
Vorlesung:
Collaborative transmission in wireless

sensor networks

Wintersemester 2009/10

Version: February 9, 2010 (v0.0.1 + ε)

Veranstalter: Stephan Sigg

Technische Universität Braunschweig
Institut für Betriebssysteme und Rechnerverbund

Verteilte und Ubiquitäre Systeme

D-38106 Braunschweig

Das Werk einschließlich aller seiner Teile ist urheber-
rechtlich geschützt. Jede Verwertung außerhalb der engen
Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung
des Autors unzulässig und strafbar. Das gilt besonders für
Vervielfältigungen, Übersetzungen, Mikroverfilmungen und
die Einspeicherung und Verarbeitung in elektronischen Sys-
temen.

Acknowledgements

I would like to thank the students of my lecture ’Collaborative transmission in wireless
sensor networks’ at the Technische Universität Braunschweig in the winter term 2009/2010
for their patience, thoughtful questions and constructive feedback and discussions on the
topic. In particular, Timo Schulz has spotted many spelling errors in prior versions of this
document.

Some findings presented in this document are the result of student thesis at the Tech-
nische Universität Braunschweig in 2009. Section 8.3.3 was predominantly influenced by
the work of Rayan Merched El Masri. The results in section 8.4.2 have been derived by
Julian Ristau.

3

4

Contents

1 Motivation 11

2 Context-awareness 15
2.1 Context-aware computing . 16

2.1.1 Definitions of context . 18
2.1.2 Context-awareness . 19
2.1.3 Context processing . 20
2.1.4 Frameworks and architectures for context-awareness 21
2.1.5 Applications utilising context . 22

2.2 Concepts and definitions . 24
2.2.1 Ubiquitous computing . 24
2.2.2 Sensors, context sources and features 24
2.2.3 Context and context types . 25
2.2.4 Context abstraction levels . 26
2.2.5 Context data types . 30
2.2.6 Representation and illustration of contexts 31

3 Wireless Sensor networks 33
3.1 The sensor node . 33

3.1.1 Power unit . 34
3.1.2 Sensing unit . 35
3.1.3 Processing unit . 35
3.1.4 Communication unit . 35

3.2 Sensor networks . 37
3.2.1 Metrics to measure the quality of a WSN 39
3.2.2 Mobility in wireless sensor networks 40

3.3 MAC protocols . 41
3.3.1 Requirements and design constraints 41
3.3.2 A standard protocol for wireless sensor networks 42
3.3.3 Wake up radio . 45

4 Wireless communications 47
4.1 Aspects of the mobile radio channel . 47

4.1.1 Superimposition of electromagnetic signals 48
4.1.2 Path-loss . 49

5

4.1.3 Fading . 50
4.1.4 Noise, interference and spread spectrum systems 53

4.2 MIMO . 56
4.3 Beamforming . 59

5 Basics on probability theory 61
5.1 Discussion . 61
5.2 Preliminaries . 62
5.3 Relation between events . 63
5.4 Basic definitions and rules . 64

5.4.1 The Markov inequality . 67
5.4.2 The Chernoff bound . 68

6 Evolutionary algorithms 71
6.1 Basic principle and notations . 72

6.1.1 Initialisation . 73
6.1.2 Fitness function – Weighting of the population 73
6.1.3 Selection for reproduction . 74
6.1.4 Variation . 74
6.1.5 Fitness function – Weighting of the offspring population 76
6.1.6 Selection for substitution . 77

6.2 Restrictions of evolutionary algorithms . 77
6.3 Design aspects . 79

6.3.1 Search space . 79
6.3.2 Selection principles and population structure 79
6.3.3 Comments on the implementation of evolutionary algorithms 80

6.4 Asymptotic bounds and techniques . 80
6.4.1 A simple upper bound . 80
6.4.2 A simple lower bound . 81
6.4.3 The method of the expected progress 82

7 Cooperative transmission schemes 85
7.1 Cooperative transmission . 86

7.1.1 Network coding . 86
7.1.2 Multi-Hop approaches . 88
7.1.3 Data flooding . 88

7.2 Multiple antenna techniques for networks of single antenna nodes 89
7.2.1 Open-loop distributed carrier synchronisation 93
7.2.2 Closed-loop distributed carrier synchronisation 96

8 Analysis of a simple closed loop synchronisation approach 99
8.1 Analysis of the problem scenario . 100

8.1.1 Representation of individuals . 101

6

8.1.2 Feedback function . 102
8.1.3 Search space . 105
8.1.4 Variation operators . 107
8.1.5 Discussion . 110

8.2 Analysis of the convergence time of 1-bit feedback based distributed adaptive
transmit beamforming in wireless sensor networks 111
8.2.1 An upper bound on the expected optimisation time 112
8.2.2 A lower bound on the expected optimisation time 113
8.2.3 Simulation and experimental results for the basic scenario 114
8.2.4 Impact of distinct parameter configurations 119
8.2.5 Impact of environmental parameters 125
8.2.6 Impact of algorithmic modifications 127

8.3 Alternative algorithmic approaches . 130
8.3.1 Hierarchical clustering . 130
8.3.2 A local random search approach . 133
8.3.3 Multivariable equations . 136

8.4 Environmental changes . 140
8.4.1 Velocity of nodes . 141
8.4.2 Consideration of multiple receivers 144
8.4.3 Increase of Population size – On the use of crossover 144
8.4.4 Receive beamforming . 144

7

8

Abbreviations and Notation

The following figures and notations are utilised throughout this document. It has been
attempted to keep the standard notation from the literature whenever possible. However,
since diverse scientific areas are covered, the notation had to be adapted in order to provide
an unambiguous notation. The page number given in the table refers to the first occurrence
of the mentioned construct.

Notation Explanation Page

A Region where nodes of a sensor network are placed 40

B Bandwidth 53

c Speed of light (3 · 108m
s

) 47

d Distance 49

E[x] The expectation of a random variable x 66

f Frequency 47

F Fitness function 82

GRX Gain of the receive antenna 49

GTX Gain of the transmit antenna 49

GSM Global System for Mobile communications 54

=(s) Imaginary part of a complex signal s

IAC inquiry access codes 55

ISM Industrial, Scientific, Medical band 55

J Joule 53

K Kalvin 53

κ Boltzmann constant 53

N Network size 40

PN Thermal noise power 53

PRX Received signal power 49

PTX Transmission power 49

P (x) Probability of an event x 64

P (χ1|χ2) The conditional probability of two events χ1 and χ2 with P (χ2) > 0 66

P An optimisation problem 82

9

Notation Explanation Page

<(s) Real part of a complex signal s 48

Π Sample space 64

Rk(t) The reliability or fault tolerance of a sensor node 39

R Transmission range of a sensor network 40

RSS Received Signal Strength 49

T Temperature in Kalvin 53

α Path-loss exponent 50

γ Phase offset of a transmit signal 47

λ Wavelength of a transmit signal 47

µ(R) Density of a sensor network with transmission range R

µ Population size of an evolutionary algorithm

s∗ Complex conjugate of s
ν Offspring population size of an evolutionary algorithm. Note: In

the literature, typically λ denotes the offspring population size
72

υ Failure rate 40

η Density of a sensor network 40

GPS Global Positioning System 15

GSM Global System for Mobile Communications 15

var[χ] The variance of a random variable χ: E[(χ− E[χ])2] 67

x A sample point for a random experiment 62

ID Identification 25

MIT Massachusetts Institute of Technology 23

RMSE Root of the Mean Squared Error 109
S A search space 71

UbiComp Ubiquitous Computing 16

UMTS Universal Mobile Telecommunications System 15
−→v A vector v = (v1, . . . , vκ)

WLAN Wireless Local Area Network 15

10

1 Motivation

In the long history of humankind (and animal
kind, too) those who learned to collaborate and
improvise most effectively have prevailed

(C. Darwin)

In recent years, sensor nodes of extreme tiny size are envisioned [1, 2, 3]. In [4], for
example, applications for square-millimetre sized nodes that seamlessly integrate into an
environment are detailed. At these small form-factors transmission power of wireless nodes
is restricted to several microwatts. Communication between a single node and a remote
receiver is then only feasible at short distances. It is possible, however, to increase the max-
imum transmission range by cooperatively transmitting information from distinct nodes
of a network [5, 6]. The basic idea is to superimpose identical RF carrier signal com-
ponents from various transmitters that function as a distributed beamformer. When the
relative phase offset of these carrier signal components at a remote receiver is small, the
signal strength of the received sum signal is improved. Cooperation can improve the ca-
pacity and robustness of a network of transmitters [7, 8] and decreases the average energy
consumption per node [9, 10, 11].

Related research branches are cooperative transmission [12], collaborative transmission
[13, 14], distributed adaptive beamforming [15, 16, 17, 18], collaborative beamforming [19]
or cooperative/virtual MIMO for wireless sensor networks [20, 21, 22, 23]. One approach is
to utilise neighbouring nodes as relays [24, 25, 26] as proposed by Cover and El Gamal in
[27]. Cooperative transmission is then achieved by Multi-hop [28, 29, 30] or data flooding
[31, 32, 33, 34] approaches. The general idea of multi-hop relaying based on the physical
channel is to retransmit received messages by a relay node so that the destination will
receive not only the message from the source destination but also from the relay. In data
flooding approaches, a node will retransmit a received message at its reception. It has been
shown that the approach outperforms non-cooperative multi-hop schemes significantly. It
was derived that the average energy consumption of nodes is decreased [9, 10] and the
transmission time is reduced compared to traditional transmission protocols in wireless
sensor networks [35].

In these approaches, nodes are not tightly synchronised and transmission may be asyn-
chronous. This, however, is achieved by virtual MIMO techniques. In virtual MIMO for
wireless sensor networks, single antenna nodes are cooperating to establish a multiple an-

11

Figure 1.1: Schematic illustration of feedback based distributed adaptive beamforming in
wireless sensor networks

tenna wireless sensor network [21, 20, 22]. Virtual MIMO has capabilities to adjust to
different frequencies and is highly energy efficient [23, 11]. However, the implementation of
MIMO capabilities in WSNs requires accurate time synchronisation, complex transceiver
circuits and signal processing that might surcharge the power consumption and processing
capabilities of simple sensor nodes.

Other solutions proposed are open-loop synchronisation methods as round-trip synchro-
nisation based [36, 37, 38]. In this scheme, the destination sends beacons in opposed
directions along a multi-hop circle in which each of the nodes appends its part of the over-
all message to the beacons. Beamforming is achieved when the processing time along the
multi-hop chain is identical in both directions. This approach, however, does not scale well
with the size of a network.

Closed loop feedback approaches include full-feedback techniques, in which carrier syn-
chronisation is achieved in a master-slave manner. The phase-offset between the destination
and a source node is corrected by the receiver node. Diversity between RF-transmit signal
components is achieved over CDMA channels [39]. This approach is applicable only to
small network sizes and requires sophisticated processing capabilities at the source nodes.

A more simple and less resource demanding implementation is the one-bit feedback
based closed-loop synchronisation considered in [39, 40]. The authors describe an iterative
process in which n source nodes i ∈ [1, . . . , n] randomly adapt the phases γi of their carrier
signal <

(
m(t)ej(2π(fc+fi)t+γi)

)
. Here, fi denotes the frequency offset of node i to a common

carrier frequency fc. Initially, i.i.d. phase offsets γi of carrier signals are assumed. When
a receiver requests a transmission from the network, carrier phases are synchronised in an
iterative process (cf. figure 7.10).

1. Each source node i adjusts its carrier phase offset γi and frequency offset fi randomly.

12

2. The source nodes transmit to the destination simultaneously as a distributed beam-
former.

3. The receiver estimates the level of phase synchronisation of the received sum signal
(e.g. by the SNR).

4. This value is broadcast as a feedback to the network. Nodes interpret this feedback
and adapt their phase adjustments accordingly.

These four steps are iterated repeatedly until a stop criteria is met (e.g. maximum iteration
count or sufficient synchronisation). The process has been studied by various authors
[41, 42, 43, 13] where the approaches proposed differ in the implementation of the first and
the fourth step specified above. The authors of [43] show that it is possible to reduce the
number of transmitting nodes in a random process and still achieve synchronisation among
all nodes.

In [41, 42, 43] a process is described in which each node alters its carrier phase offset
γi according to a normal distribution with small variance in step one. In [13] a uniform
distribution is utilised but the probability for one node to mutate is low. Only in [42] not
only the phase but also frequency is adapted.

This lecture is focused on cooperative transmission schemes in wireless sensor networks.
Distinct nodes in a network of nodes cooperate in their transmission of data. As detailed
above, this cooperation may differ in its exact implementation for various approaches. Some
approaches require inter-node communication while others don’t. For some approaches the
aim is to reduce the failure probability through multiple transmissions while others aim to
improve the signal strength. Figure 1.2 depicts for the generic scenario introduced above
the organisation of the lecture.

First, the theoretical background required to understand cooperative transmission sce-
narios is provided in chapters 2 through 4. In Chapters 5 and 6, concepts required for the
application and analysis of the algorithms for cooperative transmission in wireless sensor
networks in chapters 7 and 8 are introduced. The focus of the algorithms presented is on
algorithms for distributed adaptive transmit beamforming.

13

Figure 1.2: Possible scenario for distributed adaptive transmit beamforming

14

2 Context-awareness

Increasingly, the bottleneck in computing is not its
disk capacity, processor speed or communication
bandwidth, but rather the limited resource of hu-
man attention

(A. Garlan, Toward Distraction-Free Pervasive Computing
[44])

The vision of context-awareness is that applications become sensitive to environmental
stimuli and adapt their behaviour to the current situation. This vision was far ahead of
the technology of the time when it was first studied in research laboratories and the details
necessary to implement the vision were seldom provided. With improved technology we
have seen prototype applications of isolated ideas from the Context-aware vision become
implemented. The first of these are probably the Xerox PARCTAB [45] and the media cup
[46].

In recent years, but to a limited degree, we have already seen context-aware features in
consumer products. Mobile devices that adjust their screen brightness to the environmental
light, devices that automatically rotate the screen when the device is turned, watches that
automatically adjust to local time and messages that alert users when their screen work
time exceeds a certain limit, are just some examples.

