Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 14/15
TU Braunschweig
Dr. Michael Hemmer
Sebastian Morr

Computational Geometry Homework Set 3, 02.12.2014

Solutions are due Tuesday, December 9, 2014, until 9:45 in the mailbox for homework sheets or at the beginning of the lecture. Please put your name on all pages!

Exercise 1 (Convex hulls):
Let W be a simple closed path that encloses the convex hull of a point set S. Show that the boundary of $\operatorname{ch}(S)$ is at most as long as W.

Exercise 2 (Triangulations and convex hull):
Show that each triangulation of a point set S contains the edges of the points' convex hull.
(5 points)
Exercise 3 (Convex vertices):
Show that any polygon must have at least three convex vertices.

Exercise 4 (Monotonicity):
a) Give an algorithm that tests in $O(n)$ steps whether a simple polygon P is monotone with respect to a line g.
You may assume P to be given either as a Doubly-Connected Edge List (DCEL) or simply as a list of vertices and edges.
Hint: You may assume that no edge of the polygon is perpendicular to g.
b) Given a simple polygon P, give an algorithm that decides in $O(n)$ steps whether there exists a line g, such that P is monotone with respect to g. Hint: Consider the interior angles at potential saddle points.

Of course it is possible/allowed to present an algorithm that solves both problems.

$$
(10+10 \text { points })
$$

Exercise 5 (Triangulation):

a) Triangulate the polygon shown in Figure 1 using the algorithms from the lecture.
b) Give an algorithm that triangulates a polygon with holes in $O(n \log n)$.

Figure 1: A Polygon.

