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Alternative algorithmic approaches
Hierarchical clustering

For feedback based distributed adaptive transmit
beamforming:

RSSsum changes linear with the network size n.
Bound on the synchronisation time is more than linear in n
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Alternative algorithmic approaches
Hierarchical clustering

E [TP ] = Θ (n · k · log(n))
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Alternative algorithmic approaches
Hierarchical clustering

Hierarchical clustering
1 Determine clusters
2 Synchronise clusters successively (with possibly increased

transmit power for nodes)
3 Build and synchronise overlay-cluster of representative nodes

from all clusters.
4 Nodes alter carrier phase by phase offset experienced by

representative node:

ζi = <
“
m(t)RSSie

j2πfc t(γi +φi +ψi )
”

(before)

ζ′i = <
“
m(t)RSSie

j2πfc t(γ′
i +φi +ψi )

”
(after)

Node h from same cluster alters carrier signal

ζh = <
“
m(t)RSShe

j2πfc t(γh+φh+ψh)
”

to

ζ′h = <
“
m(t)RSShe

j2πfc t(γh+φh+ψh+γi−γ′
i )

”
Ideal conditions: All nodes should now in phase

5 Final synchronisation among all nodes
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Alternative algorithmic approaches
Hierarchical clustering
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Alternative algorithmic approaches
Hierarchical clustering

Potential problem : Phase noise
Only one cluster synchronised at a time
Due to practical properties of oscillators, phases
of nodes in the inactive clusters experience
phase noise and start drifting out of phase
Sufficient synchronisation possible in the order
of milliseconds

Positive :
No inter-node communication required

Open Issue :
More than one hierarchy stage might be optimal
for optimisation time
for energy consumption
Optimum hierarchy depth and cluster size
derived by integer programming in time O(n2)
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Alternative algorithmic approaches
Hierarchical clustering

Determine optimum cluster size and hierarchy depth :

Expected optimisation time:
E [TPn] = c · k · n · log(n)
Expected energy consumption:
E [EPn] = c · k · n · log(n) · EPn

Hierarchy and cluster structure that minimises these formulae optimal
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Alternative algorithmic approaches
Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming) :

For a cluster size of m:

E [TPn] = E [TP n
m

] · n

m
· E [TPm]

E [EPn] = E [EP n
m

] · n

m
· E [EPm].

Define recursion by

Eopt[TPn] = minm

[
Eopt[TP n

m
] · n

m
· Eopt[TPm]

]
Eopt[EPn] = minm

[
Eopt[EP n

m
] · n

m
· Eopt[EPm]

]
Start of recursion (η min feasible cluster size):

Eopt[TPη]
Eopt[EPη]
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Alternative algorithmic approaches
Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming) :

Time required for calculation is quadratic.
With a network of n nodes, at most n2 distinct
terms

Eopt[TP i ]
Eopt[EP i ]

Start calculation at

Eopt[EPη]
Eopt[TPη]

All other values by table loop-up in time O(n2)
according to

Eopt[TPn]
Eopt[EPn] in time O(n2)
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Alternative algorithmic approaches
Hierarchical clustering

Reduction of synchronisation time and transmission power

Calculation of optimum cluster size and depth in O(n2)
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Outline
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Scenario analysis and algorithmic improvement
Local random search

Global random search:
Synchronisation performance might deteriorate when the
optimum is near

With small local search space:
Majority of worse points excluded
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Local random search
An upper bound on the synchronisation performance

Assumptions :
Mutation probability: n−1

Uniform phase alteration

Initial distance to the optimum :
≥ n·log(k)

2 (Chernoff)

Technical assumption :
Fitness space divided in k
slices of identical width
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Local random search
An upper bound on the synchronisation performance

Analysis in two phases for the synchronisation process

Phase 1: Optimum outside search neighbourhood for at least
one node

Phase 2: Optimum within search neighbourhood for all nodes
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Local random search
An upper bound on the synchronisation performance

Phase 1: Optimum is outside the neighbourhood

Reach search point with improved fitness: ≥ 1
2
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Local random search
An upper bound on the synchronisation performance

When i signals synchronised:

Improve n − i non-optimal signals

i already optimal ones unchanged:

(n − i) · 1
n ·

1
2 ·
(
1− 1

n

)i
= n−i

2n ·
(
1− 1

n

)i
since

(
1− 1

n

)n
< e <

(
1− 1

n

)n−1

si ≥
n − i

2en

Expected number of mutations to
increase fitness bounded by s−1

i .
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Local random search
An upper bound on the synchronisation performance

Time until optimum is within the neighbourhood?
Constant time to leave slice
k distinct slices

E [TP ] ≤ c ·
∑k

i=0
2en
n−i = 2cen ·

k+1∑
i=1

i−1

< 2cen · ln(k + 1) = O (n · log(k))

Stephan Sigg Collaborative transmission in wireless sensor networks 20/63



Local random search
An upper bound on the synchronisation performance

Phase 2: Optimum within search neighbourhood

Worst case: Increase fitness with probability 1
N

Similar to consideration above:

O(N · n · log(k))

Overall synchronisation time :

O(N · n · log(k)).
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Scenario analysis and algorithmic improvement
Local random search

A lower bound on the synchronisation time :

Method of the expected progress
Similar to estimation for global random search
Basically: Substitute network size n by
neighbourhood size N
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Scenario analysis and algorithmic improvement
Local random search

A lower bound on the synchronisation time :

Method of the expected progress
Similar to estimation for global random search
Basically: Substitute network size n by
neighbourhood size N

Probability to alter individual bit

1

N · log(k)

