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Overview and Structure

o Introduction to context aware computing
o Wireless sensor networks
o

Wireless communications

©
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Randomised search approaches

©

Cooperative transmission schemes
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Distributed adaptive beamforming
o Feedback based approaches
o Asymptotic bounds on the synchronisation time
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o Alternative Optimisation environments
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Outline

Alternative beamforming approaches

@ Hierarchical clustering
© Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Alternative algorithmic approaches

o For feedback based distributed adaptive transmit
beamforming;:

o RSSsym changes linear with the network size n.
o Bound on the synchronisation time is more than linear in n
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Alternative algorithmic approaches

Median fitness values
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Alternative algorithmic approaches

o Hierarchical clustering
QO Determine clusters
@ Synchronise clusters successively (with possibly increased
transmit power for nodes)
© Build and synchronise overlay-cluster of representative nodes
from all clusters.

@ Nodes alter carrier phase by phase offset experienced by
representative node:

o =R (m(t)RSS,-ej2’”(‘t(”"+¢"+w")) (before)
o ¢ =R (m(t)RSS; 2T (after)

Node h from same cluster alters carrier signal
o (h="R (m(t)RSShep"fct("”d’”W)) to

°o (I=R (m(t)Rsshe/Zchf(’Yh+¢h+wh+’Yi*’Y,'/))
Ideal conditions: All nodes should now in phase

@ Final synchronisation among all nodes
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Alternative algorithmic approaches

Aon Median fitness values (Network size: 100 nodes)
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Alternative algorithmic approaches

Potential problem

Positive :

Open Issue :

Stephan Sigg

(*]
(*]

: Phase noise

Only one cluster synchronised at a time

Due to practical properties of oscillators, phases
of nodes in the inactive clusters experience
phase noise and start drifting out of phase
Sufficient synchronisation possible in the order
of milliseconds

No inter-node communication required

More than one hierarchy stage might be optimal
for optimisation time

for energy consumption

Optimum hierarchy depth and cluster size
derived by integer programming in time O(n?)
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Alternative algorithmic approaches

Determine optimum cluster size and hierarchy depth :

o Expected optimisation time:
E[Tpn] =c-k-n-log(n)

o Expected energy consumption:
El€p, =c-k-n-log(n)-Ep,

Hierarchy and cluster structure that minimises these formulae optimal
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Alternative algorithmic approaches

Opt. cluster size and hierarchy depth (integer programming)
o For a cluster size of m:

E[Tpn] = E[Tpz]- — - E[Tpm]

’ E[gpm]'

333

E[€p,] = E[€p 2] -
o Define recursion by

Eopt[T’Pn] = minm [Eopt[Tpﬁ] .

Eopt[gpn] minm, [Eopt [g’P%] :

n
= Eopt[ Tl
n

m . Eopt[gpm]]
o Start of recursion (77 min feasible cluster size):

° Eopt[Tpy]

° Ebpdgpn]
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Alternative algorithmic approaches

Opt. cluster size and hierarchy depth (integer programming) :
o Time required for calculation is quadratic.
o With a network of n nodes, at most n? distinct
terms
° Eopt[TPi]
° Eopt[gpi]
o Start calculation at
° Eopt[gpn]
° Eopt[Tpn]
o All other values by table loop-up in time O(n?)
according to
° EOpt[T'Pn]
o Eopt[€p,] in time O(n?)
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Alternative algorithmic approaches

Lx10 Median fitness values (Network size: 100 nodes)
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@ Reduction of synchronisation time and transmission power

o Calculation of optimum cluster size and depth in O(n?)
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Outline

Alternative beamforming approaches

@ Hierarchical clustering
© Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Scenario analysis and algorithmic improvement

w10 ritness curve tor a single node modulating its carrier phase oftset
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o Global random search:
o Synchronisation performance might deteriorate when the
optimum Is near
o With small local search space:
o Majority of worse points excluded
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Local random search

s Superimposed sum signal at the receiver
15] T
Assumptions
Mutation probability: n~! |
Uniform phase alteration %
Initial distance to the optimum
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Local random search

Analysis in two phases for the synchronisation process

<10+ Fllness curve for a single node modulaﬂng its carrier phase offset
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Phase 1: Optimum outside search neighbourhood for at least
one node