While these applications are quite limited and stand alone, we see more advanced and
better integrated context-aware features in multifarious new products. The most versatile
and widely used device type for context-aware applications are recent mobile phones. The
capabilities of these devices quickly increase as new interfaces to the environment are
constantly added. Apart from technologies as basic as microphones, speakers and GSM,
we now expect also infrared, bluetooth and a camera in mobile devices. New air interfaces
as WLAN or UMTS are added, as well as light sensors, accelerators, touch screens and
to an increasing degree GPS receivers. Most of these technologies remain unused for a
great part of the time. This multitude of sensors, however, provides a rich environment in
which context-aware applications can be taken to the next evolutionary stage. Context-
awareness, nowadays, still holds great potential before the development comes anywhere
close to the vision of a ubiquitous world that is saturated with context-aware devices.

In recent years, applications and devices have undergone serious changes that move them
away from static, reactive entities towards a more environment responsive design. We see
applications act in an increasingly adaptive and situation-dependent way. Applications are

15

able to infer the needs and requirements in a given situation. It is commonly agreed that the
general setting a user is in also influences her needs at that point in time. Lucy Suchman
[47] states that every course of action is highly dependent upon its material and social
circumstances regarding interactions between actors and the environment. To become
able to react to the general setting an application is executed in, the design paradigm
for applications is shifting from an application-centric approach to an environment-centric
approach. Applications become integrated into the environment and react to environmental
stimuli. In order to improve the application and device behaviour in this direction, further
and in most cases novel sources of information are investigated.

The input provided to an application or device is no longer restricted to explicit instruc-
tions on a common user interface. Instead, the interface utilised for the acquisition of input
information is extended and coupled by an interface to the environment. The behaviour of
applications evolves from a mere passive, input dependent way to an active, environment
and situation guided operation.

Information about the environment and situation is extracted and interpreted to trigger
situation dependent actions that shall for example provide the user with a richer experience
that is adapted to her personal needs. Due to this additional information, the required ex-
plicit interaction with an application can be minimised or at least reduced. The computing
experience hereby gets increasingly unobtrusive and becomes ubiquitous.

In general, this computing paradigm is referred to as context-awareness or context com-
puting but is described by various further titles. People have been quite creative in finding
descriptive names for scenarios similar to the one described above. A (most certainly not
exhaustive) set of terms associated with ideas related to context computing is depicted in
figure 2.1. A similar list can also be found in [48]

While these catchwords have partly redundant but not identical meanings, a common
vision of future computing is captured by all these descriptions. Probably the first study
on context-aware computing was the Olivetti Active Badge [49]. Following this pioneering
work, numerous further concepts and ideas have been discussed by various research groups.

Recently, the focus for context awareness has shifted from a single device sinsing its
environment to an environment capable of sensing and possibly interpreting and reacting
on the sensed information. Sensor nodes i.e. tiny computing devices with communication
and sensing capabilities become integrated in the environment.

2.1 Context-aware computing

The vision of a world where computing devices seamlessly integrate into the real world
was first introduced by Mark Weiser in 1988. He illustrates and describes his vision of
future computing in [50]. Computing in his vision is no longer restricted to a single ma-
chine but may move off one machine and onto another one at execution time. Ubiquitous
computing also incorporates an awareness of the environment the computer is situated in.
Furthermore, following the vision of ubiquitous computing, computing becomes invisible
and omnipresent simultaneously. Smallest scale computing devices that enrich the envi-

16

F
ig

u
re

2.
1:

C
on

ce
p
ts

re
la

te
d

to
U

b
iq

u
it

ou
s

co
m

p
u
ti

n
g

17

ronment communicate with each other and assist a user unnoticed. Weiser argues that a
computer might adapt its behaviour in a significant way if it knows where it is located. As
Weiser states, this reaction to the environment does not require artificial intelligence.

Weiser observes the paradox that computing devices are becoming
cheaper, smaller and more powerful at the same time. Tiny computing devices become
cheap enough to be bought in raw amounts and small enough to be integrated in virtually
every real world object.

Weiser envisions that these devices, equipped with sensing technology and communi-
cation interfaces are able to communicate with each other and to acquire and spread
information on devices, persons and objects in their proximity. This information can then
be utilised to enhance the computing experience of a user.

The first experiments with computers aware of their environment have been conducted in
the early 1990’s. The active badge location system by Olivetti Research [49] and the Xerox
PARCTAB location system by Xerox laboratories [45] demonstrated how small mobile
devices operate together.

Although the sources of information utilised in these experiments were restricted to
location sensors, the basic new concept and possibility inspired numerous people to focus
their research on this field.

2.1.1 Definitions of context

Definitions of context are numerous and diverse even when the focus is restricted to com-
puter sciences. In his comprehensive discussion “What we talk about when we talk about
context”[51] Paul Dourish attempts to exhaustively discuss several aspects of context and
also reviews various definitions of context.

The concept of context in conjunction with context-aware computing was first formulated
by Schilit and Theimer in 1994 [52]. Following their definition, a software that “adapts
according to its location of use, the collection of nearby people and objects as well as
changes to those objects over time” is considered to be context-aware. Later on, Schilit
refined this definition by defining context categories in [53]. These categories are ‘user
context’, ‘physical context’ and ‘computing context’. As further categories, Brown added
information about the time [54], while Pascoe also considered the blood pressure of users
[55]. Dey took the latter proposal to a broader scope by considering emotions and the
focus of attention [56].

At about the same time, Albrecht Schmidt, Michael Beigl and Hans W. Gellersen recog-
nised that most so-called context-aware applications are in fact location-aware [57]. Hence,
they are considering only location as an aspect of the context. The assertion of the authors
is that applications implemented on mobile devices might significantly benefit from a wider
understanding of context. Furthermore, they introduce a working model for context and
discuss mechanisms to acquire other aspects of context beside location.

In their working model for context, they propose that a context describes a situation
and the environment a device or user is located in. They state that a context shall have a
set of relevant aspects to which they refer as features.

18

These features are ordered hierarchically. At the top level a distinction between human
factors and physical environment is made. Further, finer grained sub-division of these
top-level categories are also proposed. Finally, an overview of available sensor types and
contexts obtained from these sensors is given.

As a prerequisite to a definition of context-awareness, Anind K. Dey formulated a defi-
nition of context, that is most commonly used today [58].

Definition 2.1.1 : User context

Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves.

This definition, while useful, is quite abstract and gives no hint on the actual represen-
tation of context in a computing system. For this reason, several authors express criticism
considering this definition. As Jani Mäntyjärvi has already stated in [59], this context def-
inition does not result in a more exact definition of context since the abstraction is shifted
from context to information.

Karen Henricksen follows the same line of argumentation by remarking that the definition
remains too imprecise, since a clear separation of the concepts of context, context modelling
and context information is not provided. Henricksen refines the definition of context given
by Dey as the set of circumstances surrounding a task that are potentially relevant for its
completion [60]. Furthermore, in the model of Henricksen, a context model identifies a
subset of the context that is realistically attainable from sensors, applications and users.
Following her discussion, context information describes a set of data that was gathered
from sensors and users and that conforms to a context model.

However, the discussion about a most suitable definition is not settled yet. In 2000,
Lieberman and Selker defined context to be any input other than the explicit input and
output [61]. Other projects refine the definition of context to their individual needs. In
[62] for example, the definition of Dey is refined by adding the concept of a sentient object.

2.1.2 Context-awareness

Intuitively, applications that utilise context data are context-aware. However, similar to
the lively discussion on a definition of context, several definitions for context-awareness
have been given in the literature. This section briefly reviews this ongoing discussion.

In [52] Schilit and Theimer formulated a first definition of context-awareness. Following
this definition, “Applications are context-aware when they adapt themselves to context”.

In 1998 Pascoe argues that context-aware computing is the ability of devices to detect,
sense, interpret and respond to changes in the user’s environment and computing devices
themselves [63]. The authors of [64] define context-awareness as the automation of a
software system based on knowledge of the user’s context. Several other similar definitions

19

treat it as applications’ ability to adapt or change their operation dynamically according
to the state of the application and the user [52, 54, 65].

Later, Dey argued that the existing definitions did not fit to various applications devel-
oped at that time that were intended to be context-aware and consequently stated a more
general definition of context-aware systems in [58].

Definition 2.1.2 : Context-awareness

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.

This discussion is not closed yet as several research groups refine the definition so that it
best suits their needs (cf. [62]).

2.1.3 Context processing

Context is an abstract concept to describe a major input of ubiquitous computing applica-
tions. However, we cannot build applications with this theoretical construct. The questions
are how context can be obtained from the available information sources, in which way con-
text is represented in applications and how context can be further processed. This section
discusses popular approaches to these questions.

Various authors propose to pre-process sensor output in order to prepare the data for
further computation. Anind K. Dey argues that one of the main reasons why context is not
used in applications is because no common way to acquire and handle context is specified
[58]. He proposes to separate the context acquisition from the context utilisation process.
Dey distinguishes between two basic forms of context. Raw or low-level context data that
is directly acquired by sensors and richer or higher-level forms of information. A similar
distinction is also made by Guanling Chen [66]. However, no concrete specification of these
notions is given.

Albrecht Schmidt on the other hand argues that it is simpler to implement context-aware
systems using contexts on entity level [67]. With the notion ‘entity level’, Schmidt refers
to context data that is not further processed or aggregated after it has been obtained from
context sources. Furthermore, intrinsic properties of sensors are utilised in the context
modelling process. Schmidt refers to this approach as the concept of bottom-up context-
awareness. The main research focus of Schmidt is related to context acquisition from a
variety of simple sensors. He defines simple sensors as low-end, low-price computing and
communication technology.

These ideas are utilised by Johan Himberg. Himberg studies data mining and visualisa-
tion for context-awareness and personalisation [68]. He especially focuses on sensor data
captured by on-board sensors of mobile phones. He investigates how to infer context from
features derived from the sensor signals. Johan Himberg especially only utilises simple
statistical methods in order to reach his aim.

An approach focused on the whole process of context inference is proposed by Jani
Mäntyjärvi. Mäntyjärvi considers the problem, how low-level contexts can be obtained

20

from raw sensor data [59]. This problem is basically related to the extraction of features
from information sources. For each context a set of features is relevant that determines the
context. After the feature inference process, Mäntyjärvi composes the sampled features
to obtain a more expressive description of a context. This operation is considered as the
processing of low-level contexts to obtain high-level contexts.

Mäntyjärvi presents a procedure for sensor-based context recognition. This approach
is referred to by him as bottom-up approach, in contrast to a top-down approach that
starts from the high-level context as it had been proposed by Dey in [58]. Included in
this procedure is also a method to extract information on contexts and to convert it into a
context representation. Following his definition, raw sensor data is sensor data like 24◦C, or
70% humidity. Low-level contexts are defined as pre-processed raw sensor data where the
pre-processing may be constituted, for example, from noise removal, data calibration and
reforming of data distributions. Generally, low-level contexts are conditions like ’warm’ or
’normal humidity’. Higher level contexts are then created by an additional processing of
low-level contexts that results in an action like ’having lunch’.

Main assumptions prior to his work are that sensors attached to computing devices have
to be carefully chosen in order to be useful and that context actually can be recognised by
sensor data.

The term context atom was introduced in [69] and has been used by Jani Mäntyjärvi,
Johan Himberg and Pertti Huuskonen to describe basic context dimensions which are
derived from low-level sensor data by pre-processing [70].

2.1.4 Frameworks and architectures for context-awareness

In order to facilitate the development of context-aware applications, several authors have
proposed frameworks and architectures for this task.

In his PhD thesis in 1994 [71], Schilit concludes that traditional software approaches are
not well-suited to building distributed mobile systems. The main reason for this dilemma
is that applications are seldom designed to adapt their behaviour to the ever-changing
mobile environment of the user in which they are executed. By designing an architecture
that communicates context changes to the application, Schilit proposes a solution to this
problem.

Additionally, Schilit identifies the problem that the user context may not be shared by
distinct applications, although they are actually executed in the same user context. Schilit
proposes the use of a user agent that administers the user context in order to provide a
persistent dynamic context for all applications of the user.

Furthermore, he presents a system structure for use with context-aware systems. He
recommends a distribution of system functions and designs protocols for communication
between the entities.

These thoughts are further developed in the context toolkit that was introduced in 2000
[58]. It was proposed and developed by Anind K. Dey at the Georgia Institute of Technol-
ogy. The context toolkit constitutes a conceptual framework that was designed to support
the development of context-aware applications. It is widely accepted as a major reference

21

for context-aware computing. An important contribution of this framework is that it dis-
tinguishes between context sensing and context computing. Context sensing describes the
process of acquiring information on contexts from sensors while context computing refers to
the utilisation of acquired contexts. Basic components in this architecture are context wid-
gets (encapsulated sensors), aggregators and interpreters. However, the Context Toolkit
is not generally applicable for arbitrary context-aware applications since it exclusively fea-
tures discrete contexts and does not consider unreliable or unavailable sensor information
[72].

Later on, Albrecht Schmidt presented a “working model for context-aware mobile com-
puting” which is basically an extensible tree structure [67]. The proposed hierarchy of fea-
tures starts with distinguishing human factors and the physical environment and expands
from there. One of the major contributions of his PhD thesis is a framework supporting
design, simulation, implementation and maintenance of context acquisition systems in a
distributed ubiquitous computing environment.

In 2003, Karen Henricksen introduced a novel characterisation of context data in ubiq-
uitous computing environments [60]. Her introductory study of the ubiquitous computing
environment especially focuses on challenges in providing computing applications in ubiq-
uitous computing environments. These issues can be summarised as the autonomy of
computing applications, dynamic computing environments, dynamic user requirements,
scalability and resource limitations. Henricksen concludes that this set of challenges neces-
sitates a new application design approach. Henricksen proposes a conceptual framework
and a corresponding software architecture for context-aware application development.

This framework consists of programming models to be used for context-aware systems.
Furthermore, Henricksen proposes the use of the Context Modelling Language (CML), a
graphical notation of context that supports the specification of application requirements
by the application designer.

In 2004 the Solar framework was presented by Chen [66]. It provides means to derive
higher-level context from lower level sensor data.

The framework basically represents a network of nodes that interact with each other. It
is scalable, supports mobility of nodes and is self managed.

Solar is designed as a service-oriented middleware in order to support the distribution
of its components. The middleware supports sensors, as well as applications. Components
and functions can be shared between applications. The data flow between sensors and
applications may be composed as a multi-layered acyclic directed graph both at design
time or at runtime.

