

Algorithmen und Datenstrukturen Übung 1

Matthias Konitzny, Arne Schmidt 11.11.2021

Beweise

https://www.ibr.cs.tu-bs.de/alg/Merkzettel/proof-booklet.pdf

Mathematische Aussagen

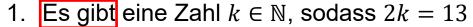
Mathematische Aussagen sind entweder wahr oder falsch.

- 1. 13 ist eine gerade Zahl.
- 2. Die Summe der ersten n natürlichen Zahlen ist $\frac{n(n+1)}{2}$.
- 3. Die größte Primzahl ist $2^{82589933} 1$
- 4. Zusammenhängende, einfache Graphen mit $n \ge 2$ Knoten und n-1 Kanten besitzen mindestens zwei Knoten vom Grad 1.
- 5. Besitzt ein zusammenhängender Graph nur Knoten geraden Grades, besitzt er eine Eulertour.

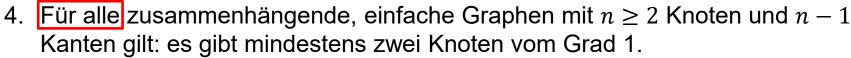
Welche Aussagen sind wahr?

Mathematische Aussagen

Mathematische Aussagen sind entweder wahr oder falsch.



- 2. Für jedes $n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 3. Für jede Primzahl p gilt: $p \le 2^{82589933} 1$



5. Für jeden zusammenhängenden Graphen G, deren Knotengrade alle gerade sind, gilt: *G* besitzt eine Eulertour

Welche Aussagen sind wahr?

Existenz- vs. Allaussagen

	Existenzaussage	Allaussage	
Zeigen	Beispiel	Beweis	
Widerlegen	Beweis	Beispiel	

Negation einer Existenzaussage wird zu einer Allaussage. **Negation** einer Allaussage wird zu einer Existenzaussage.

Logische Verknüpfungen

Negation ("Nicht", \neg)

Konjunktion ("Und", ∧)

Disjunktion ("Oder",∨)

Implikation ("wenn…dann", ⇒) Äquivalenz ("genau dann wenn", ⇔)

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Fragepause

Beweistechniken – Teil 1

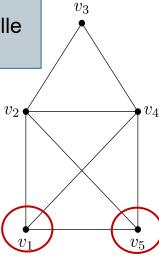
Aus der Vorlesung (nächste Woche)

Satz 2.4:

- (1) Ein Graph G = (V, E) kann nur dann einen Eulerweg besitzen, wenn es höchstens zwei Knoten mit ungeradem Grad gibt.
- (2) Ein Graph G = (V, E) kann nur dann eine Eulertour besitzen, wenn alle Knoten geraden Grad besitzen.

Beweis: Gibt es in der Vorlesung

Gibt es Graphen mit genau einem ungeraden Knoten?



"Handshake-Lemma"

Satz 2.5: Für jeden beliebigen einfachen Graphen ist die Zahl der Knoten mit ungeradem Grad gerade.

Beweis:

Betrachte Summe der Knotengrade

$$\sum_{i=1}^{n} \delta(v_i)$$

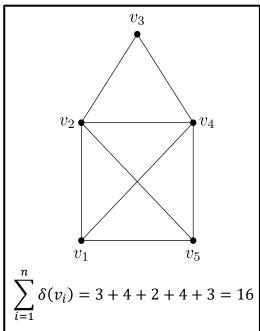
Jede Kante wird doppelt betrachtet, also

$$\sum_{i=1}^{n} \delta(v_i) = 2m$$

Das ist eine gerade Zahl!

Es kann also nur gerade viele Knoten ungeraden Grades geben.

(Gäbe es ungerade viele ungerade Grade, wäre auch die Gradsumme ungerade)



Fragepause

Direkter Beweis

Beweise – Direkter Beweis

Aussagen oft in der Form $A \Rightarrow B$. Unterscheide zwischen Voraussetzung (A) und Schlussfolgerung (B)

Wird die Schlussfolgerung durch eine logische Folgerungskette aus den Voraussetzungen hergeleitet, so spricht man von einem **direkten Beweis**.