Phase 2: Optimum within search neighbourhood for all nodes
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Local random search

Phase 1: Optimum is outside the neighbourhood

o Reach search point with improved fitness: > %

<107 aness curve for a single node modulzmng its carrier phase offsat
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Local random search

When i signals synchronised: , S !\r\/
o Improve n — i non-optimal signals i JMM\”\, i W .

o / already optimal ones unchanged:
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Expected number of mutations to
increase fitness bounded by si_l.
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Local random search

o Time until optimum is within the neighbourhood?
o Constant time to leave slice
o k distinct slices

Superimposed sum signal at the receiver
T T

Cxpected sum signal
Initial received sum signal

~—— Received sum signal after G0OO iterations|

“o 2 4 6 8
Time [n]

k+1
E[Tp]< ¢ Z,,O ,%i", = 2cen - Z it

< 2cen-In(k+1) =0O(n-log(k))
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Local random search

- Fitness curve for a single node modulating its carrier phase offset

|——Fitnoss curve plotted from 100

Bas|- -

J MN\ -

Phase 1 Phase 2
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Phase 1
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Phase 2: Optimum within search neighbourhood
o Worst case: Increase fitness with probability %
o Similar to consideration above:

O(N - n-log(k))
Overall synchronisation time
O(N - n-log(k)).
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Scenario analysis and algorithmic improvement

Fitress sco2 Rl SE]

8.45

x10"

Fitness curve for a single node modulating its carrier phase offset

T
Fitness curve plotted from 100 measurements

-

A lower bound on the synchronisation time

Stephan Sigg

o Method of the expected progress

@ Similar to estimation for global random search

o Basically: Substitute network size n by
neighbourhood size N
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Scenario analysis and algorithmic improvement

A lower bound on the synchronisation time :
o Method of the expected progress
@ Similar to estimation for global random search
o Basically: Substitute network size n by
neighbourhood size N
o Probability to alter individual bit

1
N - log(k)

o Instead of 1

n - log(k)
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Scenario analysis and algorithmic improvement

c10° Fitness curve for a single node modulating its carrier phase offset
545 - . T

T
Fitness curve plotted from 100 measurements
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A lower bound on the synchronisation time :

o With similar arguments as for global random
search, lower bound

Q(N - log(k) - A)
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Mathematical simulation environment

Property

Value

Node distribution area
Location of the receiver
Mobility

Base band frequency
Transmission power of nodes
Gain of the transmit antenna
Gain of the receive antenna
[terations per simulations
Identical simulation runs
Random noise power [46]

Pathloss calculation (Fry)
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o Fitness measure:

RMSE =
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Scenario analysis and algorithmic improvement
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Median fitness values ( Network size: 100 nodes )

+ Uniform distribution, Mutation probability: 0.01

o Hillclimber, mutation probability: 0.01, Neighbourhood size: 0.6
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Outline

Alternative beamforming approaches

@ Hierarchical clustering
© Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Multivariable equations

o Reduce the amount of randomness in the optimisation
@ Improve the synchronisation performance

@ Improve the synchronisation quality
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Scenario analysis and algorithmic improvements

@ Search space:

o Spanned by all Configurations
of carrier phase offsets ~;

o Search point / Configuration:

o One possible configuration of
carrier phase offsets
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Multivariable equations

45210

1 single node calculates the fitness curve for its phase offset
T T T

o Fitness function observed
by single node

o Constant carrier phase
offset for n — 1 nodes

Fitness score [RMSE]

o Fitness function:

F(®;) = Asin(d;+¢)+c

—Fitness curve plotted from 100 measurements
~~-Fitness curve calculated from three measurements
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Multivariable equations

107

Fitness curve for a single node modulaling its carrier phase offset

T
[—Fitness curve plottec from 100

points

Fitness score [AMSE]

o Solve multivariable
equations

Approach: * ‘ ; i
o Measure feedback at 3 g 3 MM

o Apply optimum phase e ¥ iz
offset calculated

F(;) = Asin(®; + ¢) + ¢
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Multivariable equations
Received sum signal

o Problem:

o Calculation not accurate when two or more nodes alter the
phase of their transmit signals

x10° 2node: calculate the fits of their phase offsets 4o¢ 3 nodes simultaneously calculate the fitness curve of their phase offsets
7 T

—Fitness curve plotted from 100 measurements
Fitness curve calculated from three measurements

Fitness score [RMSE]
Fitness score [RMSE]

iness curve plotted from 100 measurements.
= s curve calculated from three measurements|

04 06 08 1

02 0 02
Phase offst 1]
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Multivariable equations

An active node will :

Q@ Transmit with three distinct phase offsets
Y1 # 2 # -3 and measure feedback.