Together with Solar, Chen provides a graph-based programming model, that can be
utilised for the design of context-aware architectures.

2.1.5 Applications utilising context

Several applications that utilise context have been developed in recent years. In this section
we introduce a set of applications that illustrate the uses and application fields of context-
aware computing applications. The number of context-aware applications has reached

22

an immense quantity. It is beyond the scope of this document to present an exhaustive
overview of these applications. The examples presented are chosen in order to illustrate the
broad spectrum of approaches and to show the possibilities for context-aware applications.

With the MediaCup [46], Hans W. Gellersen, Michael Beigl and Holger Krall have pre-
sented a context-aware device that demonstrates one part of Mark Weiser’s vision of ubiq-
uitous computing. The MediaCup is a coffee cup that is enriched with sensing, processing
and communication capabilities. The cup was developed to demonstrate how ordinary,
everyday objects can be integrated into a ubiquitous computing environment. The context
data obtained by the cup is related to the location of the cup, the temperature and some
movement characteristics. This information is obtained by a temperature sensor and an
acceleration sensor. Context information can be broadcast with the help of an infrared
diode. The MediaCup has been utilised in research projects in order to provide a sense of
a remote presence and in order to log user activity.

Another application proposed by Gellersen et al. is context acquisition based on load
sensing [73]. With the help of pressure sensors in the floor of a room, the presence and
location of objects and individuals can be tracked. Furthermore, it is shown that it is
possible to distinguish between objects and that even movement of objects can be traced.
The authors consider the use of load sensing in everyday environments as an approach to
acquisition of contextual information in ubiquitous computing systems. It is demonstrated
that load sensing is a practical source of contexts. It exemplifies how the position of objects
and interaction events on a given surface can be sensed.

Various implemented context-aware applications have been developed by the Context-
Aware Computing Group at the MIT1. An illustrative example is the ’Augmented Reality
Kitchen’ that monitors the state of objects in a kitchen in order to help the kitchen-worker
to keep track of all simultaneous events. The kitchen displays the location of tools and the
state of cooking processes. In the related project ’KitchenSense’, a sensor-rich networked
kitchen is considered that attempts to interpret peoples’ intentions and reacts accordingly.

Additionally, the SenseBoard has been proposed in [74]. The SenseBoard approach is to
combine the benefits of the digital world with those of the real world. The SenseBoard is
a hardware board with a schedule projected onto it. Discrete information pieces that are
stored in a computer can be manipulated by arranging small items on the board. These
items are entries of the schedule. The naming of each item is computer-controlled and
projected onto the item. Like in a digital schedule, items can be easily arranged, grouped
together or expanded. Operations and the status of the schedule are projected to the
physical schedule on the board. Like with real-world objects, people can manually arrange
the items on the hardware board. This makes the operation more intuitive and enables the
participation of larger groups in the process of finding an optimal schedule for a given task.
Detailed information on each item can be made available and a schedule can be digitally
exported, stored or loaded and also printed.

1http://context.media.mit.edu/press/index.php/projects/

23

2.2 Concepts and definitions

As mentioned in section 2.1, the concepts and ideas related to context-awareness that have
not yet been commonly adopted among researchers even include the notion of context and
context awareness itself. Since context-awareness is a comparably young research field,
we find concepts and notions for which a variety of only partially redundant definitions
have been given. On the other hand, several supplementing concepts are only vaguely
described as, for example, the notion of high-level contexts, low-level contexts and raw
data. In order to provide a stringent view on our research topics, we have to agree on
non-ambiguous definitions for the concepts we utilise.

In this section we discuss those notions we adopt from recent work and further find
comprehensive definitions for insufficiently defined concepts where necessary.

2.2.1 Ubiquitous computing

In our view of ubiquitous computing we agree on the vision introduced by Mark Weiser
in [50]. As a prerequisite to our study, we assume a world in which computation has
both infiltrated everyday life and vanished from people’s perception. We believe that both
developments are not only possible but predefined, since computing devices continuously
decrease in size and power consumption while increasing in computing power at the same
time. In the vision of ubiquitous computing, everyday objects are equipped with computing
power and communication interfaces in order to compute and spread information. In our
study we assume that computing is done in a ubiquitous environment, where multiple
applications on stationary and mobile devices interact with one another.

Several authors have observed challenges of ubiquitous computing environments. The
authors of [60] for example, state increased autonomy, a dynamic computing environment,
dynamic user requirements, scalability issues and resource limitations as most serious issues
in UbiComp environments. Depending on the application type, further issues may be
named.

2.2.2 Sensors, context sources and features

In context-aware computing domains, the input data for applications is captured by sensors.
Basically, a sensor is a piece of hardware or software that provides information on the
environment. Humans or animals are not considered sensors but might trigger and influence
sensor outputs. We distinguish between hardware sensors and software sensors. Hardware
sensors are physical entities that react to stimuli from the physical environment and provide
a software interface to publish notification describing these stimuli. Hardware sensors
might, for example, measure the temperature, the light intensity or the humidity. Further
hardware sensors are, for instance, a fingerprint reader or also a computer keyboard or a
mouse that monitor user input.

Software sensors are applications that react to software generated stimuli and that output
a software generated notification describing these stimuli. Example software sensors are a

24

calendar, an address book or an application a user is interacting with.
A sensor might provide various distinct aspects of a given context. Consider, for example,

an audio sensor that provides the loudness as well as the number of zero crossings. These
distinct aspects of context are often referred to as context features [57, 67]. Since we take
a computation-centric approach, we are especially interested in the entity that provides
information about a context feature.

We refer to this entity as a context source and consider context sources as atomic in-
formation sources for context-aware architectures. Context sources are not synonymous to
sensors that produce context data. One sensor might incorporate several context sources.
A context source basically produces output values that are related to one specific feature
of a sensor.

2.2.3 Context and context types

As we have discussed in section 2.1.1 various definitions of context have been given in the
literature that are only partly redundant. We adopt the definition given by Anind K. Dey
in [58] since it is most general and can be applied to all application areas relevant to our
research. However, Dey explicitly intertwines context with the interaction of applications
and humans or, as he states it, with users. We have a slightly wider understanding of
context that is not restricted to the user-application interaction but that covers contexts
of arbitrary entities.

Definition 2.2.3 : Context

Context is any information that can be used to characterise the situation of an
entity. An entity is a person, place, or object.

Other definitions of context are too restricted to special cases to be applied in our general,
computation-centric, consideration. Considering the revised definition given by Karen
Henricksen, after which context is the set of circumstances relevant for the completion of
a task [60], we disagree.

This revised definition differs from our understanding of context. First of all, we do
not agree with the restriction of context to the set of circumstances that are of potential
relevance for the completion of a task. The context driving, for example, could be partly
sensed through the presence of the bluetooth ID of the car radio. However, the car radio
is of no relevance considering the completion of the context driving.

In addition to the general understanding of the concept of context, a more concrete frame
is required in order to be able to actually apply computations on context. We introduce the
notion of a context element that utilises the definition of Dey and enhances the description
to suit our needs in the processing of contexts.

Definition 2.2.4 : Context element

Let i ∈ N and ti describe any interval in time. A context element ci is a
non-empty set of values that describe a context at one interval ti in time.

25

An example for a context element that is constituted from the temperature, the light
intensity and an IP address is then c = {24◦C, 20000lx, 141.51.114.33}. Observe that this
definition refers to an interval in time rather than to a point in time. This accounts for the
fact that the information describing a context is obtained by measurements of the real world
that typically require a time-span rather than a time instant in which the measurement
is performed. However, the shorter the time span the more accurate a context element
describes a context at one point in time. Since the values are obtained by measurements,
we may assume that the count of context elements is finite.

In [75] it was suggested that the context types location, identity, activity and time are
more important than other types in order to describe a context. Undoubtedly, studies
that utilise these context types for context-aware applications dominate studies on other
context types. One reason for this is that implications obtained from these mentioned
context types seem to be intuitive to most people. However, we argue that the type of
context useful for an application is inherently dependent on the application type and that
this context might be ignorant of the location, identity, activity or time.

Consider, for example, an arbitrary person sitting in her room and reading a book. While
this scenario appears to be tranquil when only the four context types location, identity,
activity and time are taken into account, the general assessment might change with the
utilisation of further context sources. If, for example, the room temperature instantly
rises or the amount of methane in the air increases, the same situation then appears in a
different light. Danger might be at hand and a swift reaction is required.

We therefore assume that the application defines the relevance of distinct context types.
The relevance could be modified by any kind of weighting or duplicating of contexts. Since
we propose an architecture that utilises contexts for arbitrary applications, we do not prefer
any context type above any other. For the remainder of this document we do not bother
about the correct and application specific weighting, but assume that the contexts utilised
have been filtered and weighted according to the application needs in advance. Several
aspects of context have been introduced in [76, 77]. A further structured and extended
distinction of context types is depicted in figure 2.2. This figure should be understood as a
working model of context aspects. Context specifications for the context classes depicted in
the figure are examples for the context classes and can be carried on by other examples that
logically fit into the corresponding context class. Further aspects of context not depicted
in the figure might well be found.

2.2.4 Context abstraction levels

Context does not necessarily equal context. Two contexts of the same type that describe the
same time interval might nonetheless differ from each other in value. Context has several
levels of abstraction depending on the amount of pre-processing applied. A temperature
context might, for example, hold the value 24◦C as well as the value ‘warm ’. These context
values might originate from identical measurements of context sources. However, the data
abstraction level differs. The value ‘warm’ is at a higher abstraction level than the value
24◦C.

26

Figure 2.2: Aspects of context

Although several authors use the notions high-level context, low-level context and raw
data, in order to describe various context abstraction levels, no exact definition of these
notions is given in the literature. These notions are therefore often used with different
meanings. Some authors, for example, use the term low-level context in the same sense
as other authors use the term raw data. Typically, higher context representations tend to
be symbolic while lower representations are more often numeric. Generally, the definition
of several data abstraction levels is reasonable since the kind of representation used for
operations on context elements may affect the accuracy of the operation [78].

A rough distinction between low-level and higher level contexts is made by Anind K.
Dey, Bill Schilit and Marvin Theimer [58, 52]. Following this discussion, low-level context
is used synonymously for data directly output from sensors, while high-level contexts are
further processed. This processing can, for example, be an aggregation, an interpretation,
a data calibration, noise removal or reforming of data distributions.

Jani Mäntyjärvi further distinguishes between processed contexts that describe an action
or a condition [59]. Following his notion, raw data can be, for example, 24◦C or 70%
humidity. While for low-level contexts these are further processed to conditions like ’warm’
or ’high humidity’. Finally, a high-level context is an activity as, for instance, ’having
lunch’.

Actually, these distinctions between high-level and low-level contexts are only required
(and properly understood) by humans. From a computational viewpoint, actions and
conditions are both string values obtained by further processing of raw data. From a
computation-centric standpoint, both constructs are consequently on the same level of
data abstraction.

27

High-level context Low-level context Raw data Context source

walking 14◦C 001001111 thermometer
walking 57.2◦F 001001111 thermometer
watching movie 64dB 109 microphone
listening music 64dB 109 microphone
at the beach 47◦

25.5634’N;
007◦

39.3538’E

GPRMC3 GPS sensor

swimming 47◦

25.5634’N;
007◦

39.3538’E

GPGGA4 GPS sensor

writing z 0x79 keyboard [en]
writing y 0x79 keyboard [ru]
writing z 0x7a keyboard [de]
office occupied z 0x7a keyboard [de]

Table 2.1: High-level contexts, low-level contexts and raw context
data for exemplary context sources.

8 GPRMC Example:
$GPRMC,191410,A,4725.5634,N,00739.3538,E,0.0,0.0,181102,0.4,E,A*19

9 GPGGA Example:
$GPGGA,191410,4725.5634,N,00739.3538,E,1,04,4.4,351.5,M,48.0,M,,*45

A computation-centric approach

We therefore take an alternative, computation-centric, approach and classify the level of
abstraction of contexts by the amount of pre-processing applied to the data. Throughout
our work we distinguish between high-level context information, low-level context informa-
tion and raw context data2 (cf. table 2.1).

In table 2.1, exemplary raw context data, low-level contexts and high-level contexts are
depicted. Note that in all data abstraction levels different context representations are
possible even if the measurement is identical. An example well-suited to illustrate this is
the keyboard sensor. The same key pressed on an English and a Russian keyboard (raw
context data identical) might result in different low-level contexts due to an alternative
language setting (acquisition procedure). In the Cyrillic layout the letter ’y’ is obtained
while it is the letter ’z’ for the English layout.

However, for German keyboards the letters ’y’ and ’z’ are exchanged compared to the
English layout, hence leading to the same low-level context even though the raw context
data is different. Furthermore, different context interpretation procedures may lead to

2For ease of presentation, we utilise the notions ’raw data’ and ’raw context data’ synonymously.

28

distinct high-level contexts (office occupied or writing).
A discussion of the three data abstraction levels ‘raw context data’, ‘low-level context’

and ‘high-level context’ is given in the following.
The output of any context source is considered as raw data since it most probably needs

further interpretation. Already at the very first abstraction level of raw context data, basic
operations on the measured samples might be suggestive. Computations that might be
applied on this data include mechanisms to correct possible measurement or sensor errors,
filters that might abstract from irrelevant measurements or also processes that weight the
measurements.

Different manufacturers produce sensors with varying output even though the sensors
might belong to the same class. This is because of possibly different encoding of the sensed
information or due to a different representation or accuracy. Two temperature sensors may
for instance differ in the unit (Celsius or Fahrenheit), in the measurement accuracy or in
the measurement range. A pre-processing of raw context data is necessary so that further
processing is not influenced by special properties of the context source itself. We refer to
this pre-processing as the context acquisition step. Low-level contexts are acquired from
raw context data in this pre-processing step.

The data has become low-level context elements after the context acquisition. The low-
level contexts of two arbitrary context sources of the same class measured at the same
time in the same place is identical with the exception of a possibly differing measurement
accuracy, provided that both context sources are in good order. The output of all context
sources for temperature may, for example, be represented in degree Celsius.

In order to obtain high-level context elements, further processing operations are applied.
Possible operations are aggregation, interpretation, semantic reasoning, data calibration,
noise removal or reforming of data distributions. We refer to this pre-processing as the
context interpretation step.