Beispiel:

Wenn $x, y \in \mathbb{R}$ und $x, y \ge 0$, dann gilt $\sqrt{xy} \le \frac{x+y}{2}$

Beispiel

Beispiel:

Wenn $x, y \in \mathbb{R}$ und $x, y \ge 0$, dann gilt $\sqrt{xy} \le \frac{x+y}{2}$

Beweis:

$$x, y \in \mathbb{R} \text{ und } x, y \ge 0$$

$$??? \Rightarrow \frac{x+y}{2} \ge \sqrt{xy}$$

Beispiel

Beispiel:

Wenn $x, y \in \mathbb{R}$ und $x, y \ge 0$, dann gilt $\sqrt{xy} \le \frac{x+y}{2}$

Beweis:

$$x, y \in \mathbb{R} \text{ und } x, y \ge 0$$

$$\Rightarrow \frac{(x+y)^2}{4} \ge xy \Longrightarrow \frac{x+y}{2} \ge \sqrt{xy}$$

Monotonie der Wurzelfunktion Und: $x, y \ge 0$

Beispiel

Beispiel:

Wenn $x, y \in \mathbb{R}$ und $x, y \ge 0$, dann gilt $\sqrt{xy} \le \frac{x+y}{2}$

Beweis:

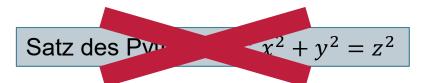
$$x, y \in \mathbb{R} \text{ und } x, y \ge 0$$

$$\Rightarrow (x - y)^2 = x^2 - 2xy + y^2 \ge 0$$

$$\Rightarrow x^2 + 2xy + y^2 \ge 4xy$$

$$\Rightarrow \frac{(x+y)^2}{4} \ge xy \Rightarrow \frac{x+y}{2} \ge \sqrt{xy}$$

Beweise – Direkter Beweis



Beweis:

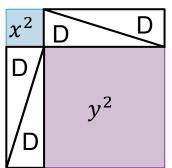
Wo fange ich an?

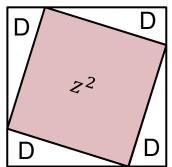
Geht es hier überhaupt um Dreiecke?

Beweise – Direkter Beweis

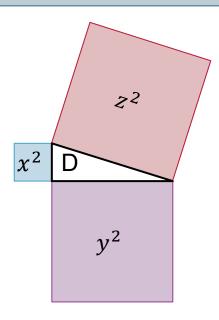
Satz des Pythagoras: Für ein rechtwinkliges Dreieck D mit Kathetenlängen x und y, und Hypothenusenlänge z gilt $x^2 + y^2 = z^2$.

Beweis: Betrachte folgende Konstrukte:





Beides sind Quadrate mit Seitenlänge x + yAlso gilt $x^2 + y^2 + 4 \cdot Area(D) = z^2 + 4 \cdot Area(D)$ $\Rightarrow x^2 + y^2 = z^2$



Kontrapostition

Beweise – Kontraposition

Ein direkter Beweis kann schwierig sein, sodass sich die **Kontraposition** anbietet. Es gilt

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Wir können also Annehmen, dass B nicht gilt und folgern daraus, dass auch A nicht gelten kann.

Beispiel: Sei $n \in \mathbb{Z}$. "Wenn n^2 ungerade ist, ist n ungerade" wird zu "Wenn n gerade ist, ist n^2 gerade."

Beweis: n gerade \Rightarrow Es ex. $k \in \mathbb{Z}$ mit 2k = n $\Rightarrow n^2 = 4k^2 = 2(2k^2)$, also eine gerade Zahl

Widerspruchsbeweis

Beweise – Widerspruch

Mathematische Aussagen sind entweder wahr oder falsch. Um eine wahre Aussage zu beweisen, können wir zeigen, dass die Negation nicht gilt.

Diese Beweistechnik nennt man Widerspruchsbeweis.

Bei einer Implikation ($A \Rightarrow B$) zeigt man also, dass A und $\neg B$ nicht gleichzeitig gelten können.

