Collaborative transmission in wireless sensor networks

Alternative algorithmic approaches

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

January 26, 2010

Stephan Sigg

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Hierarchical clustering

- For feedback based distributed adaptive transmit beamforming:
 - RSS_{sum} changes linear with the network size *n*.
 - Bound on the synchronisation time is more than linear in n

Hierarchical clustering

 $E[T_{\mathcal{P}}] = \Theta(n \cdot k \cdot \log(n))$

Hierarchical clustering

- Hierarchical clustering
 - Oetermine clusters
 - Synchronise clusters successively (with possibly increased transmit power for nodes)
 - Build and synchronise overlay-cluster of representative nodes from all clusters.
 - Nodes alter carrier phase by phase offset experienced by representative node:

•
$$\zeta_i = \Re \left(m(t) \mathsf{RSS}_i e^{j2\pi f_c t(\gamma_i + \phi_i + \psi_i)} \right)$$
 (before)

•
$$\zeta'_i = \Re\left(m(t) \text{RSS}_i e^{j2\pi f_c t(\gamma'_i + \phi_i + \psi_i)}\right)$$
 (after)

Node h from same cluster alters carrier signal

•
$$\zeta_h = \Re \left(m(t) \text{RSS}_h e^{j2\pi f_c t(\gamma_h + \phi_h + \psi_h)} \right)$$
 to

•
$$\zeta'_h = \Re \left(m(t) \mathsf{RSS}_h e^{j2\pi f_c t(\gamma_h + \phi_h + \psi_h + \gamma_i - \gamma'_i)} \right)$$

Ideal conditions: All nodes should now in phase

Sinal synchronisation among all nodes

Stephan Sigg

Hierarchical clustering

Hierarchical clustering

Potential problem : Phase noise

- Only one cluster synchronised at a time
- Due to practical properties of oscillators, phases of nodes in the inactive clusters experience phase noise and start drifting out of phase
- Sufficient synchronisation possible in the order of milliseconds

Positive :

• No inter-node communication required

Open Issue :

- More than one hierarchy stage might be optimal
- for optimisation time
- for energy consumption
- Optimum hierarchy depth and cluster size derived by integer programming in time O(n²)

Hierarchical clustering

Determine optimum cluster size and hierarchy depth :

Expected optimisation time: E[T_{Pn}] = c · k · n · log(n)
Expected energy consumption: E[E_{Pn}] = c · k · n · log(n) · E_{Pn}

Hierarchy and cluster structure that minimises these formulae optimal

Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming) :

• For a cluster size of *m*:

$$E[T_{\mathcal{P}n}] = E[T_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E[T_{\mathcal{P}m}]$$
$$E[\mathcal{E}_{\mathcal{P}n}] = E[\mathcal{E}_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E[\mathcal{E}_{\mathcal{P}m}].$$

• Define recursion by

$$E_{\text{opt}}[T_{\mathcal{P}n}] = \min_{m} \left[E_{\text{opt}}[T_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E_{\text{opt}}[T_{\mathcal{P}m}] \right]$$
$$E_{\text{opt}}[\mathcal{E}_{\mathcal{P}n}] = \min_{m} \left[E_{\text{opt}}[\mathcal{E}_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E_{\text{opt}}[\mathcal{E}_{\mathcal{P}m}] \right]$$

• Start of recursion (η min feasible cluster size):

Stephan Sigg

Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming) :

- Time required for calculation is quadratic.
 - With a network of *n* nodes, at most *n*² distinct terms
 - E_{opt}[T_{Pi}]
 - $E_{opt}[\mathcal{E}_{\mathcal{P}_i}]$
- Start calculation at
 - $E_{\text{opt}}[\mathcal{E}_{\mathcal{P}\eta}]$ • $E_{\text{opt}}[\mathcal{T}_{\mathcal{P}\eta}]$
- All other values by table loop-up in time $\mathcal{O}(n^2)$ according to
 - $E_{\text{opt}}[T_{\mathcal{P}n}]$
 - $E_{\text{opt}}[\mathcal{E}_{\mathcal{P}n}]$ in time $\mathcal{O}(n^2)$

Hierarchical clustering

- Reduction of synchronisation time and transmission power
- Calculation of optimum cluster size and depth in $\mathcal{O}(n^2)$

Stephan Sigg

Outline

Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm

Environmental changes

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Local random search

- Global random search:
 - Synchronisation performance might deteriorate when the optimum is near
- With small local search space:
 - Majority of worse points excluded

Stephan Sigg

An upper bound on the synchronisation performance

An upper bound on the synchronisation performance

Analysis in two phases for the synchronisation process

Phase 1: Optimum outside search neighbourhood for at least one node

Phase 2: Optimum within search neighbourhood for all nodes

Stephan Sigg

An upper bound on the synchronisation performance

Phase 1: Optimum is outside the neighbourhood • Reach search point with improved fitness: $\geq \frac{1}{2}$

