Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 12/13
TU Braunschweig
Prof. Dr. Sándor Fekete
Dr. Christiane Schmidt

## Computational Geometry Homework Set 1, 07. 11. 2012

Solutions are due Wednesday, November 21st, 2012, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!


Exercise 1 ( Number of Triangulations): Find the number of distinct triangulations for the polygon in Figure 1.


Figure 1: A polygon.
(12 Punkte)
Exercise 2 (Triangulation of Polygons with Holes):
Prove the following theorem:
Every polygon with $n$ vertices and $h$ holes may be triangulated.
Hint: induction.
(12 Punkte)
Exercise 3 (Number of Triangles): Prove the following theorem:
Every polygon with $n$ vertices and $h$ holes may be triangulated. The triangulation has $n+2 h-2$ triangles. (Exercise 2 provides you with the first statement, hence, here you should prove the number of triangles.)
Hint: consider the sum of interior angles or Euler's formula.
(12 Punkte)

Exercise 4 ( Number of Reflex Vertices): Prove the following theorem: In an orthogonal polygon of $n$ vertices, $r$ of which are reflex, $n=2 r+4$. Advice: First, show that the sum of interior angles of a polygon is $(n-2) \pi$.
(12 Punkte)

Exercise 5 (Third Vertex): Construct a polygon with $n=3 k$ vertices such that placing a guard at every third vertex fails to protect the gallery.
(12 Punkte)