From low-level contexts describing the temperature, light intensity and the humidity it
might be possible to infer the high-level context outdoors/indoors. There is no limit to
the level of context interpretation. Several high-level contexts may be aggregated to again
receive high-level context elements. For our discussion, however, we do not distinguish
between high-level contexts of various context abstraction levels. For these three con-
text abstraction levels, the distinguishing factor is the amount of pre-processing applied.
Note, however, that we do not exactly define the amount of pre-processing for all three
context abstraction levels since it may vary between distinct application scenarios. For
our discussion it suffices that this construct of context abstraction levels is hierarchical.
The amount of pre-processing applied to high-level contexts always exceeds the amount of
pre-processing applied to low-level contexts in the same application scenario.

Observe that it is possible that two contexts of the same context type are differing in
their context abstraction level when the amount of pre-processing to derive these contexts
differs. While this might intuitively appear inconsistent, it is inherently logical from a
computation-centric viewpoint. The amount of computation or pre-processing applied to
contexts of distinct context abstraction levels differs. In addition, the information certitude
of contexts in distinct abstraction levels might differ. Various context processing steps and

29

Figure 2.3: Context pre-processing steps.

corresponding input and output data are depicted in figure 2.3.

2.2.5 Context data types

Since context is acquired from a set of heterogeneous context sources and is computed
at various levels of abstraction, context processing operations applicable to one subset of
contexts might be inapplicable to another subset.

As an example, consider IP addresses as context type on the one hand and temperature
as another context type. Temperature contexts contain an implicit order regarding their
magnitude while for IP addresses, an order cannot be provided in the same manner.

In [76] four data types have been introduced that group contexts applicable to the same
mathematical operations together. Following this discussion, we distinguish context data
types between nominal, ordinal and numerical categories. We omit the fourth category
interval that was proposed in [76] since the boundaries of any context type (the only use
for the interval category described in [76]) are provided for ordinal and numerical contexts
in our case anyway.

The only operation applicable to nominal context data is the equals operation. Contexts
of nominal context data type are, for example, arbitrary binary contexts, whereas symbolic
context representations like, for instance, activities (walking, talking) or tasks (cleaning)
are of nominal context data type.

Ordinal context data types further allow the test for an order between these contexts.
Examples for contexts of ordinal context data type are physical contexts like lighting or
acceleration when represented in symbolic notation like ’dark’ and ’bright’ or ’fast’ and
’slow’.

Contexts of numerical context data type allow arbitrary mathematical operations to be
applied on them. A good example for these context data types is the time. By subtraction,
the time difference between two contexts of this type can be calculated.

We further consider hierarchical contexts, that are applicable to the ’subset’-operation.
Similar to ordinal context data types, for hierarchical context data types an ordering of
the contexts is possible. However, the order might be any kind of hierarchy as a directed
tree or graph structure. Examples for a context type of this class are geographical contexts
in a symbolic representation as ’in office building’ or ’in town’.

The operators applicable to one context type limit the number of appropriate context
processing methods. A context processing method usually requires a minimum set of
operations on contexts. In order to be processed by a processing method, all processed
contexts therefore have to share this minimum set of operations. An easy solution to
equalise all contexts is to abstract from all operators not applicable to the whole set of

30

Context type nominal ordinal hierarchical numerical

Organisational + +
Social + +
User +
Geographical + +
Relative location + +
Task + +
Action +
Time + + + +
Relative time + +
Biological + +
Mood +
Physical + + +
Technological + + +
Equipment + +

Table 2.2: Operators applicable to various context types

available contexts. Clearly, this reduces the already sparse information we have about the
data and artificially restricts us to a smaller number of context processing methods.

Table 2.2 depicts the context data types of the context types introduced in figure 2.25.

Observe that the context data type is not related to the data abstraction level of contexts.
Low-level and high-level contexts alike might be of ordinal, nominal, numeric or hierarchical
context data type.

From one context abstraction level to the next higher one, the context data type may
swap to an arbitrary other context data type. While, for instance, in the aggregation of
contexts, the resulting context might likely support less operations than the operations
applicable to the set of contexts before the aggregation, it is also feasible to add further
operations by a mapping of contexts to elements that support these further operations.

2.2.6 Representation and illustration of contexts

We have now introduced the concept of context and have discussed context types, context
abstraction levels and context data types at a rather abstract, theoretical level. For any
problem domain, a good perception of the contexts and relations in this domain is at least

5The classification of context types to context data types represents one example classification that
is considered reasonable by the authors. However, a specific scenario might introduce context type
classifications that differ from the values depicted in the table. The important point here is that in a
given scenario the observed context data types might not be computed by arbitrary context prediction
algorithms

31

Figure 2.4: Illustration of the context interpretation step.

helpful for the next step, the approach to solve the problem at hand.
A straightforward way to illustrate low-level contexts is to map them into a multi-

dimensional coordinate system. This representation has first been considered by Padovitz
et al [79, 80, 81]. Although another distinction between low-level contexts and high-level
contexts has been applied, the same principle can also be applied in our case. The general
idea is to represent for every time interval a low-level context element by a vector in a
multi-dimensional coordinate system. Each coordinate axis represents a normalised aspect
of a low-level context element.

High-level contexts are then sets of low-level contexts that are assigned a label. Figure 2.4
illustrates the context interpretation step6.

Low-level contexts are represented on the left hand side by dots in a coordinate system.
On the right hand side, these low-level contexts are transformed to high-level contexts
which is basically a grouping of several low-level contexts together into a set of low-level
contexts.

This geometrical context representation is trivially extended to context sequences in
time by simply considering one further axis in the coordinate system that represents the
time. This more concrete, geometrical context representation assists us in the discussion
of several properties later on.

In our discussion we do not consider overlapping high-level definitions. A discussion of
this topic can be found in [81].

6The figure connotes that the high-level contexts ’sleeping’, ’working’, ’leasure time’ and ’disco’ can be
distinguished by the light intensity and the loudness. This labelling of high-level contexts is only for
an easier understanding of the described context interpretation step. Note that the necessary context
sources to accurately distinguish the mentioned high-level contexts is currently an unsolved research
problem.

32

3 Wireless Sensor networks

Adding [...] sensors to everyday objects will create
an Internet of Things, and lay the foundations of
a new age of machine perception.

(K. Ashton, co-founder and executive director of the Mas-
sachusetts Institute of Technology’s Auto-ID Center in a pre-
sentation in spring 1998)

With the term wireless sensor network commonly a network of distributed devices is
associated that consists of sensing and communication entities and that collaborate to
achieve a common objective. A wireless sensor network typically has one or more sinks to
collect data from all sensing devices. These sinks might, for instance, constitute the inter-
face of the sensor network to the outside world. Sensor networks can be applied to monitor
environmental stimuli and provide feedback on a monitored area. In particular, sensor
networks can be implemented in areas that are seldom or even hard to access. Examples
are the monitoring of underwater scenarios, animal monitoring by sensor networks, the ap-
plication in emergency situations like avalanche warning or the monitoring of earthquake
regions. Further applications include smart sensors to monitor and control manufacturing,
bio-sensors for health monitoring, weather or habitat monitoring and smart environments
for home entertainment [82]. Popular features of sensor networks are that these networks
are easy to deploy, cheap, and in the optimum case require low maintenance effort. The
following sections detail aspects of sensor networks that are related to cooperative and
collaborative transmission strategies in these networks.

These sections represent a comprised introduction to wireless sensor networks. An in-
depth discussion of these topics is elaborated in [8, 83].

3.1 The sensor node

Sensor networks are constituted of sensor nodes that are densely deployed either very close
or directly inside a phenomenon to be observed. Therefore, sensor nodes are routinely
required to work unattended in remote geographic areas.

These nodes typically consist of sensing, data processing, storage and communication
components. Figure 3.1 schematically depicts typical components of a sensor node. Due
to advances in integrated cirquit design the size, weight and cost of nodes is constantly
decreasing while accuracy and resolution are improved [82]

33

Figure 3.1: Components that typically constitute a sensor node [8]

A sensor node consists of some base units and application dependent units as a mobiliser
to apply some spatial movement to the node, a location tracking system as e.g. GPS or
relative positioning techniques (e.g. ultrasound) or a power generator (e.g. solar cells).
The following section details the base units depicted in the figure.

3.1.1 Power unit

Among the most important design aspects for sensor networks are related to the power
unit. As sensor networks are often designed to operate unattended over long time spans
and disconnected from an external power source, the energy consumption and capacity of
the power unit is a critical aspect.

Since the wireless sensor node is a microelectronic device, it can only be equipped with
a very limited power source in the order of less than 0.5Ah, 1.2V (Another estimation from
[83] is 2.2 to 2.5Ah at 1.5V). In a multi-hop ad-hoc sensor network, each node plays the
dual role of a data originator and a data router. The malfunctioning of few nodes can cause
significant topological changes and might require rerouting of packets and reorganisation
of the network. Therefore, power conservation and power management are of additional
importance.

Power consumption in a sensor network is divided into the domains sensing, communi-
cation and data processing. The most energy consuming task among these is the commu-
nication (reception and transmission of data).

Power units can also be accompanied by power harvesting units such as e.g. solar cells.

34

3.1.2 Sensing unit

Sensing units are usually composed of two sub-units, sensors and analog-to-digital con-
verters (ADCs). A sensor is a device that transforms physical parameters as temperature,
pressure or light intensity into analog electrical signals. The ADC transforms the analog
signals produced by the sensors to digital signals that are then further processed in the
processing unit and possibly transmitted by the transceiver in the communication unit. A
digital signal is a voltage signal that is either on or off but that does not allow for any
intermediate value.

It is possible that these digital signals are utilised to control different components or
parameters of the sensor nodes via actuators. An actuator is an electromechanical device
such as a relay that can control other parts of an electromechanical system.

Typical sensors are, for example, audio, light or humidity sensors as well as ball switches
or acceleration sensors.

3.1.3 Processing unit

The processing unit contains a processor and typically a small storage. It is responsible
for pre-processing of the information obtained by the sensing unit and for implementing
the communication related logic regarding the applications, the transport layer (e.g. TCP)
and the network layer (e.g. routing).

Typically, the sensor node will not directly transmit each data item obtained from the
sensing unit but convert the raw data to a common representation or possibly discard
redundant or highly error prone data in order to save energy for communication. The
processor decides when and which data to transmit via the communication unit.

The task of the processing unit can be summarised as enabling cooperation between
nodes in a network. Typically, microcontrollers are utilised in the processing unit of sensor
nodes due to their low power consumption.

3.1.4 Communication unit

The communication unit consists of a transceiver to connect the node to the sensor network.
A transceiver combines a transmitter and a receiver in a single entity. The communication
unit might implement radio, infrared or optical technologies. Typical implementations of
sensor nodes implement RF technology. However, for low-lying antennas the RF signal
propagation is influenced by surface roughness, reflecting and obstructing objects and
antenna elevation. For low-lying antennas, the signal intensity drops as the fourth power
of distance due to partial cancellation by a ground-reflected ray [84, 85]. Table 3.1 details
some path-loss measurements obtained in various environments that have been observed
in [85].

It is therefore more energy efficient to implement a multi-hop topology with short hops
instead of utilising high-power transmission nodes to cover greater distances. An alternative
communication paradigm is introduced in chapter 7. When the distance to a remote

35

Location Mean Path loss exponent Shadowing variance σ2 (dB)
Apartment Hallway 2.0 8.0
Parking structure 3.0 7.9
One-sided corridor 1.9 8.0
One-sided patio 3.2 3.7
Concrete Canyon 2.7 10.2
Plant fence 4.9 9.4
Small boulders 3.5 12.8
Sandy flat beach 4.2 4.0
Dense bamboo 5.0 11.6
Dry tall underbrush 3.6 8.4

Table 3.1: Mean power loss and shadowing variance obtained over the range 800-1000 MHz
and with an antenna height of about 15cm [85].

receiver exceeds the transmission range of a single node, nodes may cooperate during
transmission to combine their transmit signal components and improve the transmission
range.

Another possible communication mechanism is infrared. Infrared communication is li-
cense free and robust to interference from electrical devices which is one major concern in
RF-based devices. RF-based transceivers are therefore cheap and easy to build solutions.
However, IR is only feasible in direct line of sight between nodes.

An alternative approach is detailed in [86]. The authors utilise the optical medium
for transmission. Finally, wired communication is of course possible and in fact often
implemented as a communication medium in sensor networks.

In the following sections we will assume sensor networks that utilise RF-transmission
technology.

Transceiver design

A transceiver is an entity that combines transmission and reception capabilities. A typical
transceiver consists of a Radio Frequency (RF) frontend and a baseband processor. The
RF frontend processes the analog signal as it is actually transmitted or received over the
wireless channel. The signals in the radio frequency band are typically of high frequency
as, for instance, in the 2.4 GHz ISM (Industrial, Scientific and Medical) band.

Processing at these high frequencies would surcharge the limited processing capabilities
of sensor nodes. It is, in fact, even uncommon to employ, for example, oscilloscopes that are
capable of visualising frequencies higher than about 1 GHz. Therefore, the radio frequency
signals are transformed in an intermediate frequency (IF) section to digital signals by
analog-digital converters (ADC) and are downconverted by digital downconverters (DDC)
to lower frequencies of several kHz (cf. figure 3.2). These lower frequency signals are referred
to as the baseband signals which are then processed by the sensor node’s processor.

36

Figure 3.2: Schematic of a transceiver design.

Transceiver states

Normally, a transceiver is in one of four states:

• Transmit

• Receive

• Idle

• Sleep

In the transmit and receive states, the transceiver transmits or receives RF signals. These
two states are typically the most energy consuming tasks of a sensor node. Consequently,
the time in which the transceiver is in transmit or receive states should be minimised to
reduce the energy consumption of a node.

In the idle state, the transceiver is not actually receiving or transmitting but ready to
receive an RF signal. In this state, some parts of the receive circuitry are switched off to
reduce the energy consumption.

In the sleep state, major parts of the transceiver are switched off. Many architectures
distinguish several sleep states depending on the amount of parts that are switched off.
For these sleep states, the recovery times and energy required to wake up differ.