An upper bound on the synchronisation performance

When *i* signals synchronised:

- Improve n i non-optimal signals
- *i* already optimal ones unchanged:

$$(n-i) \cdot \frac{1}{n} \cdot \frac{1}{2} \cdot \left(1-\frac{1}{n}\right)^{i}$$
$$= \frac{n-i}{2n} \cdot \left(1-\frac{1}{n}\right)^{i}$$

since
$$\left(1-\frac{1}{n}\right)^n < e < \left(1-\frac{1}{n}\right)^{n-1}$$

$$s_i \geq \frac{n-i}{2en}$$

 Expected number of mutations to increase fitness bounded by s_i⁻¹.

An upper bound on the synchronisation performance

- Time until optimum is within the neighbourhood?
 - Constant time to leave slice
 - k distinct slices

$$\begin{split} \mathsf{E}[\mathcal{T}_{\mathcal{P}}] &\leq \quad c \cdot \sum_{i=0}^{k} \frac{2en}{n-i} \quad = 2 \operatorname{cen} \cdot \sum_{i=1}^{k+1} i^{-1} \\ &< \quad 2 \operatorname{cen} \cdot \ln(k+1) \quad = \mathcal{O}\left(n \cdot \log(k)\right) \end{split}$$

An upper bound on the synchronisation performance

Phase 2: Optimum within search neighbourhood

- Worst case: Increase fitness with probability $\frac{1}{M}$
- Similar to consideration above:

$$\mathcal{O}(N \cdot n \cdot \log(k))$$

Overall synchronisation time :

$$\mathcal{O}(N \cdot n \cdot \log(k)).$$

Stephan Sigg

Local random search

A lower bound on the synchronisation time :

- Method of the expected progress
- Similar to estimation for global random search
- Basically: Substitute network size *n* by neighbourhood size *N*

Local random search

A lower bound on the synchronisation time $% \left({{{\mathbf{x}}_{i}}} \right)$:

- Method of the expected progress
- Similar to estimation for global random search
- Basically: Substitute network size *n* by neighbourhood size *N*
 - Probability to alter individual bit

$$\frac{1}{N \cdot \log(k)}$$
Instead of
$$\frac{1}{n \cdot \log(k)}$$

Local random search

A lower bound on the synchronisation time :

• With similar arguments as for global random search, lower bound

$$\Omega(N \cdot \log(k) \cdot \Delta)$$

Stephan Sigg

Mathematical simulation environment

Impact of the node choice

• Fitness measure:

$$RMSE = \sqrt{\sum_{t=0}^{\tau} \frac{\left(\sum_{i=1}^{n} s_i + s_{noise}(i) - s^*\right)^2}{n}}$$

Local random search

Outline

Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Received sum signal

- Reduce the amount of randomness in the optimisation
- Improve the synchronisation performance
- Improve the synchronisation quality

Search space

- Search space:
 - Spanned by all Configurations of carrier phase offsets γ_i
- Search point / Configuration:
 - One possible configuration of carrier phase offsets

Received sum signal

- Fitness function observed by single node
- Constant carrier phase offset for *n* 1 nodes
- Fitness function:

$$\mathcal{F}(\Phi_i) = A\sin(\Phi_i + \phi) + c$$

Received sum signal

Approach:

- Measure feedback at 3 points
- Solve multivariable equations
- Apply optimum phase offset calculated

Received sum signal

• Problem:

• Calculation not accurate when two or more nodes alter the phase of their transmit signals

Solution

An active node will :

- O Transmit with three distinct phase offsets γ₁ ≠ γ₂ ≠ γ₃ and measure feedback.
- From these three feedback values and phase offsets, estimate feedback function and optimum phase offset γ^{*}_i.
- Transmit a fourth time with $\gamma_4 = \gamma_i^*$.
- If the deviation is less than 1% save γ_i^{*} as optimal phase offset, otherwise discard it.

A passive node will :

• Transmit 4 times with identical phase offset γ_i .