Q From these three feedback values and phase
offsets, estimate feedback function and
optimum phase offset ~;.

@ Transmit a fourth time with 4 = 7.

@ If the deviation is less than 1% save 77 as
optimal phase offset, otherwise discard it.

A passive node will :

Q Transmit 4 times with identical phase offset ;.

Stephan Sigg Collaborative transmission in wireless sensor networks
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Multivariable equations

o Node estimates the quality of the
function estimation itself

o Transmit with optimum phase offset
and measure channel again

o When Expected fitness deviates
significantly from measured fitness,

discard altered phase offset e /f; t
o Deviation: v[(f: f;r: [6;
1 node: ~ 0.6% X S Q'?
2 nodes: ~ 1.5% @

3 nodes: > 3%
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Multivariable equations

G oo

v VT ffi (f,::

7 s
b Y

Q Transmit with phase offsets 41 # 2 # ~y3; measure feedback

O Estimate feedback function and calculate ~;

@ Transmit with 4 = 77

@ |If deviation smaller 1% finished, otherwise discard ~}
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Multivariable equations

o Asymptotic synchronisation time:

o Classic approach:!

Sigg, El Masri and Beigl, A sharp asymptotic bound for feedback based closed-loop distributed adaptive
beamforming in wireless sensor networks (submitted to Transactions on Mobile Computing)

Stephan Sigg Collaborative transmission in wireless sensor networks 36/63



Multivariable equations

6" Median fitness values (Network size: 100 nodes)
8
- © Multivariable equations, uniform probability to change the phase of a carrier signal: 0.01
7 * Normal distributed probability to change the phase of a carrier signal: 0.01, Variance: 0.5
6 e
LTl
L]

RMSE
~
[
f—e-

K3
2 _
II——IIII:

i+ B

o
Fert

N N S - o

I A g

T T T T

2333 3%

T 3 3T 3T =

EZEZIII}Z

0 1000 2000 3000

Ttaratinn cannt

4000

5000

Stephan Sigg Collaborative transmission in wireless sensor networks

6000

37/63



Multivariable equations

Relative phase shift (Network size: 100)
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Multivariable equations

Phase attsst deviation (nm)
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Phase offset of distinct nodes is within 4+/ — 0.057 for up to
99% of all nodes.
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Multivariable equations

Fhess offset Zeviat:on fro= the oztimal phess offset (Fuzber of nodes: 100) ‘Phase a7fse: deviztion Tram the aptimal chase oFset { Mumber of zodzs 100)
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o Asymptotically optimal synchronisation time
o Simulations: & 12n

o Further improvement:

o 3 iterations per turn
o Utilise last transmission from previous iteration
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Overview and Structure
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o
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Outline

Environmental changes

@ Hierarchical clustering
@ Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Environmental changes

@ Velocity of nodes
o Multiple receiver nodes
@ Increased population size

o Receive beamforming
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Environmental changes

Moving receiver :

o Straight line
o Random walk

Moving transmitter :
Straight line
Random walk
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Environmental changes

Moving receiver :

o Straight line
o Random walk

Aspects :
Only one moving node
Simple case

Also applicable when all transmitters move identically
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Environmental changes

Moving transmit nodes :

o Straight line
o Random walk

Aspects :
Multiple nodes moving
Hard case
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Environmental changes

Phase offset deviation from the optimal phase offset ( Mumber of nodes: 100}
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Environmental changes

Phase offset deviation (in)
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o Max. velocity for Multivariable equations:
5m/sec easily supported
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Environmental changes

Phase offset deviation from the optimal phase offset ( Number of nodes: 1003
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Environmental changes