Beispiel: Besitzt ein zusammenhängender Graph G eine **Brücke**, so besitzt G Knoten mit ungeradem Grad.

Beweise – Widerspruch

Beispiel: Besitzt ein zusammenhängender Graph G eine **Brücke**, so besitzt G Knoten mit ungeradem Grad.

Beweis: Angenommen, *G* besitzt nur Knoten geraden Grades. Dann existiert in *G* eine Eulertour.

Da e auf der Eulertour liegt und sein Entfernen G in zwei Komponenten teilt, können wir eine Komponente verlassen, aber nicht dorthin zurückkehren. Wir können also keine Eulertour konstruieren (ansonsten wäre e keine Brücke).

Also muss *G* mindestens ein Knoten mit ungeradem Grad besitzen.

Äquivalenzen

Beweise – Äquivalenzen

Aussagen der Form $A \Leftrightarrow B$ können *bewiesen* werden, indem sowohl $A \Rightarrow B$ **und** $B \Rightarrow A$ gezeigt werden

Bsp: Ein zusammenhängender Graph besitzt genau dann eine Eulertour, wenn jeder Knotengrad gerade ist.

Um eine solche Aussage zu *widerlegen*, reicht es $A \Rightarrow B$ **oder** $B \Rightarrow A$ zu widerlegen.

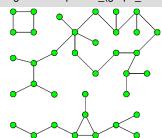
Bsp: Ein Graph ist genau dann zusammenhängend, wenn jeder Grad mindestens zwei ist.

Fragepause

Mehr Beispiele

Zusammenhang von Graphen

Satz: Wenn ein Graph G zusammenhängend ist, enthält er mindestens n-1 Kanten.



Beweis:

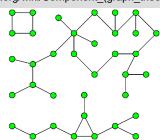
Fügt man eine Kante in einen Graphen ein, so kann sich die Anzahl an Komponenten nur um eins verringern.

Ein Graph ohne Kanten besitzt n Komponenten, ein zusammenhängender Graph nur eine Komponente.

Also müssen mindestens n-1 Kanten eingefügt werden, um Zusammenhang zu gewährleisten.

Kreise in Graphen

Satz: Wenn jeder Knoten eines Graphen G einen Grad von mindestens zwei besitzt, enthält G einen Kreis.



Beweis:

Betrachte einen längsten Pfad $P := v_1, v_2, ..., v_i$ in G und einen Knoten v_j , der adjazent zu v_1 ist.

 v_i muss auf P liegen, anderfalls könnte P erweitert werden.

Dann ist $K := v_1, v_2, ..., v_j, v_1$ ein Kreis in G.

Kreisfreie Graphen

Satz: Ist ein Graph G kreisfrei und zusammenhängend, dann enthält er exakt n-1 Kanten.

Beweis:

Um zusammenhängend zu sein, brauchen wir mind. n-1 Kanten.

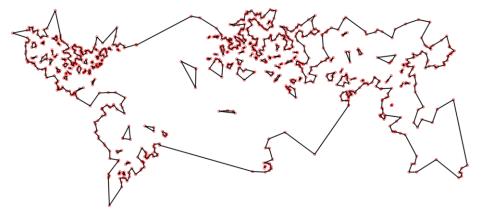
Bleibt zu zeigen: Um kreisfrei zu sein, dürfen wir maximal n-1 Kanten besitzen. Annahme: Wir besitzen mindestens n Kanten. Wir folgern, dass G dann auch einen Kreis besitzt.

Entferne zunächst nach und nach alle Knoten mit Grad 1 samt Kante. Da wir das höchstens n-k mal machen können (mit 0 < k), bleiben k Knoten und $\geq k$ Kanten übrig.

Weiter bleibt ein Graph übrig, in dem jeder Knoten einen Grad von mindestens zwei besitzt. Er kann also nicht kreisfrei sein. Daraus folgt, dass auch G nie kreisfrei war.

Beweistechniken – Teil 2 (Teaser)

Beweise – Teil 2 (Teaser)



Nächste Woche: Polygonalisierungen (Exkurs)