3.2 Sensor networks

Sensor networks are constituted by sets of sensor nodes that build up a wireless network
and accomplish one or more tasks collaboratively. For sensor networks to be dispatchable
in inaccessible terrains and to work unattended over a long time span, it is desired to
incorporate self-organising capabilities. These enable the network, for instance, to establish
a wireless connection among nodes as well as routing paths along the network.

37

Figure 3.3: Schematic illustration of a sensor network implementation [8]

Applications for sensor networks range from health care over military or disaster moni-
toring to home appliances.

Figure 3.3 illustrates a possible implementation of a wireless sensor network. The sensor
nodes might be scattered in a field. In sensor networks we speak of sources and sinks.
For any communication between nodes in a network, the source is the sender node of the
information and the sink is the recipient. Each node has the capability to collect data and
to route data from a source to a sink either directly over a single hop or over a multi-hop
protocol. The sink may communicate over an external communication network with a task
manager node that is controlled and/or read out by a user.

In order to accomplish these tasks, wireless sensor networks require ad-hoc networking
techniques. However, common ad-hoc networking protocols are usually not well suited for
wireless sensor networks since they typically differ in various aspects from wireless ad-hoc
networks. Some of the differences are

• The number of nodes in a sensor network might be several orders of magnitude higher
than in ad-hoc networks

• Sensor nodes are densely deployed

• Sensor nodes are prone to failures

• Due to node failures or environmental impacts, the topology of a sensor network
changes frequently

• Sensor nodes mainly use a broadcast communication paradigm, whereas most ad-hoc
networks are based on point-to-point communications

38

• Sensor nodes are limited in power, computational complexity and memory

• Sensor nodes typically not utilise global identification because of the large amount
of overhead and the large number of nodes

As we will see in section 4 the transmission range of a node is restricted due to growing
signal decay with increasing transmission distance. Consequently, the maximum distance
for a single hop is restricted. The classical approach to reach a distant receiver is to apply
a multi-hop protocol for transmission. In such a protocol, intermediate nodes are utilised
as relay nodes that forward received packages along the network.

It is sometimes claimed, that multi-hop transmission schemes are more energy efficient
than direct transmission schemes since the radiated energy for a direct connection is higher
than the sum of the radiated energy of relay nodes along the transmission path. The
intuition behind this assumption is that the decay in signal strength is more than linear with
increasing transmission distance (we will detail this path-loss property in section 4.1.2).

However, in general, this assertion is not correct. We can easily reduce this assumption
to absurdity by shortening the distance between relay nodes to a small ε so that nodes are
placed next to each other. The overall energy consumed by the extra nodes is then much
higher than the gain in transmission energy. For further details on this effect we refer to
[86].

Multi-hop transmission is feasible only when a chain of intermediate nodes exists so that
for each two neighbouring nodes in this chain the distance is smaller than the transmission
range. If this is not the case, multi-hop transmission is not possible. In section 7 we
introduce cooperative strategies to reach a distant receiver for which no intermediate nodes
are required. alternatively, relay stations with increased transmission range can be utilised
to bridge longer distances. Since the latter approach contradicts the WSN principle of
utilising standard, low-power and low cost nodes, we will not consider this idea in the
following.

3.2.1 Metrics to measure the quality of a WSN

Different wireless sensor network installations are utilised for distinct applications. Each
application has other requirements on a wireless sensor network. In order to quantify the
suitability of a concrete wireless sensor network instrumentation for a given application,
special quality metrics are developed. In the following section we discuss some typical
metrics to derive the quality of a given wireless sensor network instrumentation.

Fault tolerance

As nodes of a sensor network are cheap and low power devices, nodes might fail in the
course of the operation of a sensor network due to, for instance, power shortage, physical
damage and environmental interference. A network is therefore required to provide some
means of fault tolerance as, for example, an ability to sustain network functionality in
the presence of node failures. The reliability Rk(t) or fault tolerance of a sensor node is

39

modelled in [87] by using the Poisson distribution. The probability of not having a failure
within time interval (0, t) is then

Rk(t) = e−υkt (3.1)

where υk is the failure rate of sensor node k and t is the time period.

Scalability

Another relevant aspect for sensor networks is the scalability of the network. As sensor
networks consist of densely deployed nodes, the number of nodes in a network may easily
reach extreme values. The density might range to hundreds of nodes in a region of no more
than 10 m2. In order to be able to support such huge and dense networks, new protocols
are developed.

In [88] the density of a sensor network is calculated as

η(R) =
N · πk2

A
(3.2)

where N is the number of nodes, A is the region and R is the transmission range.

3.2.2 Mobility in wireless sensor networks

In practical environments, for WSNs, often mobility of some kind is involved. Generally,
three types of mobility may apply. These are mobility of nodes, mobility of sinks or mobility
of objects that are monitored by the network.

When the wireless nodes themselves are mobile we speak of node mobility. This might
be the case, when sensor nodes are attached to moving vehicles, or also cattle, for example.
In the presence of node mobility, the network is required to frequently reorganise, for
example, connection tables and routing paths.

Generally, the trade-off for this reorganisation is to achieve sufficient organisation of the
network at reasonable overhead in communication and energy consumption.

When sinks are mobile, especially, when this concerns since nodes external to the network
as, for example, a user with a PDA walking alongside the network, the same challenges
occur as in the scenario of mobile nodes, but the effects are restricted to nodes near the
mobile sinks [89].

A common case in wireless sensor networks is that an object that is monitored is mobile.
In this case, mobility mainly affects the activity of nodes. While nodes that are far away
from the moving object can remain in a sleep mode, nodes near the object are required
to wake up from sleep. Especially interesting in this context are algorithms to derive the
nodes that wake up next, with regard to the movement of the object. In [90] this has
been introduces as the Frisbee-model along with algorithms to handle the wake-up front
of nodes.

40

3.3 MAC protocols

MAC protocols coordinate the communication among nodes or, more precisely, they coor-
dinate the times when a number of nodes access the shared medium.

Since energy consumption is one of the key problems in wireless sensor networks and
communication is typically the most energy consuming task, an important aspect of a
MAC protocol is its ability to reduce the energy consumption of a node. These protocols
therefore might switch the transceiver into a sleep mode.

Medium Access Control (MAC) protocols are the first protocol layer above the physical
layer and are therefore impacted by the physical layer properties.

3.3.1 Requirements and design constraints

Requirements for MAC protocols are a high throughput, stability, fairness, low access delay
(time between packet arrival and first attempt to transmit it), low transmission delay (delay
between reception of a packet and first approach to further forward the packet over the
wireless channel) and a low overhead.

The overhead may result from collisions, from the exchange of extra control packets but
also from protocol overhead, such as large header or checksum fields.

Typically, as nodes communicate over a wireless channel, also a high robustness against
bit errors is required. Furthermore, a constant problem is the energy consumption due to
protocol design. Popular protocol related energy problems result from collisions, overhear-
ing and idle listening.

Collisions: Whenever a collision occurs the transmission energy spent for all packets
involved in the collision is wasted. Collisions can be avoided by design, for instance,
through fixed assignment schemes such as TDMA or by demand assignment protocols.
Another way to reduce the probability of a collision is, naturally, to reduce the number
of packets transmitted in the network. Therefore, when the expected load in a sensor
network is sufficiently low, collision avoidance schemes can be omitted as they also
require channel resources.

Overhearing: Due to the broadcast nature of the wireless channel a transmitted packet is
received by all neighbouring nodes and not only by the intended recipient. Although
the non-destination nodes might discard the packages received, they had spent energy
on their reception in the first hand. Especially in dense sensor networks, schemes that
reduce the frequency of overhearing, the gain in energy resources can be significant
[?, ?]. However, observe that overhearing is sometimes wanted. Multi-hop-routing,
for instance, is only possible when nodes overhear and forward packets that are not
addressed to them.

Idle listening: A node in its idle state is ready to receive a packet but not actually
transmitting or receiving information. Although the energy consumption in this
state is less resource demanding than for the transmit or receive states, the energy

41

Figure 3.4: Schematic illustration of the hidden node problem and the exposed node sce-
nario

consumption might be significant for longer idle periods. It is therefore desired not
only to reduce the time a node remains in transmit and receive states but also to
reduce the time a node resides in its idle state. A solution is to switch to sleep mode
more often. However, since mode-changes also cost energy, the frequency of these
also pose a tradeoff to consider in the design of protocols.

A prominent problem in wireless sensor networks is the hidden node problem. It occurs,
when the nodes transmit in a CSMA protocol. Consider the sensor placement in figure 3.4
In the figure, dashed lines represent transmission ranges. When node A is transmitting
information to node B and C is transmitting information to node B at the same time, both
nodes, A and C are not capable of sensing the transmission of the respective other node
and thus are not capable of preventing the collision occurring at node B when both, node
A and node B transmit simultaneously.

Another aspect is the exposed node scenario. In this scenario, node B transmits a packet
to node A and a short time later, node C is ready to transmit a packet to node D. While
both transmissions are possible simultaneously since node D is out of reach of node B
and node A can not be reached by node C, node C would not transmit its data, since it
senses that the channel is already used and concludes that a transmission would lead to a
collision. In this way, the transmission is delayed unnecessarily.

3.3.2 A standard protocol for wireless sensor networks

Other wireless protocols can, of course, also be utilised for wireless sensor networks, how-
ever, the special requirements of the wireless communication in a dense network of resource

42

Figure 3.5: Schematic illustration of IEEE 802.11 RTS/CTS handshake

restricted nodes may lead to a low efficiency of these protocols. As an example we will
consider the application of the IEEE 802.11 protocol [91] with its RTS/CTS handshake.
RTS and CTS packets are special control packets. The abbreviations stand for Ready to
Send and Clear to Send. Figure 3.5 illustrates the RTS/CTS handshake in IEEE 802.11
protocols.

In this example, node B wants to transmit data to node C. In order to announce its
intention, node B sends an RTS packet. This packet contains the addressee of the com-
munication and a probable transmission time for the transmission. Both neighbouring
nodes A and C receive the RTS message and therefore the estimated transmission time.
Based on this information, node A allocates an internal timer called Network Allocation
Vector. (NAV) The NAV indicates a busy medium so that node A will not try to access the
medium. Node C, the addressee of the RTS packet answers with a CTS packet that again
contains an estimation of the time required to transmit the data. Apart from node B all
other nodes neighbouring C receive this CTS packet and can again calculate a NAV. Since
the NAV was calculated by nodes receiving both, the CTS and the RTS packets, all nodes
neighbouring both communicating nodes B and C calculate a NAV and free the medium
in order to avoid collisions (we will see later, that collisions can occur anyway). After
receiving the CTS packet, node B then transmits the data and awaits an acknowledgement
from node C.

Problems with RTC/CTS handshake

While this RTS CTS handshake scheme is successfully applied in the IEEE 802.11 protocol,
in dense wireless sensor network, the frequent transmission of control packets (RTS, CTS,

43

Figure 3.6: Schematic illustration of the hidden node problem and the exposed node sce-
nario

Ack) may lead to congestion and collision. Figure 3.6 illustrates two problems with the
RTS/CTS handshake procedure in dense wireless networks.

One problem may occur when one node is not able to receive a CTS packet due to a
collision with an RTS packet. In this case (see figure 3.6, left), a node A sends an RTS
packet to a node B that in turn answers with a CTS packet. However, this CTS packet
is not received by all neighbouring nodes of B. In particular, a node D transmits an RTS
packet to node C so that the RTS and CTS packets are colliding at node C. Consequently,
node C neither answers the RTS request from D nor does it know of the CTS transmission
by node B. Node D, after not receiving a CTS response retransmits its RTS request. This
time it is acknowledged by node C. unfortunately, the CTS transmitted by node C now
collides at node B with the data transmitted by node A.

Another problem is the collision of data transmissions as illustrated in figure 3.6, right.
Here again node A requests a transmission to node B. This time, the CTS transmitted by
node B overlaps with an RTS request sent by node C to node D. As both, node A and
node D did not know of this problem, the protocol is continued as normal until a collision
in the data transmission from node C and node A occur.

In both cases, the transmission was not successful and has to be repeated at the cost
of further energy for the transmission of control messages and data between nodes. Is is
argued if this high control overhead of the RTS/CTS handshake is worthwile when only
small data packets are transmitted. For long data packets this overhead can be neglected.
However, in wireless sensor networks, the data to be transmitted is typically small. Also,
longer data packets are more likely to suffer form bit errors and must be retransmitted
more often so that in wireless sensor networks long data packets are typically fragmented
into smaller ones.

44

Figure 3.7: A generic Wake Up Radio scheme

3.3.3 Wake up radio

Since transmission and receive states are most energy consuming tasks and also the idle
task is quite resource consuming, one might think of building a radio that stays in the
sleep mode for a maximum amount of time. In an optimum case it would be able to wake
up the radio of a node on demand. The main idea of a wake up radio is to implement
a very low power receiver that has no other task than to wake up the regular transceiver
of a node. In this manner, a node can be in the receiving state only when it is requested
to listen to the channel. Unfortunately, such a radio has not yet been designed, although
various running projects are claiming to build it as part of their project aim1.

A popular implementation is therefore for the radio to periodically wake up from the
sleep mode to listen on the channel for potential communication requests. Figure 3.7
illustrates this concept.

Here, the wake up period denotes the time between two consecutive listen periods of
one node. In a listen period, the node listens to the channel for communication requests.
Finally, in the sleep period, the node is not listening. We denote the duty cycle of a node
by the fraction of listen period to wake up periods:

Duty Cycle =
Length of the listen period

Length of the wake up period
(3.3)

A second node, willing to communicate has to transmit a preamble that lasts not more
than one wake up period so that the listen period of the receiving node is covered. Two
often cited protocols that implement this basic idea are the STEM protocol and the S-MAC
protocol. For the STEM protocol, an extra channel is utilised for data transmission and
notification of sleeping nodes. In case of the S-MAC protocol, the same channel is utilised.

Another solution that deviates from the generic approach depicted in figure 3.7 is the
mediation device protocol. In this protocol a mediation device is utilised ad an intermediate
node to coordinate the communication between other nodes. All but the mediation node
have their own, not synchronised sleep schedules. The mediation node is never in the sleep

1One example is the FP7-ICT-2007-2 project CHOSeN (http://www.chosen.eu)

45

Figure 3.8: A schematic illustration of the mediation protocol

mode. When a node wakes up and wants to send data, it informs the mediation node of
the address of the receiver repeatedly until an answer is received. Figure 3.8 schematically
illustrates the idea of this communication protocol. A Node that has data to send transmits
a Ready To Send (RTS) packet to the mediation node that also contains the address of
the addressee. A node that wakes up and has no data to transmit, requests data from
the mediation node via a Query packet. If not packet is received in reply to this Query
request, the node returns to the sleep mode.