Solution

- Node estimates the quality of the function estimation itself
- Transmit with optimum phase offset and measure channel again
- When Expected fitness deviates significantly from measured fitness, discard altered phase offset
- Deviation:

 $\begin{array}{l} 1 \mbox{ node: } \approx 0.6\% \\ 2 \mbox{ nodes: } \approx 1.5\% \\ 3 \mbox{ nodes: } > 3\% \end{array}$

Synchronisation process

- **()** Transmit with phase offsets $\gamma_1 \neq \gamma_2 \neq \gamma_3$; measure feedback
- Stimate feedback function and calculate γ_i^*
- Transmit with $\gamma_4 = \gamma_i^*$
- Solution Smaller 1% finished, otherwise discard γ_i^*

Received sum signal

• Asymptotic synchronisation time:

 $\mathcal{O}(n)$

Classic approach:¹

 $\Theta(n \cdot k \cdot \log(n))$

¹Sigg, El Masri and Beigl, A sharp asymptotic bound for feedback based closed-loop distributed adaptive beamforming in wireless sensor networks (submitted to Transactions on Mobile Computing)

Collaborative transmission in wireless sensor networks

Performance estimation

Performance estimation

Performance estimation

• Phase offset of distinct nodes is within $+/-0.05\pi$ for up to 99% of all nodes.

Performance estimation

- Asymptotically optimal synchronisation time
- Simulations: $\approx 12n$
- Further improvement:
 - 3 iterations per turn
 - Utilise last transmission from previous iteration

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm

Environmental changes

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Introduction

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Velocity of nodes

Moving receiver :

- Straight line
- Random walk

Moving transmitter :

Straight line Random walk

Velocity of nodes

Moving receiver :

- Straight line
- Random walk

Aspects :

- Only one moving node
- Simple case
- Also applicable when all transmitters move identically

Velocity of nodes

Moving transmit nodes :

- Straight line
- Random walk

Aspects :

Multiple nodes moving Hard case

Velocity of nodes

Random walk - receiver :

• Maximum velocity for classic algorithm: 5m/sec

Stephan Sigg

Velocity of nodes

Random walk - receiver :

• Max. velocity for Multivariable equations: 5m/sec easily supported

Stephan Sigg

Velocity of nodes

Random walk - transmitter :

• Maximum velocity for classic algorithm: 2m/sec

Velocity of nodes

Random walk - transmitter :

• Max. velocity for Multivariable equations: 5m/sec supported

Stephan Sigg

Velocity of nodes

straight line - maximum relative speed :

- Maximum velocity for classic algorithm: 30m/sec
- Regardless if transmitter or receiver move

Velocity of nodes

straight line - maximum relative speed :

- Maximum velocity for Multivariable equations algorithm: 60m/sec
- Regardless if transmitter or receiver move

Stephan Sigg

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Multiple receiver nodes

Multiple receiver nodes

3m					
Knoten	n 0	<i>n</i> 1	n2	m0	m1
Gain zur Anfangsamplitude (Median) [dB]	0,96	2,39	1,40	1,46	1,10
Gain zu einem Knoten (Median) [dB]	2,33	2,32	2,37	3,50	4,05
Anzahl letztes Feedback	5/11	3/11	3/11	8/11	7/11
Amplitude nach Synchronisation [%]	92,4	51,4	65,3	91,0	90,7

12m

Knoten	n 0	<i>n</i> 1	n2	m 0	<i>m</i> 1
Gain zur Anfangsamplitude (Median) [dB]	1,24	0,63	1,39	2,06	1,47
Gain zu einem Knoten (Median) [dB]	2,53	1,09	2,00	2,74	4,18
Anzahl letztes Feedback	2/10	4/10	4/10	5/10	5/10
Amplitude nach Synchronisation [%]	57,1	92,0	86,5	86,4	86,6

24m

Knoten	n0	n1	n2	m()	m1
Gain zur Anfangsamplitude (Median) [dB]	1,12	2,33	2,76	3,61	1,67
Gain zu einem Knoten (Median) [dB]	1,2	2,54	2,03	5,15	3,76
Anzahl letztes Feedback	4/5	0/5	1/5	4/5	3/5
Amplitude nach Synchronisation [%]	94,2	80,0	61,4	95,8	97,9

Multiple receiver nodes

Multiple receiver nodes

Multiple receiver nodes

Multiple receiver nodes - issues :

- Only binary feedback value
 - Therefore only classic optimisation approach
- Distance between transmit and receive nodes relative to spatial diversity of nodes in one network
 - Better synchronisation when nodes in one network in spatial proximity
 - When nodes in one network communicate: No issue

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm

Environmental changes

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Increased population size

Increased population size - Discussion :

How to achieve population size greater than one?

- Separate transmit times
- WCDMA
- Distinct frequencies simultaneously

Only separate transmit times feasible for WSN

More time for each iteration

- Initial solution: Random search
- Not clear if performance improvement possible by crossover

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- 3 An asymptotically optimal algorithm

Environmental changes

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Receive beamforming

Receive beamforming – Discussion :

- Transmit node transmits only once
- Receiver nodes combine received signal fragments in the network
- Tradeoff:
 - Transmission power for in-network communication
 - Transmission over several iterations with receiver node
- More complex computation of transmit nodes

Questions?

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments