

Institut für Betriebssysteme und Rechnerverbund

raunschweig

Programmierung verteilter eingebetteter Systeme **Teamprojekt**

Stephan Rottmann, Ulf Kulau, Felix Büsching Winter Term 2013/14

Ablauf

- Organisatorisches
- Grundlagen 1
- Praktikumshardware
- Aufgabe 1

Teilnehmerinnen und Teilnehmer

23 Anmeldungen

- Gruppe 1: Samuel, Andreas, Dirk
- Gruppe 2: Thiemo, Tobias
- Gruppe 3: Jan, Matthias, Malte
- Gruppe 4: Alex, Jasmin, Karsten
- Gruppe 5: Jannik, Mohammed, Lars
- Gruppe 6: Oliver, Welf
- Gruppe 7: Pablo, Carlos
- Gruppe 8: Fabian, Christoph
- Gruppe 9: Nico L., Foued, Nico B.

Raumnutzung und Belegung: Raum 148 (hier)

Praktikumsraum

- 3 Arbeitsplätze für je 3 Personen
 - Nicht essen -> macht eklige Tastaturen
 - Möglichst nichts verschütten
- Dieses Praktikum
 - Hiwis anwesend
 - Gruppen 1-3: Freitags, 11:30 14:30
 - Gruppen 4-6: Montags, 16:45 19:45
 - Gruppen 7-9: Freitags, 15:00 18:00
- Anderes Praktikum
- Freie Zeit bei Bedarf
 - Ggf. im Miclab fragen, ob man euch in den Raum lässt

Uhrzeit	Мо	Di	Mi	Do	Fr
8:00-9:30					
9:45-11:15					
11:30-13:00					1-3
13:15-14:45					1-3
15:00-16:30					7-9
16:45-18:15	4-6				7-9
18:30-20:00	4-6				

Raumnutzung Raum 147 (→) & Werkstatt (Keller)

Mikroprozessorlabor

- 2 Lötarbeitsplätze
- Umfangreiche Sammlung an Bauteilen für eigene Ideen
- Menschen mit Erfahrung

Werkstatt

- Platinen belichten, entwickeln, ätzen und bohren
- Mechanische Bearbeitung von allem möglichen

Betreuung

- Dennis Reimers, Freitag ab 11:30
- Karsten Hinz, Montag ab 16:45
- Jost Stolze, Freitag ab 15:00
- Ulf Kulau, IZ Raum 111
- Stephan Rottman, IZ Raum 118
- Felix Büsching, IZ Raum 132

Accounts und Zugänge

Rechner-Login

 Gruppenaccounts (lokal an den Rechnern, daher immer den gleichen PC nutzen)

Benutzer-Accounts

- http://www.ibr.cs.tu-bs.de/passwd/rz.html
- Y-Nummer registrieren

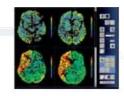
SVN-Zugang

- https://svn.ibr.cs.tu-bs.de/course-cm-ws1314-esys/
- Alles ist im SVN zu speichern, hierfür y-Account nutzen!

Wiki

- https://trac.ibr.cs.tu-bs.de/course-cm-ws1314-esys/wiki/
- Dokumentation, Kollaboration, Diskussion
- y-Nummer bitte jetzt eintragen

Ablauf


- Organisatorisches
- Grundlagen 1
- Praktikumshardware
- Aufgabe 1

Eingebettete Computer sind allgegenwärtig

Verkehr

- Haus- und Gebäudetechnik
- Industrieelektronik
- Sicherheitstechnik
- Raumfahrttechnik

Unterhaltungselektronik

Kommunikation

Medizintechnik

Finanzwesen

Quellen: Siemens, Toyota, Sony, u.a.

