2-)e,’’’,x,,+n(x,,-)e) and

fi’= (Yl + (Yl-fi)e, Y2 + 2(y2- 37) e, ", Yn + n(yn -fi)e).

Clearly, the degree of each ,k is at most d.
Let T be the transformed versions of T, 1, 2, 3. The transformed version of

the full subtree is given by Fig. 5.2.

FIG. 5.2

Note that T’ does not depend on e. Furthermore, a straightforward inductive
argument shows that height (T’)-< (d + 1)height (T). The correctness of T’ follows
from the following observations.

(i) If e > 0 is chosen to be sufficiently small, then for center-free (, 37) the set

{ (xi + (xi g) e, y + (y )e), 1 <_- <- n} has distinct elements.
(ii) The decision tree T’ with input (,)7) agrees with the decision tree T with

input (’, 3Y), for all sufficiently small e > 0.
Observation (ii) holds since for any (, 37) the polynomial f(’, 97’)=0 for all

sufficiently small e >0 if[ f,k(, 37) --0 for all k, and otherwise the sign of f(’, 37’)
for all sufficiently small e > 0 agrees with the sign of f,k(, 37) for the least k with

,(,)o.
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298 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Thus T’ decides membership of center-free (, 37) in P, without assuming that all
of the pairs (xi, yi) are distinct. Q.E.D.

The next lemma shows that deciding membership for Pn is no easier than the
multiset size verification problem.

LEMMA 5.2. The multiset size verification problem reduces to the membership problem
for center-free tuples in Pn.

Proof. It suffices to note that as no three distinct points on a parabola can be
collinear

2(Xl," xn) Ml-i iff (xl, xn, x2, x,) Pn,

and that (xl, , x,, x21, , x2) is center-free (except for the uninteresting case when
all xi are identical). Q.E.D.

The preceding corollary and lemmas immediately yield the final theorem.
THEOREM 5.3. The convex hull size verification problem requires O( n log H) steps,

in the worst case, with any dth order decision tree algorithm, even if the input points may
be assumed to be distinct.

6. Conclusions. We have introduced a variation ofthe familiar divide-and-conquer
paradigm and have illustrated this approach in the development of a new algorithm
for the planar convex hull problem. Our algorithm unifies and improves the best worst
case complexity bounds known for this problem in terms of the size of input and
output (i.e. number of data points and number of hull vertices). In fact, we demonstrate
that the algorithm is worst case optimal in terms of these two parameters in a very
general model of computation.

In a companion paper [10] we apply the same strategy to the maximal vector
problem. We are able to demonstrate an O(n log V) upper bound for the 2-dimensional
maximal vector problem, where V is the number of maximal vectors found. The same
upper bound applies to the 3-dimensional maximal vector problem, and also to the
d-dimensional maximal vector problem, d > 3, when V is sufficiently small compared
to n. These bounds tighten the best bounds known for the maximal vector problem.
It remains to be seen whether our "marriage-before-conquest" approach can be applied
successfully to other problems.

The results of this paper suggest other more specific open problems as well. In
particular, it is natural to ask whether our results on planar convex hulls (like those
for the maximal vector problem) extend to higher dimensions. For example, does there
exist an O(n log H) algorithm for the 3-dimensional convex hull problem?

Another practical open question is whether, like the algorithm of Bentley and
Shamos [4], our convex hull algorithm modified as suggested in footnote 2 has linear
expected time complexity for reasonable input point distributions. We suspect that
this is the case.

Acknowledgments. We are grateful to John Gilbert for his very careful reading of
the manuscript.
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