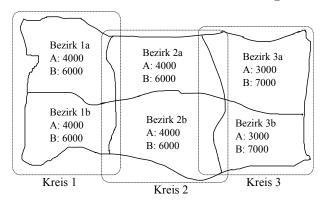

Abteilung Algorithmik Winter 2013/14 Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

Alexander Kröller Henning Hasemann Melanie Papenberg

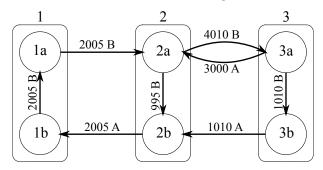
Mathematische Methoden der Algorithmik Übungsblatt 3 vom 28.11.2013

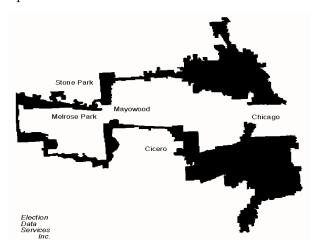
Abgabe der Lösungen in der Vorlesung am Mittwoch, den 11. 12. 2013 PK2.1 oder bis 13:15 im Hausaufgabenrückgabeschrank.


Bitte die Blätter vorne deutlich mit eigenem Namen sowie Matrikelnummer versehen!

Aufgabe 1 (Gerrymandering): Stellen wir uns vor, wir seien die Parteistrategen der derzeit regierenden Partei A. Die einzige Konkurrenzpartei ist B. Unsere Partei hat leider in der vergangenen Zeit nur Mist produziert, unsere Zustimmung ist auf einem historischen Tiefstand von 22,5%. Zum Glück sind wir noch Regierungspartei und können daher, dank Gerrymandering¹, bei der anstehenden Wahl trotzdem gewinnen!

Angenommen, unser Wahlsystem sei indirekt. Es gibt Wahlkreise, in denen jeweils ein Wahlmann mittels einfacher Mehrheit bestimmt wird. Die Wahlmänner der Wahlkreise bestimmen wiederum den Wahlgewinner. Die Wahlkreise sind in Wahlbezirke aufgeteilt, der Einfachheit halber so, dass jeweils 10000 Wähler zu einem Wahlbezirk gehören.


Zum Beispiel könnte die Situation folgendermaßen aussehen: Es gibt drei Wahlkreise 1, 2 und 3, die in jeweils zwei Wahlbezirke à 10000 Wähler aufgeteilt sind.


 $^{^{1}} http://www.washingtonpost.com/blogs/wonkblog/wp/2012/11/08/how-redistricting-could-keep-the-house-red-for-a-decade/$

Unsere Partei wird in jedem der drei Wahlkreise von B geschlagen (in Kreis 1 mit 8000:12000 Stimmen, in 2 ebenfalls, in 3 mit 6000:14000). Also kommen alle drei Wahlmänner aus Partei B und wählen natürlich B zur Siegerpartei.

Aber jetzt kommt das Gerrymandering: Da wir die Wahlmodalitäten bestimmen, können wir die Grenzen der Wahlbezirke verschieben, wodurch wir die Wähler anderen Wahlbezirken zuordnen können. Natürlich wissen wir genau, wie die einzelnen Leute stimmen werden. Wir ordnen die Grenzen so, dass Wähler folgendermaßen wandern:

Jetzt haben immer noch alle Wahlbezirke 10000 Wähler – wir haben also nichts schlimmes gemacht. Allerdings gewinnen wir jetzt Wahlkreise 1 und 2 sehr knapp mit 10005:9995 Stimmen und verlieren Wahlkreis 3 mit katastrophalen 1990:18010 Stimmen. Damit stellen wir 2 der 3 Wahlmänner selbst und gewinnen die Wahl. Es werden 6015 A-Wähler anderen Bezirken zugeordnet. Denen schicken wir eine kleine Aufmerksamkeit. Den 10025 verschobenen B-Wählern schicken wir nichts. Reale vom Gerrymandering geformte Wahlbezirke sehen zum Beispiel so aus²:

- a) Formuliere ein LP für folgendes Problem: Es soll bestimmt werden, wie Wähler zwischen den Wahlbezirken verschoben werden sollen, so dass
 - Die Größe der Wahlbezirke nicht verändert wird.
 - In einer vorgegebenen Teilmenge der Wahlkreise (typischerweise werden das |K|/2+1 sein) die Wahl mit einem Vorsprung von jeweils mindestens 15 Stimmen gewonnen wird.
 - So wenige A-Wähler wie möglich verschoben werden. Hierbei ist es OK, wenn ein A-Wähler, der über mehrere Wahlbezirke geschoben wird, auch mehrfach gezählt wird.