When the Query of the node is, however, answered by the mediation node in a Query
response , it sends a Clear To Send (CTS) packet directly to the node willing to transmit.
Synchronisation of transmit and receive periods is achieved since the mediation node ob-
verses the frequency of RTS packets from the transmitting node. This transmission timing
is included in the CTS packet sent to the receiving node together with the address of the
transmitter node. The receiver then transmits the data and awaits an Acknowledgement
from the receiving node. Afterwards the timing of the receiving node is changed back
to the original schedule and both nodes again query the mediation node for transmission
requests.

46

4 Wireless communications

Communication technologies are necessary, but
not sufficient, for us humans to get along with
each other. [...]Technology tools help us to gather
and disseminate information, but we also need
qualities like tolerance and compassion to achieve
greater understanding between peoples and nations.

(Sir Arthur Charles Clarke – British author, inventor
and futurist.[92])

Similar to wired communication, wireless communication is about transmitting informa-
tion over a medium – in this case the air. An electromagnetic waveform is transmitted
between communication partners and information is modulated on top of this signal wave.
Basically, some phenomena observed in a wireless channel as, for instance, path-loss are
similar in a wired channel. However, wireless communication is more challenging than
wired communication as the medium utilised is shared between multiple communication
partners. Therefore, new effects are observed as slow fading and fast fading as well as
interference between transmitted signal components. We will introduce basic properties of
the wireless radio channel in the following sections.

4.1 Aspects of the mobile radio channel

Electromagnetic signals, utilised in wireless communication are radiated in wave-form.
These waves propagate from a transmitter omnidirectionally (in all directions/dimensions)
at speed

c = 3 · 108m

s
. (4.1)

c is the speed of light and approximates the propagation speed of electromagnetic waves.
An intuitive analogue (in two dimensions) for the propagation of electromagnetic waves
are the waves on the water surface created by a single drop into the water.

The signal is characterised by the transmission power PTX , by the frequency f and by
a phase offset γ. The wavelength

λ =
c

f
(4.2)

47

(a) Signal wave with phase offset γ and wavelength
λ

(b) Analogy between the wave form of an ana-
log signal and a rotating vector

Figure 4.1: Schematic illustration of a signal wave

of a signal describes the length (in meters) of one signal period. Figure 4.1(a) schematically
depicts an electromagnetic wave with frequency f = c

λ
, phase offset γ and transmit power

PTX .

We can imagine that this wave-form is created by the real part of a rotating vector
ζ = <

(
ej(ft+γ)

)
as depicted in figure 4.1(b). The height cos(ζ) of the vector ζ = <

(
ej(ft+γ)

)
equals the signal strength PTX and the rotation speed determines the frequency of the
signal.

4.1.1 Superimposition of electromagnetic signals

Since electromagnetic signals are transmitted generally undirected over a broadcast chan-
nel, several signal components originating from the same signal source may arrive the
receiver on multiple signal paths. Signals are reflected from obstacles or also might change
their propagation direction by Diffraction at edges of objects. Since the propagation speed
of all signal components is identical, signals propagated along indirect signal paths take
longer than a signal component along the direct line of sight (LOS).

At a receiver, all incoming electromagnetic waves add up to one superimposed sum
signal. In general, this is true for signals of arbitrary frequency and from arbitrary sig-
nal source. However, in practise, a receiver is capable of filtering a restricted frequency
spectrum so that only signal components that fall in this spectrum are considered by the
receiver. Figure 4.2 illustrates how a single sum signal is composed of individual signal
components. The interference of other signal components can therefore be constructive or
destructive. constructive interference occurs, when identical signal components arrive at a
remote receiver in phase so that the sum signal reflects an amplification of the individual
signal components. Destructive interference occurs when signal components arrive out of
phase. Naturally, destructive interference is the rule and might lead to a heavily distorted
sum signal that is not distinguishable by a receiver.

48

Figure 4.2: Composition of a superimposed sum signal from two individual signal compo-
nents

4.1.2 Path-loss

Electromagnetic waves decrease in signal strength when propagating over the wireless chan-
nel. The order of this decay varies in different environments. With higher frequencies the
effect is greater but it can also be reduced with improved (as, for instance, directed) anten-
nas. The actual path-loss in a given environment is heavily dependent on the environmental
characteristics. For analytic consideration, the path-loss in a given scenario can therefore
be approximated at most. For various scenario classes, different formulae are proposed to
approximate this path-loss.

A general formula to calculate the received signal strength (RSS) in free space is the
Friis free-space equation [84]:

PRX = PTX ·
(

λ

2πd

)2

·GTX ·GRX (4.3)

In this formula, PTX and PRX denote the transmit and receive power (i.e. the signal
strength), d is the distance in meters between sender and receiver and GTX , GRX are
the gain of the transmit and receive antennas. Observe that the distance d impacts the
received signal strength quadratically. This is due to the decrease of the electric field,
which decreases linear in the distance d so that the power per square meter decreases as
d−2.

The free-space equation can be utilised for outdoor scenarios in which no reflections of
the signal components are considered and in which therefore only a single direct signal
component from each transmitter is assumed. This assumption holds approximately in
wireless networks, when the receiver is sufficiently far away from the transmitter in the
so-called far-field distance. For cellular systems like GSM or UMTS this distance is in the
range of 1 km while for short range systems like WLAN it is in the range of 1 m [84].

49

The path-loss is defined as the fraction of the transmitted signal strength PTX to the
received signal strength PRX :

PLFS(ζi) =
PTX(ζi)

PRX(ζi)
(4.4)

A path-loss model suited in buildings or densely populated areas is the log-distance path
loss model [93]:

PLLD(ζi) =
PTX(ζi)

PRX(ζi)
= 10

L0
10 · dα · 10

xg
10 (4.5)

or in dB:

PLLD(ζi) = PTX(ζi)− PRX(ζi) = L0 + 10 · α · log10

(
d

d0

)
+Xg[dB] (4.6)

In these formulae, L0 represents the path-loss at a reference distance d0 in dB, while d
represents the length of the path and α is the path-loss exponent. Xg is a random variable
with zero mean that represents the attenuation due to fading in dB. When only slow fading
occurs, this variable may follow a Gaussian distribution with standard deviation σ in dB
(or a log-normal distribution of the received power in Watt). When only fast fading occurs,
this gain may be modelled as a variable following a Rician or Rayleigh distribution. Both
these distributions are introduced in section 4.1.3.

In Urban scenarios, where often no direct signal component exists, reflection of signals
and multipath propagation are common and have to be considered. Effectively, the received
signal strength is decreased at a higher pace in such scenarios. A diverse set of distinct
models to account for this increased path-loss are proposed in the literature. For the
purpose of our lecture we will not detail these models since generality is not achieved by
any of these. It is, however, important to note that the path-loss differs in various scenarios
and that this impact can be expressed by the path-loss exponent α. In the Friis equation,
α was set to 2. In other environments than in free space, it may also take other values up
to 6 (for instance shadowed areas and obstructed in-building scenarios) [84] but also α < 2
is possible. Table 3.1 depicts various path-loss exponents for distinct wireless scenarios.

4.1.3 Fading

As we have learned in the last section, the signal strength generally deteriorates with
greater transmission distance. Furthermore, the signal quality is fluctuating with location
and with time even when the distance to receiver is kept identical. There are two effects
that account for this problem and which are referred to as slow fading and fast fading.

Slow fading occurs when the coherence time of the channel is large relative to the delay
constraint of the channel. It is the result of environmental changes so that signal paths are
blocked or changed. Examples are Trees moving in the wind, moving vehicle, open or closed
doors or also pedestrians. The amplitude change caused by these effects can be modeled
by a log-normal distribution with a standard deviation according to the log-distance path
loss model.

50

Figure 4.3: Schematic illustration of fading effects on the RF signal

In contrast, fast fading describes a phenomenon that several signal components on mul-
tiple paths cancel out each other on the RF-level or also add up to a stronger signal.
Figure 4.3 depicts these effects schematically. Fading incursions of a fast fading profile are
to be expected in the distance of λ

2
so that the channel quality changes drastically even

when the receiver is moved for only a short distance. For simulation studies and to model
the channel in a given environment, typically statistical measures are utilised to model
the fading profile. Popular probability distributions to estimate the probability of fading
incursions are, for example, the Rice and Rayleigh distributions.

When a direct line of sight is experienced between receiver and transmitter, a dominating
signal component exists. We can then assume that the fast fading is weakened because
of the dominance of the main signal. This case can be modelled by the Rice distribution
which is defined as

f(A) =
A

σ2
e−

A2+s2

2σ2 I0

(
As

σ2

)
(4.7)

In this formula, I0(x) is the modified Bessel function with order 0. It is

I0(x) =
1

2π

∫ 2π

0

ex cos(Ψ)dΨ (4.8)

The value s in equation (4.7) describes the dominant component of the received signal and
σ is the standard deviation. We define the Rice factor as

K =
s2

2σ2
. (4.9)

This factor impacts the probability density function of equation (4.7) or impacts, intu-
itively, the most probable outcome for the probability function.

51

Figure 4.4: Probability density functions for various values of K

For K = 0, the Rice distribution migrates to the Rayleigh distribution:

lim
K→0

f(A) = lim
K→0

A

σ2
e−

A2

2σ2−KI0

(
A
√

2K

σ

)

= lim
K→0

A

σ2
e−

A2

2σ2−K 1

2π

∫ 2π

0

e
A
√

2K
σ

cos(Ψ)dΨ

=
A

σ2
e−

A2

2σ2−0 1

2π

∫ 2π

0

e
A
√

2·0
σ

cos(Ψ)dΨ

=
A

σ2
e−

A2

2σ2 (4.10)

Figure 4.4 illustrates probability density functions for various values of K.

The Rayleigh distribution

A

σ2
e−

A2

2σ2 (4.11)

describes the probability density function of the amplitude of the received signal if we
consider n � 1 signals of equal strength. It is utilised when all components of a received
signal are indirect and approximately equal in power as, for example, in urban scenarios
with dense house blocks.

With large K (very small dispersion component) the rice distribution evolves to the

52

Gauss distribution:

I0(x) →x�1→
ex√
2π

⇒ f(A) →x�1→
A

σ2
e−

A2

2σ2−K e
A
√

2K
σ√

2πA
√

2K
σ

f(A) =
A

σ2

√
2π
σ

√
A
√

2K
e−

A2

2σ2−
s2

2σ2 e
A
√

2K
σ

=
A

σ2

√
2π
σ

√
A
√

2K
e−

A2+s2−2As

2σ2

=

√
A

s

1

σ2π
e−

1
2(A−sσ)

2

(4.12)

This expression differs only in the term
√

A
s

from the Gauss distribution:

fGauss(x) =
1

σ
√

2π
e−

1
2(A−sσ)

2

(4.13)

With
√

A
s
≈ 1 the Rice distribution can be approximated by the Gauss distribution.

4.1.4 Noise, interference and spread spectrum systems

Electromagnetic waves are transmitted from multiple sources at various frequencies. Signal
components are reflected at buildings and other obstacles and are scattered in arbitrary
directions. Therefore, a certain signal power is always present at a given frequency range. It
is referred to as thermal noise. The exact noise figure is heavily fluctuating and dependent
on the environment encountered. In measurements taken in [94] a typical noise power of

PN = −103dBm (4.14)

was observed.
The thermal noise power can also be estimated analytically as

PN = κ · T ·B, (4.15)

where κ = 1.3807 · 10−23 J
K

is the Boltzmann constant, T is the temperature in Kalvin and
B is the bandwith of the signal. For example, in a GSM system with 200kHz bands and
an average temperature of 300K, the noise power is estimated to be PN = −120.82dBm.

In networks in which various parties communicate over the same wireless channel neigh-
bouring nodes cause interference as discussed in section 4.1.1. Electromagnetic waves that
are received simultaneously are combined and add up. Figure 4.5 illustrates this property
schematically for three distinct sinusoid signal components.

53

Figure 4.5: Superimposition of signal waves

For ι signal components <
(
ej(fit+γi)

)
that are received simultaneously, the sum signal is

ζsum =
ι∑
i=1

<
(
ej(fit+γi)

)
. (4.16)

To cope with interference and noise, concepts like clustering or CDMA are introduced. A
radio system typically requires a specific minimum signal power over the interference and
noise level. This is referred to as the signal to interference and noise ratio (SINR) which
is defined as

SINR =
Psignal

Pnoise + Pinterference
(4.17)

In cellular networks, to reduce the inter-cell interference from cells that utilise the same
frequency range, cells can be clustered to groups of neighbouring cells that operate at
different sub-frequencies in the whole available frequency band.

Figure 4.6(a) illustrates this procedure schematically with cells depicted as octagons.
Since cells with identical frequencies are separated a considerable distance, the interfer-

ence level is reduced as signal strength fades with transmission distance. The concept of
clustering is, for example, utilised in GSM instrumentations. The number of interfering
cells can be further reduced by utilising sectored antennas as depicted in figure 4.6(b)

For sensor networks, clustering is typically not implemented since relative locations of
sensors are seldom known so that the organisation of a cluster structure is not straightfor-
ward.

Instead, spread-spectrum systems are utilised in some sensor network instrumentations.
The general idea of these techniques is to spread the spectrum utilised for transmission to

54

(a) schematic illustration of a cellular network (b) Interfering cells with sectored antennas

Figure 4.6: Cellular network structures

reduce the impact and/or probability of interference for a transmission.

One possibility is to utilise frequency hopping techniques as, for example, implemented
in current Bluetooth networks. Bluetooth devices work in the ISM band between 2.402
and 2.480 GHz. The utilised frequency band is then divided into 79 sub-frequency bands
that are spaced by 1 MHz. A Bluetooth device changes the transmission frequency at a
high pace up to 1600 times per second.

The hop sequence is defined in a pseudo-random manner from the hardware-address of
a master node. When a new node wants to enter the network, it listens to the master and
waits for it to send inquiry access codes (IAC). On hearing such a message, the device sends
a package containing its device address and timing information. The master node then
controls the hopping of the device. Figure 4.7 illustrates this communication paradigm.