Eingebettete Computer mit verschiedenen Eigenschaften

robuste Computer (Motorsteuergerät)

stromsparende Computer (Mobilkommunikation)

fehlertolerante Computer (Raumfahrt)

leistungsfähige Computer (z.B. Medizintechnik, Graphik)

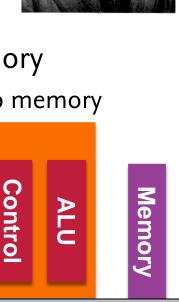
zugriffsgeschützte Computer (SmartCard)

ganz kleine Computer (RFID)

Microcontroller

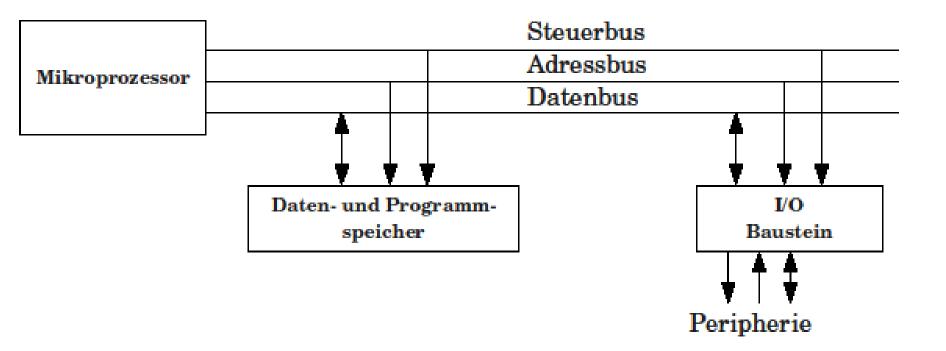
Microcontroller = Microprocessor + Peripherals

- Memory
 - Main-, program- and data-memory
 - SD-RAM, Flash, EEPROM
- Bus-controller
 - USART, UART, I²C, SPI, DMA, USB, CAN, Ethernet
- GPIO
- ADC / Comparators, DAC
- Timer



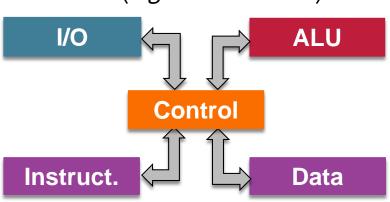
Architectures: Von Neumann vs. Harvard

Von Neumann Architecture

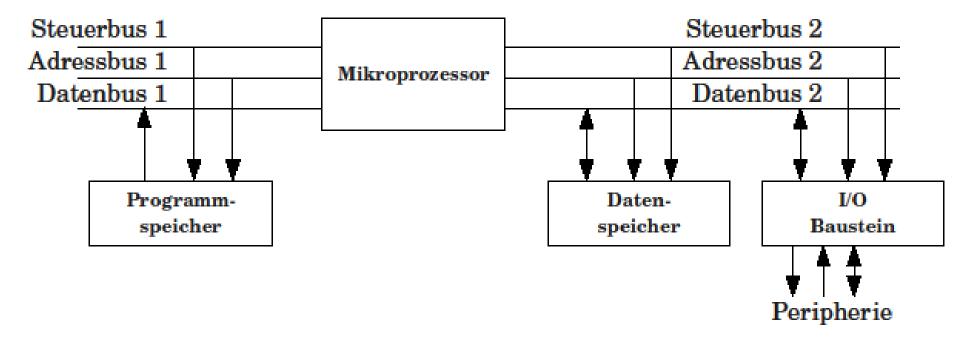

- 1945 developed by John von Neumann
- Simple
- Sequential (strict)
- Same memory for data and instructions
- Shared bus between data memory and program memory
 - CPU either reading instruction or reading/writing data from/to memory
 - "Von Neumann Bottleneck"
 - No race-conditions