 $^{^2}$ http://www.senate.leg.state.mn.us/departments/scr/REDIST/Draw/Draw992web.htm

• Es dürfen Wähler über mehrere Wahlbezirksgrenzen hinweg verschoben werden.

Wir lassen (eigentlich unkorrekt) auch fraktionale Wählerwanderungen zu, bei 10000 Personen je Wahlbezirk kommt es auf den Einzelnen nicht mehr an.

b) Auf der VL-Homepage finden sich die ZIMPL-Dateien gerry1.zpl und gerry2.zpl. gerry1.zpl beschreibt das oben genannte Beispiel, um euch den Einstieg zu erleichtern. gerry2.zpl ist ein größeres Szenario mit 100 Wahlkreisen, 10000 Wahlbezirken und 100 Millionen Wählern, von denen 22,5% A wählen.

Beide ZIMPL-Dateien definieren die folgenden Parameter:

KREISE Menge aller Wahlkreise.

WINKREISE Menge derjeniger Wahlkreise, die wir gewinnen wollen.

 $\mathbf{KBEZ}[k]$ Menge aller Wahlbezirke, die dem Wahlkreis k zugeordnet sind.

BEZIRKE Menge aller Wahlbezirke.

 $\mathbf{N}[b]$ Menge aller Nachbarbezirke von Wahlbezirk b, also aller Bezirke, mit denen man durch Grenzverschiebungen Wähler austauschen kann.

A[b] Anzahl Wähler von Partei A in Bezirk b, alle anderen SIZE-A[b] wählen B.

E Menge aller gerichteter Tauschkanten: Wenn b_1 und b_2 benachbarte Bezirke sind, sind die Paare (b_1, b_2) und (b_2, b_1) in **E**.

SIZE Anzahl Wähler je Wahlbezirk (also 10000).

Erweitere gerry2.zpl so, dass es das LP aus Teil a) enthält. Löse das Problem mit ZIMPL und CPLEX oder SoPlex. Wie viele Variablen und wieviele Nebenbedingungen hat deine Formulierung?

Abzugeben sind hier nur der von dir geschriebene ZIMPL-Code sowie der relevante Teil von cplex.log bzw. die Ausgabe von SoPlex, *nicht* die Ausgabe von display solution.

(Hinweis: Auf der VL-Homepage³ ist das ZIMPL User Guide verlinkt.)

(4+4 Punkte)

Aufgabe 2 (Lösungenvon LPs): Gegeben sei ein LP in der Standardform:

$$(P) \begin{cases} \max & c^T x \\ \text{s. t.} & Ax \le b \end{cases}$$

a) Bringe (P) in die Form

$$(\bar{P}) \begin{cases} \max & \bar{c}^T x \\ \text{s.t.} & \bar{A}x = \bar{b} \\ & x \ge 0 \end{cases}$$

³http://www.ibr.cs.tu-bs.de/courses/ws1314/mma/

- b) Beweise oder widerlege: Die Anzahl positiver Variablen in einer zulässigen Basislösung von (P) überschreitet nicht den Rang von A.
- c) Beweise oder widerlege: Ist eine unbeschränkte Variable x_i von (P) in (\bar{P}) durch x_i^+ und x_i^- mit $x_i^+, x_i^- \geq 0$ modelliert worden, so ist in einer Basislösung von (\bar{P}) höchstens eine der beiden Variablen x_i^+ und x_i^- ungleich 0.

(Hinweis: In den Übungsnotizen 4 findet ihr nützliches Material zur linearen Algebra, z.B. zum Thema "Rang einer Matrix".)

(3+2+3 Punkte)

 $^{^4 \}verb|http://www.ibr.cs.tu-bs.de/courses/ws1314/mma/material/uebung2.pdf|$