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A protocol for distributed adaptive beamforming
Introduction
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Until now, we have
discussed a method for
carrier synchronisation

No data transmission was
considered so far

We will introduce and
discuss a simple protocol
for distributed adaptive
beamforming
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A protocol for distributed adaptive beamforming
A simple protocol

Devices utilise the iterative distributed carrier synchronisation. In
order to adapt to different environments, devices maintain and
adapt the following parameters.

Pmut,i Probability to alter the phase offset of an individual
device i (Pmut,i ∈ [0, 1])

Pdist,i Probability distribution for the random process of
device i (Pdist,i ∈ {normal, uniform})

vari Variance for the random process (vari ∈ [0, π])
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A protocol for distributed adaptive beamforming
A simple protocol

The transmission protocol consists of the following steps

1 An individual device broadcasts a data sequence sd to devices
in its proximity.

2 Devices decide whether to participate in the transmission.
Possible decision parameters are, for instance, the energy
level, a required count of participating devices or current
computational load.

3 Closed-loop one bit feedback based carrier synchronisation is
achieved. Devices utilise Pmut,i , Pdist,i , vari .

4 Upon sufficient synchronisation the receiver broadcasts an
acknowledgement.

5 Optimisation parameters Pmut,i , Pdist,i and vari are adapted.

6 Devices collaboratively transmit sd .
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A protocol for distributed adaptive beamforming
Performance of the protocol
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A protocol for distributed adaptive beamforming
Performance of the protocol
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A protocol for distributed adaptive beamforming
Performance of the protocol
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A protocol for distributed adaptive beamforming
Performance of the protocol
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A protocol for distributed adaptive beamforming
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A protocol for distributed adaptive beamforming
Impact of environmental effects

However, the performance of the protocol can be impacted by
environmental effects.

Possible environmental impacts

Movement
Network size
Noise figure
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A protocol for distributed adaptive beamforming
Impact of environmental effects

Impact of the network size
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A protocol for distributed adaptive beamforming
Impact of environmental effects

Impact of the transmission distance
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A protocol for distributed adaptive beamforming
Impact of environmental effects

Impact of the transmission distance
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A protocol for distributed adaptive beamforming
Impact of environmental effects

Impact of the transmission distance
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A protocol for distributed adaptive beamforming
Impact of environmental effects

Impact of the transmission distance
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A protocol for distributed adaptive beamforming
Impact of mobility

Impact of the transmission distance
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A protocol for distributed adaptive beamforming
Impact of environmental effects

A simple binary learning approach
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A protocol for distributed adaptive beamforming
Impact of environmental effects
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A protocol for distributed adaptive beamforming
Learning classifier systems

With such a protocol, adaptation to static scenarios is possible

However, when a scenario is frequently altered, we might
want to remember past optimum parameter values when a
given situation reoccurs.

This can be solved by learning classifier systems
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A protocol for distributed adaptive beamforming
Learning classifier systems

Learning classifier systems are machine learning systems

Related to reinforcement learning and evolutionary algorithms

First described by John Holland 1

Population of binary rules
Evolutionary algorithm altered these and selected the best
rules

1J. H. Holland, Adaptive algorithms for discovering and using general
patterns in growing knowledge-bases, International Journal of Policy Analysis
and Information Systems, vol. 4, pp. 217-240, 1980
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A protocol for distributed adaptive beamforming
Learning classifier systems

Learning classifier systems can be split into two distinct types

Pittsburgh type
Michigan type

Stephan Sigg Collaborative transmission in wireless sensor networks 28/36



A protocol for distributed adaptive beamforming
Learning classifier systems

Pittsburgh-type LCS :

Population of separate rule sets
Evolutionary algorithm recombines the best of
these rule sets

Stephan Sigg Collaborative transmission in wireless sensor networks 29/36



A protocol for distributed adaptive beamforming
Learning classifier systems

Michigan-type LCS :

Only a single rule set
Algorithm selects the best classifiers within the
rule set
Distinction between fitness definitions:

Strength-based (ZCS)
Accuracy-based (XCS)
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A protocol for distributed adaptive beamforming
Learning classifier systems

Originally, classifiers or rules were binary

Now: real-valued, neural network, and functional conditions

As evolutionary algorithms in general, Learning classifier
systems are not fully understood mathematically
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A protocol for distributed adaptive beamforming
Learning classifier systems

The LCS consists of a high number of condition-action rules
(the classifiers)

When a particular input occurs, the LCS forms a so-called
match set of classifiers whose conditions are satisfied by that
input

Example: t(x) = 1 (true) for −110dBm ≤ x ≤ −100dBm,
where x represents e.g. the noise figure in a given setting.

If the classifiers condition is satisfied it is further considered
by the LCS and influences the systems action decision
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A protocol for distributed adaptive beamforming
Learning classifier systems

Each classifier Υ maintains

A fitness value FΥ

A prediction PΥ about the expected fitness it will achieve
An estimate ε of the error of its predictions

These values are used to decide on the best alternative among
all classifiers

The actual fitness F achieved by applying the parameters
described by the classifiers to the search problem is used to
alter these values:

p is moved slightly closer to F
ε is moved closer to the current absolute error |p −F|
The classifiers is fitness is moved slightly closer to ε−1
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A protocol for distributed adaptive beamforming
Learning classifier systems

Additionally, the classifiers are modified by mutation and
crossover operators

Therefore, also the population of classifiers changes over time
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A protocol for distributed adaptive beamforming
Learning classifier systems

Conclusion:

A LCS system is a broadly applicable learning approach

The system is capable of identifying rule sets well suited for
distinct situations

However, due to its great complexity and multiple stages of
operation, it is mathematically not fully understood
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