Due to this fast hopping frequency, interferences that affect only small frequency bands
are reduced. However, the processing required for frequency hopping schemes would typi-
cally surcharge the processing capabilities of sensor nodes.

A spread spectrum technique utilised in WSNs is code division (for instance, CDMA). In
these approaches, carrier signals are transmitted over a very wide spectrum (in contrast to
the frequency hopping approach) so that interference in limited frequency bands will not
have great impact on the overall transmitted information. Additionally, various devices
share the same frequency and and transmit simultaneously. The overlayed received signal
at a receiver is then again extracted and allocated to the distinct transmitters by utilisation
of code division.

Basically, the transmit sequence is combined by a pseudo-noise sequence at the trans-
mitter and then transmitted over the channel. Each transmitter has a unique pseudo

55

Figure 4.7: Frequency hopping communication in Bluetooth

noise-sequence. At the receiver, the original signal is obtained by decoding the transmit-
ted signal with the correct pseudo-noise sequence for a given transmitter.

Figure 4.8 illustrates the generation of a modified signal from the original signal through
XOR combination with a code sequence.

For CDMA systems code sequences for distinct nodes are required to be orthogonal to
each other. This means that it shall not be possible that one code sequence occurs in
any other code sequence. Therefore, the number of code sequences of a given length is
sharply limited. Such orthogonal codes are created by various algorithms. One example is
Orthogonal Variable Spreading Factor (OVSF).

OVSF guarantees that spreading codes of different length remain orthogonal. Starting
with a root spreading code ci,j ∈ {0, 1}i; i, j ∈ N, new spreading codes are created as
c2i,2j−1 = (ci,jci,j) and c2i,2j = (ci,jci,j). In this creation rule, x is the binary complement
of x. Figure 4.9 illustrates all OVSF codes of length 16, starting with c1,1 = (1).

4.2 MIMO

For wireless communication we traditionally assume one transmitter and one receiver each
with a single antenna. For such systems, capacity is increased by utilising diversity schemes
as, for instance, time diversity (several nodes are scheduled in transmit and receive time
slots), frequency diversity (several communication channels are implemented on various
frequencies) or diversity by modulation with different random sequences as, for instance,
CDMA.

Another possibility is to utilise spatial diversity. In section 4.1.4 we have already learned
of a frequency and spatial diversity scheme: Clustering. In this scheme, the same frequency

56

Figure 4.8: DS-CDMA scheme

Figure 4.9: Orthogonal OVSF spreading codes of length 16 with c1,1 = (1)

57

is utilised in distinct cells that have low interference to each other so that an area of the
communication system is served by several base stations in these cells. This is more
energy efficient than the alternative of a single base station since energy radiated degrades
quadratically at least (cf. section 4.1.2)

Another approach to utilise spatial diversity is by multiple transmit antennas for a single
communication link that are spatially separated. When the distance between antennas is
sufficiently large (a typical estimation is λ

2
), the communication channels established by

these antennas are considered independent. This means that for two distinct communica-
tion channels the channel quality fluctuates independently from each other so that with
sufficient amount of distinct channels the probability of all channels to experience inferior
channel quality is low.

We distinguish communication channels by the number of transmit and receive antennas.
The traditional and straight forward implementation is a system with one transmit and
one receive antenna, i.e. a single input, single output system (SISO). In a SISO system,
diversity is utilised only in the form of several independent parallel channels.

Other channel models are SIMO or MISO channels, where multiple transmitters but
only one receiver or vice versa are utilised.

When on both ends of the communication channels multiple transmitters/receivers re-
side, we speak of MIMO systems.

The transmission behaviour of a MIMO-System is characterised by the following Vector-
Matrix:

−−→
ζRX =


ζRX1

ζRX2
...

ζRXM

 =


h11 h12 · · · h1L

h21
. . . h2L

...
. . .

...
hM1 hM2 · · · hML



ζTX1

ζTX2
...

ζTXL

+


ζnoise

1

ζnoise
2

...

ζnoise
M

 (4.18)

In this formula,
−−→
ζRX = (ζRX1 , ζRX2 , . . . , ζRXM)T (4.19)

is the vector of received signal components ζRXi . The receiver has M inputs and the
transmitter L outputs. The channel matrix H defines how each input is connected to each
output. The vector

−−−→
ζnoise = (ζnoise

1 , ζnoise
2 , . . . , ζnoise

M)T (4.20)

is the vector of noise signals that is added onto the individual transmit channels for each
one receiver input.

The channel matrix can typically be altered only in particular boundaries e.g. by re-
ordering of the antennas. It is, however, mainly dependent on the environmental situation
of the wireless system.

These individual signal components can be utilised to improve the overall quality of the
communication channel. We can, for instance, improve the communication speed when

58

symbols are transmitted over these spatially separated channels in parallel instead of se-
quential transmission in a SISO-system. Alternatively, identical symbols can be transmit-
ted on all channels synchronised to improve the robustness against interference and signal
fading [95].

4.3 Beamforming

The general idea of (centralised) beamforming in wireless communication systems is to
create an antenna beam that is focused on a restricted area. Intuitively, signal components
form various transmit antennas are coherently overlaid to create constructive interference
in this area while outside, signal components constructively and destructively interfere to
create a general low noise level. For a fixed antenna array in which the exact relative
location of all antennas is known, the signals sent from each antenna element are suitably
weighted to focus and control the beam on a target location.

From each antenna element, identical symbols are transmitted. When these symbols
from n such antenna elements are perfectly aligned at a receiver location, the SINR is
amplified by factor n in the best case.

We can see this easily: When yi(t) = <(ej(2πfit+γi)) is the received signal component of
transmitter i, i ∈ [1...n],

n∑
i=1

<(ej(2πfit+γi)) (4.21)

defines the received sum signal. Consequently, when all signal components are in phase,
the signal strength is increased linear to the number of signal components. For centralised
beamforming, all antenna elements are tightly synchronised so that the antenna beam can
be controlled by the transmitter node.

59

60

5 Basics on probability theory

The generation of random numbers is too impor-
tant to be left to chance.

(Robert R. Coveyou – Oak Ridge National Laboratory.)

The methods discussed in later chapters require some basic knowledge on the notion of
probability. We can differentiate between probability spaces with finite or infinite number
of events. For this lecture it suffices to consider only probability spaces with finite events.
This section is designated to provide these basics on probability theory. Some of the
examples and illustrative explanations are lend from [96, 97].

5.1 Discussion

Historically, probability theory was designed to describe phenomena observed in games of
chance, that could not be described by classical mathematical theory. A simple example
is the description of the outcome of a coin-tossing.

Today we find probability in many aspects of everyday life. An omnipresent example is
the weather forecast. What we can learn from it is typically not that it will definitely rain
or not, but that a certain probability of rain was derived from distinct measurements at
various places all over the world and over a considerable amount of time. Although this
information provides no guarantee that it will actually rain or not, we have developed an
intuitive understanding of probability so that the information is useful to us although it
inherits the chance to be incorrect. Other examples are insurance, where probability is
used to calculate the probability of ruin or also lottery. The latter example is fascinating
as people regularly ignore the infinitesimal probability to win a considerable amount of
money.

A further instance where we regularly stumble across probability are quiz shows on TV.
Consider, for instance, the following setting (see figure 5.1). A quiz master confronts a
candidate with three doors A, B and C and explains that behind one of these the candidate
will find (and win) a treasure while the candidate will win nothing if he opens one of the
other doors. The candidate then decides for one of these doors, but before it is opened,
the quiz master opens one of the remaining two doors and proves that this door does not
cover the treasure. The candidate is now given the opportunity to rethink his decision and
vote for the closed door he didn’t vote for initially.

61

Figure 5.1: Which door hides the treasure?

What should the candidate do in order to maximise the probability to win the treasure?
We can show that it is better to alter the initial choice since the remaining closed door
contains the treasure with probability 2

3
.

Exercise 5.1.1 :

Explain why the probability that the treasure is covered behind the remaining
closed door is 2

3
.

5.2 Preliminaries

In order to calculate with probabilities we have to define an idealised model. We generally
assume that probabilities can be verified by conceptual experiments. This means that the
probability for an event represents the quotient of the number of occurrences of this event
to the number of repetitions of the experiment when the experiment is repeated very often.
An event with probability 0.4 should be expected to occur forty times out of one hundred
in the long run. A typical, often quoted example is the tossing of a coin. We expect as
an outcome of the experiment one of the two events head or tail with equal probability 1

2
.

Note that this assumption is idealised in that we assume a ’fair’ coin and disregard some
possible but unlikely events like the case that the coin will fall on neither side but, for
example, might roll away or stand on its edge.

We have already introduced some typical notation. The results of experiments or obser-
vations are called events. Events are sets of sample points. We denote events by capital
letters. The fact that a sample point x is contained in event E is denoted by x ∈ E. We
write E1 = E2 when no point x ∈ E1∧x 6∈ E2 or x ∈ E2∧x 6∈ E1 exists. The sample space
of an experiment is the set of all possible events. The sample space for the experiment of
tossing a coin two times is head-head, head-tail, tail-head, tail-tail.

The following examples shall illustrate these concepts

62

Example 5.2.1 :

Consider the following experiment: Three distinct balls (a,b,c) are to be placed
in three distinct bins. The following illustration depicts all possible outcomes
of this experiment that together form the sample space

Event 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bin
1 abc ab ab c c ac ac b b
2 abc c ab ab c b ac ac
3 abc c c ab ab b b ac

Event 15 16 17 18 19 20 21 22 23 24 25 26 27
Bin
1 bc bc a a a a b b c c
2 b a bc bc a b c a c a b
3 ac a a bc bc c b c a b a

However, the sample space is altered when the conditions of the experiment are
altered. Suppose that the three balls are not distinguishable. Consequently the
following sample space belongs to this experiment.

Event 1 2 3 4 5 6 7 8 9 10
Bin
1 *** ** ** * * *
2 *** * ** ** * *
3 *** * * ** ** *

When we also consider indistinguishable bins, the sample space becomes

Event 1 2 3
Bin
1 *** ** *
2 * *
3 *

5.3 Relation between events

We assume an arbitrary but fixed sample space for the remainder of this lecture. The
following definitions are essential for our notion of events.

Definition 5.3.1 : Impossible event

With χ = {} we denote the fact that event χ contains no sample points. It is
impossible to observe event χ as an outcome of the experiment.

63

For every event χ there is an event ¬χ that is defined as ’χ does not occur’.

Definition 5.3.2 : Negation of events

The event consisting of all sample points x with x 6∈ χ is the complementary
event (or negation) of χ and is denoted by ¬χ.

For two events χ1 and χ2 we can also denote new events by the conditions that ’both χ1

and χ2 occur’ or that ’either χ1 or χ2 occur’. These events are denoted by χ1 ∩ χ2 and
χ1 ∪ χ2 respectively. These events are defined by

χ1 ∩ χ2 = {x|x ∈ χ1 ∧ x ∈ χ2} (5.1)

and

χ1 ∪ χ2 = {x|x ∈ χ1 ∨ x ∈ χ2} (5.2)

and can be generalised to arbitrary many events. When the events χ1 and χ2 have no
sample point x in common, the event χ1 ∩χ2 is impossible: χ1 ∩χ2 = {}. We say that the
events χ1 and χ2 are mutually exclusive.

5.4 Basic definitions and rules

All events χ that might possibly occur are summarised in a sample space.

Definition 5.4.3 : Sample space

A sample space Π is a set of elementary events χi

These events, together with an occurrence probability constitute the probability space.

Definition 5.4.4 : Probability space

A probability space (Π, P) consists of a sample space Π and a probability mea-
sure P : Π→ R. This function satisfies the following conditions

• For each subset Π′ ⊆ Π, 0 ≤ P (Π′) ≤ 1

• P (Π) = 1

• For each Π′ ⊆ Π, P (Π′) =
∑

χ∈Π′ P (χ)

Given a sample space Π and sample points xi ∈ Π, we denote the probability that xi is
observed by P (xi) with P : Π→ [0, 1] and P (x1) + Px2 + · · · = 1.

64

Definition 5.4.5 : Probability of events

Given a sample space Π and an event χ ∈ Π, the occurrence probability P (χ)
of event χ is the sum probability of all sample points from χ:

P (χ) =
∑
x∈χ

P (x). (5.3)

Since all probabilities of the sample space sum up to 1 it follows that

0 ≤ P (χ) ≤ 1 (5.4)

for any event χ.
Consider two arbitrary events χ1 and χ2. In order to compute the probability P (χ1∪χ2)

that either χ1 or χ2 or both occur we add the occurrence probabilities that a sample point
either in χ1 or in χ2 is observed.

P (χ1 ∪ χ2) ≤ P (χ1) + P (χ2) (5.5)

The ’≤’-relation is correct since sample points might be contained in both events. We
therefore obtain the exact probability by

P (χ1 ∪ χ2) = P (χ1) + P (χ2)− P (χ1 ∩ χ2). (5.6)

Example 5.4.2 :

We toss a coin twice so that the sample space contains the four sample points
head-head, head-tail, tail-head and tail-tail that are associated with probability
1
4

each. Consider the two events χ1 – head occurs first – and χ2 – tail occurs
second. χ1 then contains head-head and head-tail while χ2 contains head-tail
and tail-tail. Consequently, χ1 ∪ χ2 consists of the sample points head-head,
head-tail, tail-tail while χ1 ∩ χ2 consists of the single sample point head-tail.
We therefore obtain the probability that either χ1 or χ2 occurs as

P (χ1 ∪ χ2) =
1

2
+

1

2
− 1

4
. (5.7)

This can be generalised to higher event counts. For arbitrary events χ1, χ2, . . . this is
expressed by the inequality

P (χ1 ∪ χ2 ∪ . . .) ≤ P (χ1) + P (χ2) + · · · − P (χ1 ∩ χ2)− P (χ1 ∩ χ3) . . . (5.8)

In the special case that all events χ1, χ2, . . . are mutually exclusive, we obtain

P (χ1 ∪ χ2 ∪ . . .) = P (χ1) + P (χ1) + . . . (5.9)

65

since P (χi) ∩ P (χj) = {} for any two mutually exclusive events χi and χj.