Data Bus

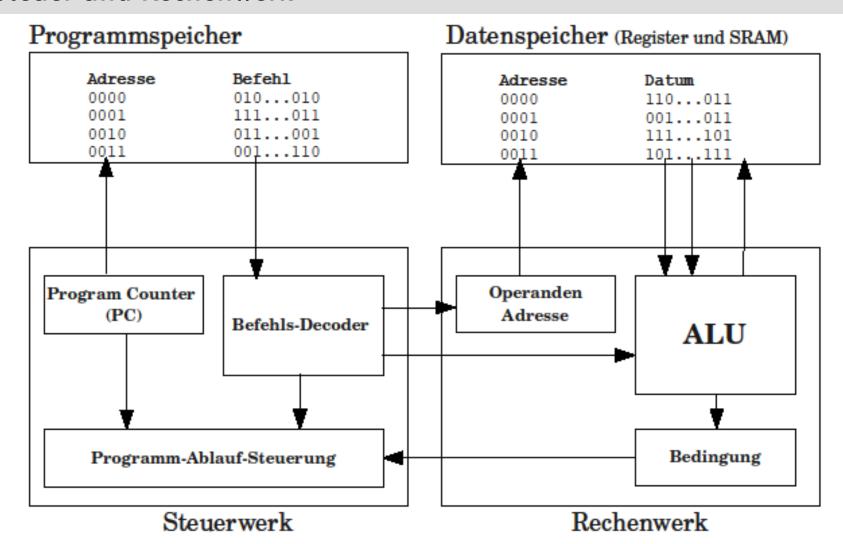
Von-Neumann-Architektur



Architectures: Von Neumann vs. Harvard


Harvard Architecture

- Named after Harvard Mark I (1944)
 - IBM Automatic Sequence Controlled Calculator
- Separated storage and signal pathways
 - Physically for instructions and data
 - Read instruction and perform data memory access at same time
- Modifications:
 - Pathway between the instruction memory and the CPU (e.g. for constants)
 - 2+ Memory Busses:
 - Relaxed separation of data / instructions



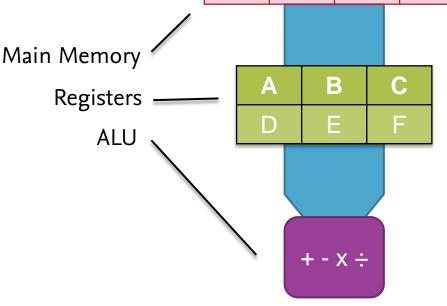
Harvard-Architektur

Steuer und Rechenwerk

Ausführung eines binär codierten Befehls

- Befehlsadresse aus dem PC an den Programmspeicher senden
- Befehl an dieser Adresse im Programmspeicher auslesen und dekodieren
- Operationscode (was soll gemacht werden) an die ALU übergeben
- Operanden aus dem Datenspeicher holen und Operation ausführen
- Ergebnis an den Datenspeicher übergeben und
- den nächsten Befehl vorbereiten

Microprocessors and Architectures: CISC


CISC = Complex Instruction Set Computers

- Multi-clock complex instructions included
- Memory-to-Memory operations
 - LOAD and STORE inherent
- Smaller machine code
- High cycles per second
 - To achieve comparability to RISC
- Emphasis on hardware

Multiply 2 numbers

■ MULT 1:3, 2:3

inputers	1:1	1:2	1:3	1:4
included	2:1	2:2	2:3	2:4
	3:1	3:2	3:3	3:4
	4:1	4:2	4:3	4:4

Microprocessors and Architectures: RISC

RISC = Reduced Instruction Set Computer

- Single-clock, only reduced instructions
- Register to register
 - LOAD and STORE independent instructions
- Larger code sizes
- Low cycles per second
- Emphasis on Software
- Pipelining allows 2-4 times faster performance than CISC
 - At similar clock rate

Multiply 2 numbers

- LOAD A, 1:3
- LOAD B, 2:3
- PROD A, B
- STORE 3:3

Microprocessors and Architectures: RISC vs. CISC

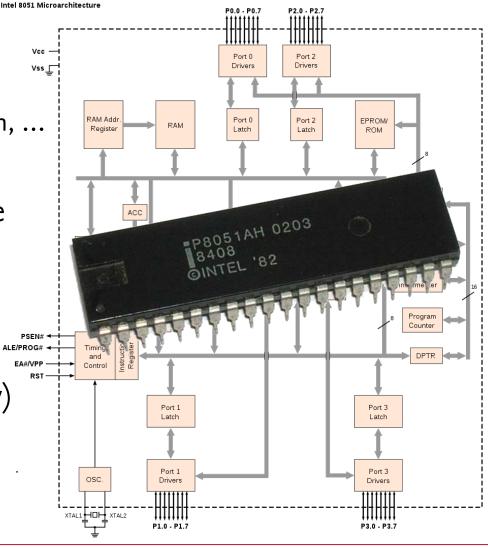
Performance

$$\frac{time}{program} = \underbrace{\frac{time}{cycle}} * \underbrace{\frac{cycles}{instruction}} * \underbrace{\frac{instructions}{program}}_{\downarrow RISC} * \underbrace{\frac{cycles}{cycles}}_{\downarrow CISC}$$

- CISC minimizes instructions / program
 - Less memory needed
 - More cycles per instructions needed
- RISC minimizes cycles / instruction
 - More memory needed
 - Less cycles per instruction needed

Memory is cheap – nowadays even in microcontrollers! High clock rates → more energy needed

CISC und RISC


CISC RISC Machine Instructions Machine Instructions Microcode Conversion Instruction Execution Microinstructions MicroInstruction Execution

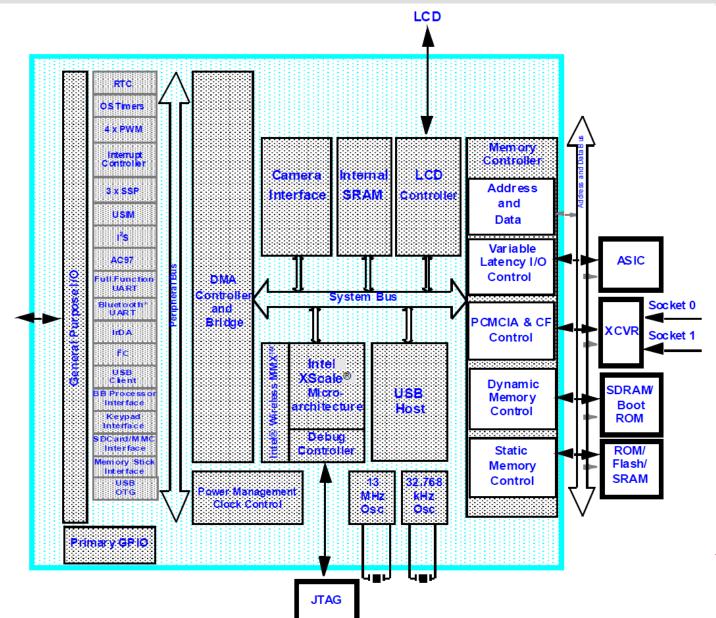
Microcontroller

Intel 8051 – "the" microcontroller

MSC-51 (8051, 8031, 8751)

- 1980 presented by Intel
 - Built by AD, Atmel, Infineon, Maxim, ...
- 8-bit, CISC
- (modified) Harvard architecture
- ≥ 128 Byte internal RAM
- External ROM, RAM
- 16 bit address bus → ≤64 Kbyte ALE/PROGH EAH/VPP
- 4 8-bit I/O-Ports (2 for memory)
- UART (Full-Duplex)
- Timers

Advanced RISC Machine (ARM)


- Introduced 1987
- 32 bit, RISC
 - XNU-Kernel (Mac OS X/iOS)
 - Linux-Kernel
 - Windows NT Kernel

XScale PXA271 (ARMv5 architecture)

- Released 2004
- 13 416 MHz
- 32 MB Flash, 32 MB RAM
- USB (Client & Host), AC'97 Audio
- 13 MHz Active Power = 44.2 mW

XScale PXA271 (ARMv5 architecture)

Microcontroller

Atmel AVR Series – ATMega 128A

AVR Series

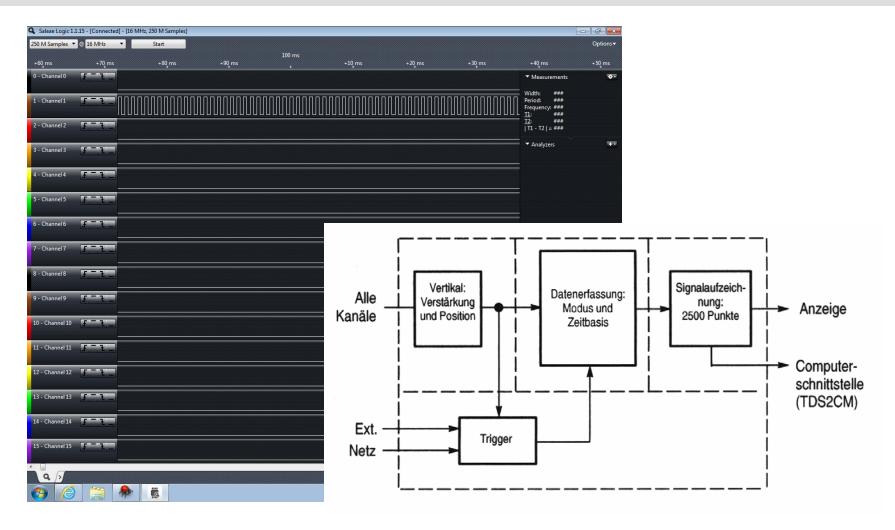
- Developed in 1996
- 8-bit, RISC
- (modified) Harvard architecture

ATMega 128A

- 128 kB Flash, 4 kB SRAM, 4 kB EEPROM
- 2 USARTs, separated buses for SPI, I²C
- 8 channel 10-bit ADC

Ablauf

- Organisatorisches
- Grundlagen 1
- Praktikumshardware
- Aufgabe 1



Mess-Station

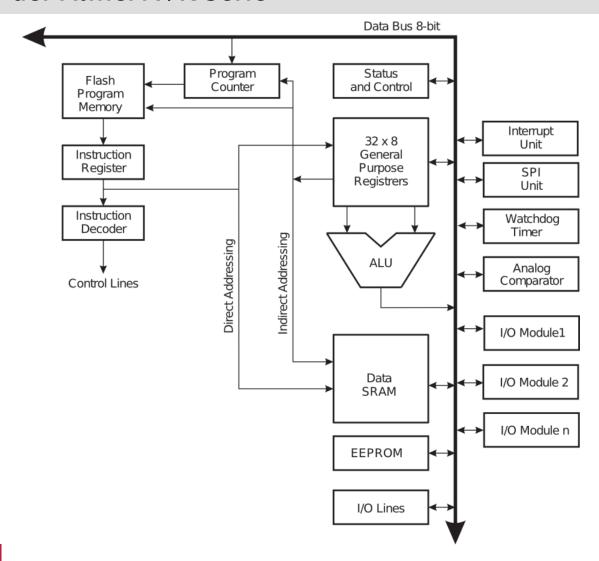
Logikanalysator & digitales Speicheroszilloskop

Entwicklungsboard

■ Temperatursensor für I2C-Bus DS1621

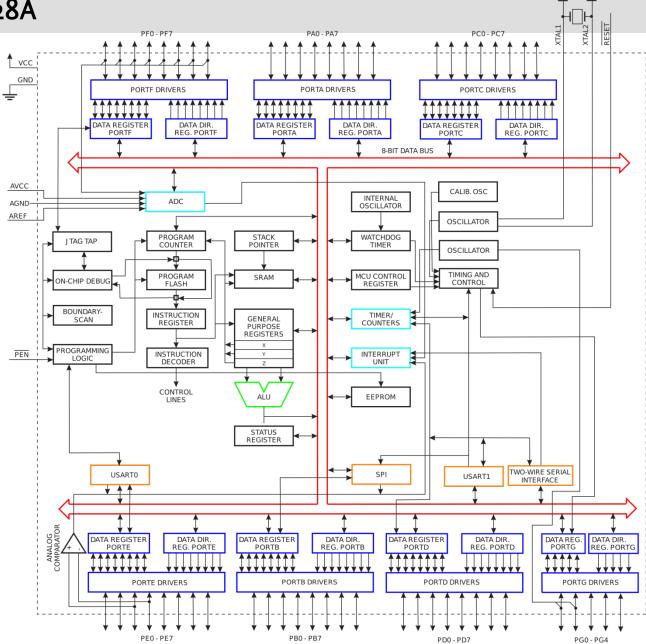
■ I2C-EEPROM AT24Cox

■ SPI-Digital-Analogwandler MCP4911


LC-Display

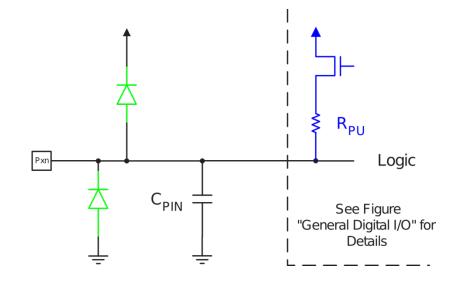
 Funkmodule: Bluetooth und anderes auf 2,4GHz