Instead of
1

n · log(k)
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Scenario analysis and algorithmic improvement
Local random search

A lower bound on the synchronisation time :

With similar arguments as for global random
search, lower bound

Ω(N · log(k) ·∆)
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Mathematical simulation environment
Impact of the node choice

Fitness measure:

RMSE =

√√√√ τ∑
t=0

(
∑n

i=1 si + snoise(i)− s∗)2

n
.
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Scenario analysis and algorithmic improvement
Local random search
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Outline
Alternative beamforming approaches
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Multivariable equations
Received sum signal

Reduce the amount of randomness in the optimisation

Improve the synchronisation performance

Improve the synchronisation quality
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Scenario analysis and algorithmic improvements
Search space

Search space:

Spanned by all Configurations
of carrier phase offsets γi

Search point / Configuration:

One possible configuration of
carrier phase offsets
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Multivariable equations
Received sum signal

Fitness function observed
by single node

Constant carrier phase
offset for n − 1 nodes

Fitness function:

F(Φi ) = A sin(Φi +φ) + c
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Multivariable equations
Received sum signal

Approach:

Measure feedback at 3
points

Solve multivariable
equations

Apply optimum phase
offset calculated

F(Φi ) = A sin(Φi + φ) + c
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Multivariable equations
Received sum signal

Problem:

Calculation not accurate when two or more nodes alter the
phase of their transmit signals
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Multivariable equations
Solution

An active node will :

1 Transmit with three distinct phase offsets
γ1 6= γ2 6= γ3 and measure feedback.

2 From these three feedback values and phase
offsets, estimate feedback function and
optimum phase offset γ∗i .

3 Transmit a fourth time with γ4 = γ∗i .
4 If the deviation is less than 1% save γ∗i as

optimal phase offset, otherwise discard it.

A passive node will :

1 Transmit 4 times with identical phase offset γi .
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Multivariable equations
Solution

Node estimates the quality of the
function estimation itself

Transmit with optimum phase offset
and measure channel again

When Expected fitness deviates
significantly from measured fitness,
discard altered phase offset

Deviation:

1 node: ≈ 0.6%
2 nodes: ≈ 1.5%
3 nodes: > 3%
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Multivariable equations
Synchronisation process

1 Transmit with phase offsets γ1 6= γ2 6= γ3; measure feedback

2 Estimate feedback function and calculate γ∗i
3 Transmit with γ4 = γ∗i
4 If deviation smaller 1% finished, otherwise discard γ∗i
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Multivariable equations
Received sum signal

Asymptotic synchronisation time:

O(n)

Classic approach:1

Θ(n · k · log(n))

1
Sigg, El Masri and Beigl, A sharp asymptotic bound for feedback based closed-loop distributed adaptive

beamforming in wireless sensor networks (submitted to Transactions on Mobile Computing)
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Multivariable equations
Performance estimation
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Multivariable equations
Performance estimation
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Multivariable equations
Performance estimation

Phase offset of distinct nodes is within +/− 0.05π for up to
99% of all nodes.
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Multivariable equations
Performance estimation

Asymptotically optimal synchronisation time

Simulations: ≈ 12n

Further improvement:

3 iterations per turn
Utilise last transmission from previous iteration
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Outline
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Environmental changes
Velocity of nodes

Moving receiver :

Straight line
Random walk

Moving transmitter :

Straight line

Random walk
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Environmental changes
Velocity of nodes

Moving receiver :

Straight line
Random walk

Aspects :

Only one moving node

Simple case

Also applicable when all transmitters move identically
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Environmental changes
Velocity of nodes

Moving transmit nodes :

Straight line
Random walk

Aspects :

Multiple nodes moving

Hard case
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Environmental changes
Velocity of nodes

Random walk – receiver :

Maximum velocity for classic algorithm: 5m/sec
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Environmental changes
Velocity of nodes

Random walk – receiver :

Max. velocity for Multivariable equations:
5m/sec easily supported
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Environmental changes
Velocity of nodes

Random walk – transmitter :

Maximum velocity for classic algorithm: 2m/sec
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Environmental changes
Velocity of nodes

Random walk – transmitter :

Max. velocity for Multivariable equations:
5m/sec supported
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Environmental changes
Velocity of nodes

straight line – maximum relative speed :

Maximum velocity for classic algorithm:
30m/sec
Regardless if transmitter or receiver move
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Environmental changes
Velocity of nodes

straight line – maximum relative speed :

Maximum velocity for Multivariable equations
algorithm: 60m/sec
Regardless if transmitter or receiver move
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Outline
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Environmental changes
Multiple receiver nodes
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Environmental changes
Multiple receiver nodes

3m

12m

24m
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Environmental changes
Multiple receiver nodes

3m
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Environmental changes
Multiple receiver nodes

12m
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Environmental changes
Multiple receiver nodes

Multiple receiver nodes – issues :

Only binary feedback value

Therefore only classic optimisation approach

Distance between transmit and receive nodes
relative to spatial diversity of nodes in one
network

Better synchronisation when nodes in one
network in spatial proximity
When nodes in one network communicate: No
issue
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Environmental changes
Increased population size

Increased population size – Discussion :

How to achieve population size greater than one?

Separate transmit times
WCDMA
Distinct frequencies simultaneously

Only separate transmit times feasible for WSN

More time for each iteration

Initial solution: Random search
Not clear if performance improvement possible
by crossover
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Environmental changes
Receive beamforming

Receive beamforming – Discussion :

Transmit node transmits only once
Receiver nodes combine received signal
fragments in the network
Tradeoff:

Transmission power for in-network
communication
Transmission over several iterations with
receiver node

More complex computation of transmit nodes
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