Collaborative transmission in wireless sensor networks

A protocol for distributed adaptive beamforming

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

February 7, 2011

Stephan Sigg

Collaborative transmission in wireless sensor networks

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
- A protocol for distributed adaptive beamforming

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches

• A protocol for distributed adaptive beamforming

Outline

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming Introduction

- Until now, we have discussed a method for carrier synchronisation
- No data transmission was considered so far
- We will introduce and discuss a simple protocol for distributed adaptive beamforming

Outline

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming A simple protocol

Devices utilise the iterative distributed carrier synchronisation. In order to adapt to different environments, devices maintain and adapt the following parameters.

- $P_{mut,i}$ Probability to alter the phase offset of an individual device $i \ (P_{mut,i} \in [0,1])$
- $P_{dist,i}$ Probability distribution for the random process of device *i* ($P_{dist,i} \in \{\text{normal, uniform}\}$)

*var*_i Variance for the random process (*var*_i \in [0, π])

A protocol for distributed adaptive beamforming A simple protocol

The transmission protocol consists of the following steps

- An individual device broadcasts a data sequence s_d to devices in its proximity.
- Oevices decide whether to participate in the transmission. Possible decision parameters are, for instance, the energy level, a required count of participating devices or current computational load.
- Closed-loop one bit feedback based carrier synchronisation is achieved. Devices utilise P_{mut,i}, P_{dist,i}, var_i.
- Upon sufficient synchronisation the receiver broadcasts an acknowledgement.
- Solution parameters P_{mut,i}, P_{dist,i} and var_i are adapted.
- Oevices collaboratively transmit s_d.

Stephan Sigg

Collaborative transmission in wireless sensor networks

Outline

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming

Performance of the protocol

BER for various modulation schemes

Distance [meters]

Performance of the protocol

BER for collaborative transmission (20 devices)

Collaborative transmission in wireless sensor networks

Outline

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming

Impact of environmental effects

However, the performance of the protocol can be impacted by environmental effects.

- Possible environmental impacts
 - Movement
 - Network size
 - Noise figure

Impact of environmental effects

Impact of the network size

Impact of environmental effects

Impact of environmental effects

Impact of the transmission distance

Collaborative transmission in wireless sensor networks

Impact of environmental effects

Impact of environmental effects

Impact of mobility

Impact of environmental effects

A simple binary learning approach

Collaborative transmission in wireless sensor networks

Impact of environmental effects

RMSE for various muttion probabilities

Outline

A protocol for distributed adaptive beamforming

A protocol for distributed adaptive beamforming

- With such a protocol, adaptation to static scenarios is possible
- However, when a scenario is frequently altered, we might want to remember past optimum parameter values when a given situation reoccurs.
- This can be solved by learning classifier systems

Learning classifier systems

- Learning classifier systems are machine learning systems
- Related to reinforcement learning and evolutionary algorithms
- First described by John Holland ¹
 - Population of binary rules
 - Evolutionary algorithm altered these and selected the best rules

¹J. H. Holland, Adaptive algorithms for discovering and using general patterns in growing knowledge-bases, International Journal of Policy Analysis and Information Systems, vol. 4, pp. 217-240, 1980 Stephan Sigg Collaborative transmission in wireless sensor networks 27/36

- Learning classifier systems can be split into two distinct types
 - Pittsburgh type
 - Michigan type

Learning classifier systems

Pittsburgh-type LCS :

- Population of separate rule sets
- Evolutionary algorithm recombines the best of these rule sets

Learning classifier systems

Michigan-type LCS :

- Only a single rule set
- Algorithm selects the best classifiers within the rule set
- Distinction between fitness definitions:
 - Strength-based (ZCS)
 - Accuracy-based (XCS)

- Originally, classifiers or rules were binary
- Now: real-valued, neural network, and functional conditions
- As evolutionary algorithms in general, Learning classifier systems are not fully understood mathematically

- The LCS consists of a high number of condition-action rules (the classifiers)
- When a particular input occurs, the LCS forms a so-called match set of classifiers whose conditions are satisfied by that input
 - Example: t(x) = 1 (true) for −110dBm ≤ x ≤ −100dBm, where x represents e.g. the noise figure in a given setting.
- If the classifiers condition is satisfied it is further considered by the LCS and influences the systems action decision

- Each classifier Υ maintains
 - A fitness value F_{Υ}
 - \bullet A prediction \mathcal{P}_{Υ} about the expected fitness it will achieve
 - An estimate ε of the error of its predictions
- These values are used to decide on the best alternative among all classifiers
- The actual fitness \mathcal{F} achieved by applying the parameters described by the classifiers to the search problem is used to alter these values:
 - p is moved slightly closer to \mathcal{F}
 - arepsilon is moved closer to the current absolute error $|p-\mathcal{F}|$
 - The classifiers is fitness is moved slightly closer to ε^{-1}

- Additionally, the classifiers are modified by mutation and crossover operators
- Therefore, also the population of classifiers changes over time

Learning classifier systems

Conclusion:

- A LCS system is a broadly applicable learning approach
- The system is capable of identifying rule sets well suited for distinct situations
- However, due to its great complexity and multiple stages of operation, it is mathematically not fully understood

Questions ?

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
- A protocol for distributed adaptive beamforming