weitere Speicher, Displays,Eingabemodule (Tastenfelder, ...)... und vieles mehr

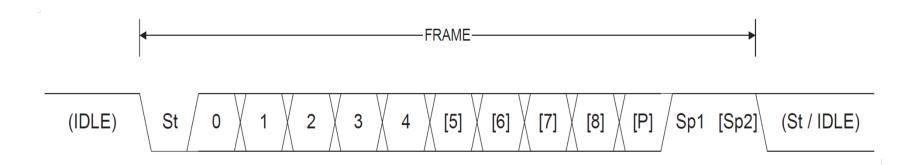


Architektur der Atmel AVR Serie

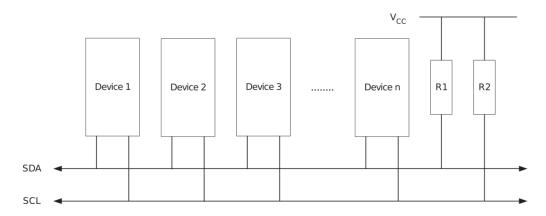
Atmega 128A


Peripherie des Controllers

- Digitale Ein- und Ausgänge
- Schnittstellen
 - U(S)ART
 - |2C
 - SPI
- Analoge Eingänge
 - Analog-Digital Wandler
 - Komparator
- PWM

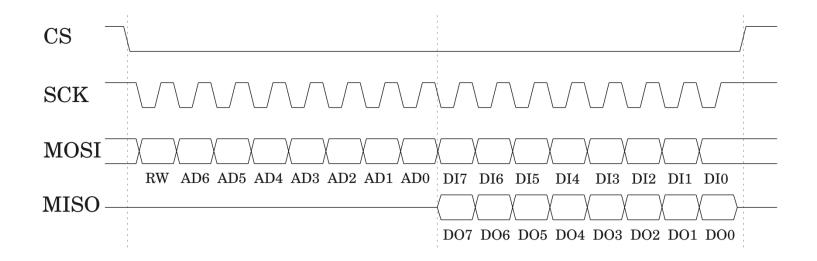

I/O-Ports

- I/O-Pins können als Ein- oder Ausgang verwendet werden
- Richtung wird mit Data Direction Register bestimmt
- Rudimentäre Schutzbeschaltung vorhanden
- Verwendung zum Beispiel für
 - LEDs
 - Taster
 - Steuerleitungen
 - ...

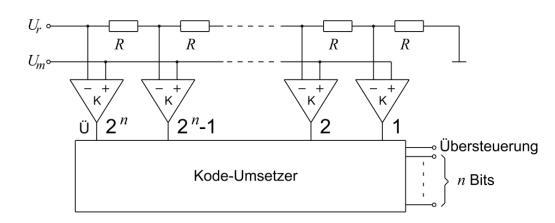


U(S)ART

- Seriell:
 - Datenbits werden *nacheinander* über eine Leitung gesendet
 - U(S)ART:
 - Universal synchronous/asynchronous Receiver/Transmitter, a.k.a. "COM-Port"
 - Asynchron: ohne Taktleitung, synchron: mit



- Inter- Integrated Circuit bus
 - "Fernseher-Bus"
- Master/Slave-Bus:
 - Ein Master gibt Takt an
 - Viele Bausteine können adressiert werden
 - Pro Bus hat jeder Baustein eindeutige ID


SPI

- Serial Peripheral Interface
- Master/Slave System
 - Master adressiert Slave über ChipSelect-Leitung
- 1-2 Datenleitungen, Clock-Leitung, CS

Analog-Digitalwandler

- Unterschiedliche Verfahren
 - Flash-Wandler
 - Hoher Hardwareaufwand
 - schnell
 - Sukzessive Approximation:
 - Ein Komparator
 - Vergleichsspannung wird nachgeregelt
 - Langsamer

Ablauf

- Organisatorisches
- Grundlagen 1
- Praktikumshardware
- Aufgabe 1