Fhase offset deviation from the optimal phase offset ( Number of nodes: 100)
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Environmental changes

Phase offset deviation (inm)
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o Maximum velocity for classic algorithm:
30m/sec
o Regardless if transmitter or receiver move
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Environmental changes

Phase offset deviation (inm)
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Tterations

— maximum relative speed :

o Maximum velocity for Multivariable equations
algorithm: 60m/sec
o Regardless if transmitter or receiver move
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Outline

Environmental changes

@ Hierarchical clustering
@ Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Environmental changes

Runde 1:

Erstes Netzwerk optimiert
sein Tragersignal, zweites
Netzwerk gibt Feedback.

O

L

(Summensignal)

Phasenanpassung wie beim
Szenario mit digitalem Feedback.

Feedback wird durch
Vorhandensein von einem Signal
gegeben.

L
|

I

g W W

(Einzelsignal)

Runde 2:

Zweites Netzwerk optimiert
sein Tragersignal, erstes
Netzwerk gibt Feedback.

oy

T

(Summensignal)
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Environmental changes

3m
Knoten nl) nl n2 ml) ml
Gain zur Anfangsamplitude (Median) [dB] || 0,96 | 2,39 | 1,40 | 1,46 | 1,10
Gain #u einem Knoten (Median) [dB] 2,33 |2,32 | 2,37 | 3,50 | 4,05
Anzahl letztes Feedback 5/11 | 3/11 | 3/11 || 8/11 | 7/11
Amplitude nach Synchronisation [%] 924 | 514 | 65,3 91,0 | 90,7
12m
Knoten nl) nl n2 ml) ml
Guain zur Anfangsamplitude (Median) [dB] || 1,24 | 0,63 | 1,39 | 2,06 | 1,47
Gain vu einem Knoten (Median) [dB] 2,53 | 1,09 | 2,00 || 2,74 | 4,18
Anzahl letztes Feedback 2/10 | 4/10 | 4/10 || 5/10 | 5/10
Amplitude nach Synchronisation [%] 57,1 | 82,0 | 86,5 | 86,4 | 86,6
24m
Knoten nl) nl n2 mll | ml
Gain vur Anfangsamplitude (Median) [dB] || 1,12 | 2,33 | 2,76 || 3,61 | 1,67
Gain vu einem Knoten (I\'Iu(‘]iun} [dB] 1,2 2,54 | 2,03 5.15 | 3,76
Anzahl letztes Feedback 4/5 | 0/5 1/5 4/5 3/5
Amplitude nach Synchronisation (%) 94,2 | 80,00 | 61,4 || 95,8 | 97,9
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Environmental changes

3m
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Environmental changes
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Environmental changes

Multiple receiver nodes — issues :
o Only binary feedback value
o Therefore only classic optimisation approach
o Distance between transmit and receive nodes
relative to spatial diversity of nodes in one
network
o Better synchronisation when nodes in one
network in spatial proximity
o When nodes in one network communicate: No
issue
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Outline

Environmental changes

@ Hierarchical clustering
@ Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Environmental changes

Increased population size — Discussion :
How to achieve population size greater than one?

o Separate transmit times
o WCDMA
o Distinct frequencies simultaneously

Only separate transmit times feasible for WSN
More time for each iteration

o Initial solution: Random search
o Not clear if performance improvement possible
by crossover
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Outline

Environmental changes

@ Hierarchical clustering
@ Local random search
© An asymptotically optimal algorithm
@ Environmental changes
o Velocity of nodes
o Multiple receiver nodes

@ Increased population size
o Receive beamforming
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Environmental changes

Receive beamforming — Discussion
@ Transmit node transmits only once
o Receiver nodes combine received signal

fragments in the network
o Tradeoff:
o Transmission power for in-network
communication
o Transmission over several iterations with
receiver node

o More complex computation of transmit nodes
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Questions?

Introduction to context aware computing
Wireless sensor networks

Wireless communications

Randomised search approaches

o

o

o

o Basics of probability theory

o

o Cooperative transmission schemes
o

Distributed adaptive beamforming
Feedback based approaches
Asymptotic bounds on the synchronisation time

o
o Alternative algorithmic approaches
o Alternative Optimisation environments

©
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