Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 12/13
TU Braunschweig
Prof. Dr. Sándor Fekete
Dr. Christiane Schmidt

Computational Geometry Homework Set 3, 05. 12. 2012

Solutions are due Wednesday, December 19th, 2012, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Monotonicity): Show:
a) For every $n \in \mathbb{N}$ there is a polygon with at least n vertices that is monotone with respect to any line.
b) There is a polygon with 10 or more vertices that is not monotone with respect to any line.

$$
(5+10 \text { Punkte })
$$

Exercise 2 (Triangulation):
a) Triangulate the polygon shown in Figure 1 using the algorithms from the lecture.
b) Give an algorithm that triangulates a polygon with holes in $O(n \log n)$.

Figure 1: A Polygon.
(10+10 Punkte)

Exercise 3 (Art Galleries and reflex vertices):

For a polygon P let r denote the number of reflex vertices.
a) Give a polygon with $r=n-3$.
b) Prove the following Lemma: Any polygon can be partitioned into at most $r+1$ convex pieces.
c) Prove the following art gallery theorem, which considers the guard number as a function of r : r guards are sometimes necessary and always sufficient to see the interior of a simple n-gon for $r \geq 1$ reflex vertices. (That is, you need to establish both necessity and sufficiency! for all $r!)$

$$
(5+10+10 \text { Punkte })
$$