In some cases we are interested in the probability that a specific event occurs in the
presence of another event. This can be expressed by the conditional probability.

Definition 5.4.6 : Conditional probability

The conditional probability of two events χ1 and χ2 with P (χ2) > 0 is denoted
by P (χ1|χ2) and is calculated by

P (χ1 ∩ χ2)

P (χ2)
(5.10)

P (χ1|χ2) describes the probability that event χ2 occurs in the presence of event χ2 (read:
The probability of χ1 given χ2). With rewriting and some simple algebra we obtain the
Bayes rule that states

P (χ1|χ2) =
P (χ2|χ1) · P (χ1)∑
i P (χ2|χi) · P (χi)

. (5.11)

This equation is useful in many statistical applications. Note that the denominator is
summed over the probability for all possible events. This means that everything on the
right hand side of the equation is conditioned on the events χi. When we say that χi
is the important variable, the shape of the distribution P (χ1|χ2) depends on the numer-
ator P (χ2|χ1) · P (χ1) with the denominator as a normalising factor that ensures that
the P (χ1|χ2) sum to 1. The Bayes rule is therefore interpreted that it inverts P (χ1|χ2)
to P (χ2|χ1). This is useful when it is easy to calculate P (χ2|χ1) but not to calculate
P (χ1|χ2). With Bayes rule it is then easy to calculate P (χ1|χ2) provided that we know
P (χ2|χ1) and P (χ1).

Definition 5.4.7 : Independence

A collection of events χi that form the sample space Π is independent if for all
subsets S ⊆ Π

P

(⋂
χi∈S

χi

)
=
∏
χi∈S

P (χi). (5.12)

Statistical independence is required for many useful results in probability theory. This
means, on the other hand, that we have to be careful to apply such results not in cases
where independence between sample points is not provided.

Definition 5.4.8 : Expectation

The expectation of an event χ is defined as

E[χ] =
∑
x∈R

x · P (χ = x) (5.13)

66

Although intuitively the expectation of an event represents the expected outcome of the
event, the expectation is not necessary equal to one of the possible sample points.

Consider, for instance, the event χ of throwing a dice. The Sample space is given by
Sχ = {1, 2, 3, 4, 5, 6}. However, the expectation of this event is

E[χ] =
1

6
· (1 + 2 + 3 + 4 + 5 + 6) = 3.5. (5.14)

It is also possible to perform calculations with expectations of events.

Definition 5.4.9 : Linearity of expectation

For any two random variables χ1 and χ2,

E[χ1 + χ2] = E[χ1] + E[χ2]. (5.15)

For an independent random variables χ1 and χ2,

E[χ1 · χ2] = E[χ1] · E[χ2]. (5.16)

Definition 5.4.10 : Variance

The variance of a random variable χ is defined as

var[χ] = E[(χ− E[χ])2]. (5.17)

For any random variable χ
var[χ] = E[χ2]− E[χ]2 (5.18)

For any independent random variables χ1 and χ2

var[χ1 + χ2] = var[χ1] + var[χ2]. (5.19)

For any random variable χ and any c ∈ R,

var[cχ] = c2var[χ]. (5.20)

5.4.1 The Markov inequality

To estimate the deviation of a random variable from its expectation, the following bound
is useful.

Definition 5.4.11 : Markov inequality

Let (Π, P) be a probability space and x : Π → R+ a non-negative random
variable. For t ∈ R∗ the following inequality holds:

P (x ≥ t · E[x]) ≤ 1

t
(5.21)

67

Proof. For an arbitrary s ∈ R+ we define an indicator variable Ys : Ω→ {0, 1} with

Ys :=

{
1 if x ≥ s
0 else

(5.22)

We have x ≥ s · Ys for all s. Therefore we obtain

E[x] ≥ E[s · Ys]
= s · E[Ys]

= s · 1 · P (Ys = 1) + 0 · P (Ys = 0)

= s · P (x ≥ s) (5.23)

Observe that we have shown P (x ≥ s) ≤ E[x]
s

. When we choose s := t · E[x] the assertion
follows.

5.4.2 The Chernoff bound

A stronger bound useful to estimate the deviation of a random variable from its mean is
the Chernoff bound.

Definition 5.4.12 : Chernoff bound

Let (Π, P) be a probability space and x1, x2, . . . , xn : Π → {0, 1} independent
random variables with 0 < P (xi = 1) < 1 for all i ∈ {1, 2, . . . , n}. For X :=∑

1≤i≤n xi and δ > 0 the following inequality holds:

P (X < (1 + δ)E[X]) <

(
eδ

(1 + δ)1+δ

)E[X]

(5.24)

and for all δ with 0 < δ < 1

P (X < (1− δ)E[X]) < e−
E[X]δ2

2 (5.25)

Proof. We first prove the first estimation. Basically we apply the Markov inequality. From
there we come to a much stronger result by utilising the random variable eςX for a suitable
constant kς instead of utilising X. Observe that

P (X < (1 + δ)E[X]) = P (eςX < eς(1+δ)E[X]) (5.26)

holds for all ς ∈ R+. We now apply the Markov inequality and obtain

P (X > (1 + δ)E[X]) <
E[eςX]

eς(1+δ)E[X]
(5.27)

We utilise the definition of X and can therefore write

E[eςX] = E
[
eς

Pn
i=1 xi

]
= E

[
n∏
i=1

eςxi

]
(5.28)

68

Following the precondition, the random variables xi are independent and therefore

E

[
n∏
i=1

eςxi

]
=

n∏
i=1

E [eςxi] (5.29)

Altogether we have now

P (X > (1 + δ)E[X]) <

∏n
i=1 E [eςxi]

eς(1+δ)E[X]
(5.30)

Since X are binary random variables we obtain

E [eςxi] = P (xi = 1)eς·1 + (1− P (xi = 1))eς·0

= 1 + P (xi = 1)(eς − 1) (5.31)

We estimate ex ≥ 1 + x with x := P (xi = 1)(eς − 1) to obtain

P (X > (1 + δ)E[X]) <

∏n
i=1 e

P (xi=1)(eς−1)

eς(1+δ)E[X]

=
e(eς−1)

Pn
i=1 P (xi=1)

eς(1+δ)E[X]

=
e(eς−1)E[X]

eς(1+δ)E[X]
(5.32)

Since ς ∈ R+ and δ > 0 we choose ς := ln(1 + δ) and obtain

P (X > (1 + δ)E[X]) <

(
eδ

(1 + δ)1+δ

)E[X]

(5.33)

as claimed.
To prove the second estimation we proceed similarly. It is for all ς ∈ R+

P (X < (1− δ)E[X]) = P (−X > −(1− δ)E[X])

= P (e−ςX > e−(1−δ)E[X]) (5.34)

With the Markov inequality we obtain

P (X < (1− δ)E[X]) <

∏n
i=1E [e−ςxi]

e−ς(1−δ)E[X]
(5.35)

With E [e−ςxi] = P (xi = 1)e−ς + 1− P (xi = 1) we obtain

P (X < (1− δ)E[X]) <
eE[X](e−ς−1)

e−ς(1−δ)E[X]
(5.36)

69

for all ς ∈ R+. We choose ς = ln
(

1
1−δ

)
and obtain

P (X < (1− δ)E[X]) <

(
e−δ

(1− δ)1−δ

)E[X]

(5.37)

We can additionally assume 0 < δ ≤ 1 and obtain (1− δ)1−δ > e−δ+
δ2

2 and obtain

P (X < (1− δ)E[X]) < e−E[X] δ
2

2 (5.38)

as claimed.

70

6 Evolutionary algorithms

The theory of evolution by cumulative natural
selection is the only theory we know of that is in
principle capable of explaining the existence of
organised complexity.

(Richard Dawkins)

Evolutionary algorithms have been developed in the 1960s. The primary aim at that
time was to model phenomena observed in the evolution and to use these models to solve
algorithmic problems [98]. The two main operators to guide the optimisation process are
mutation and crossover. While crossover combines distinct search points to generate a
new one, mutation is designed to apply small changes to a single search point. We can
distinguish four main branches.

Genetic algorithm (GA): John Holland developed genetic algorithms [99] that operate on
the search space Bn and mainly utilise k-point crossover.

Evolution strategy (ES): Evolution strategies have been developed by Hans-Paul Schwe-
fel and Ingo Rechenberg [100]. These strategies are first applied in the search space
Rn and mainly utilised mutation as recombination operator.

Evolutionary programming (EP): Evolutionary programming has been developed by Larry
Fogel [101]. Fogel considers the space of finite automata as search space and utilises
mainly mutation as search operator.

Genetic programming (GP): Finally, John Koza developed genetic programming [102].
For this approach, the search space is mostly represented by a set of graphs that
represent logical expressions or programs.

For several years now these approaches are less clear to separate from each other so that
we speak of evolutionary approaches or evolutionary algorithms. Evolutionary algorithms
operate on a search space S. All points in this search space are associated with a fitness
value that is provided by a fitness function f . Crucial for the optimisation and application
in practical settings is usually the time until a search point is found that reaches or exceeds
a given fitness threshold or at least that could not been improved for some while. An
evolutionary algorithm maintains in a population of search points a set of µ search points

71

(a) The classical approach to developing an al-
gorithm

(b) The development and application of evolution-
ary algorithms

Figure 6.1: Approaches to algorithmic development: A comparison

(individuals) from the search space S. It iterates an ever identical sequence of operations
(generations) until a stop criteria is reached. In every generation initially all members of the
populations are evaluated with a non-monotonously-decreasing fitness function f : S → R.
In a random process, individuals are elected for mutation or crossover. This leads to a set
of ν individuals of an offspring population. Depending on the strategy implemented, either
µ individuals with the highest fitness score from all µ + ν individuals ((µ + ν)-strategy)
or the µ individuals with highest fitness value are picked from the offspring population of
size ν ((µ, ν)-strategy).

The research field of evolutionary algorithms has been studied also in the scope of theo-
retical computer science in recent years [103, 104, 105, 106]. Most relevant in our context
are the results on (1 + 1)-strategies, [107, 108, 109, 110, 111]. We will see in chapter 8
that this is the natural scenario for distributed adaptive transmit beamforming in wireless
sensor networks.

6.1 Basic principle and notations

Evolutionary algorithms differ from classical algorithms at first in the way they are devel-
oped. In the classical approach a problem is the origin of the development or optimisation
of an algorithm. The problem is analysed and, based on this analysis an algorithm for this
very problem is developed. After the algorithm has been designed a theoretical analysis
might help to improve the algorithmic design. Also, the algorithm might be implemented
and applied to experimental data or in problem scenarios. In both cases, the experience
gained during the implementation or application of the algorithm might affect the design
of the algorithm (cf. figure 6.1(a)).

For evolutionary algorithms, the procedure is different. The design and optimisation
of the algorithm is then independent from the concrete problem. When the algorithm is
developed, it is applied on one or many distinct problems. These problems might have
been existent beforehand and it is not said that the evolutionary algorithm is especially
well suited to solve these problems. So, why is this a reasonable approach? Normally,

72

Figure 6.2: Modules of an evolutionary algorithms

the problems to which evolutionary algorithms are applied are not well understood or
too complex to describe them analytically. Therefore it might be very complex or even
impossible to state a deterministic algorithm that is able to achieve sufficient results on
the given problem. Evolutionary algorithms are designed for specific search spaces and
might inherit properties that enable them to cope with these search spaces. A theoretical
analysis of evolutionary algorithms is therefore commonly applied for a given algorithm on
a specific problem. These results then might impact the design and optimisation of the
algorithm, but this regression is not always applied so that the algorithm might be taken
as an as-is implementation that is applied on arbitrary problems (cf. figure 6.1(b)).

Evolutionary algorithms are random search heuristics that operate in ever identical it-
erations. Figure 6.2 depicts the various modules/phases that constitute an evolutionary
algorithm.

6.1.1 Initialisation

Before the start of the optimisation the population of the algorithm is to be initialised.
Typically, the µ individuals from the search space S that constitute the initial population
are drawn uniformly at random. Typical search spaces are S = Rn or S = Bn. In order
to achieve sufficient coverage of the search space, we can also define a distance measure
d and populate the initial population with points that are at least of distance d to each
other. Also, in order to improve the optimisation time and the quality of the solution, we
can utilise fast heuristics to find the individual population.

6.1.2 Fitness function – Weighting of the population

At the start of the optimisation, the individuals of the population are weighted for their
fitness value. For each individual in the population, a fitness function f : S → R is applied.

73

The fitness function is a monotonous function that maps individuals from the search space
onto R.

6.1.3 Selection for reproduction

Dependent on the fitness values reached by the individuals in the population, individuals
are chosen to produce the offspring population. The intuition is that individuals with good
fitness value have a higher probability to produce individuals for the offspring population
that also inherit a higher fitness value than individuals with lower fitness values. Typical
selection mechanisms are

Uniform selection: An individual is chosen uniformly at random from all individuals in
the population.

Fitnessproportional selection: An individual I is chosen from the population P with
probability f(I)P

x∈P f(x)
. A problem with this scheme is that the selection behaviour

is considerably different for two fitness functions f and f + c. Furthermore, when
fitness values are sufficiently separated, the selection is nearly deterministic while it
is very similar to the uniform selection when the differences between fitness values
are small relative to their absolute values.

Tournament selection: The intuition for this selection method is to find the best individ-
uals from a randomly drawn subset of the whole population. This selection method
also allows individuals with non-optimal fitness values to be chosen for the variation.

Apart from these approaches it is, of course, also possible to deterministically choose the
k highest rated individuals for the selection.

6.1.4 Variation

For the selected individuals, the offspring population is created by mutation and/or crossover.
While mutation is typically a local search operator, crossover allows to find search points in
regions of the search space that are currently not populated. Dependent on the stage/progress
of the optimisation, some implementations therefore adapt the probability to apply crossover
and/or mutation.

Mutation

Mutation alters the representation of an individual, e.g. by flipping of bits for individuals
from Bn. The intuition for the mutation is that it produces individuals for the offspring
population that differ only slightly from the parent-individuals. For the mutation operator,
one parent individual produces one offspring individual. It is clear that possible mutation
operators differ between search spaces.

74

Mutation operators for individuals from Bn :

Standard bit mutation: The offspring individual is created bit-wise from the parent
individual. Every bit is ’flipped’ with probability pm and sustained with prob-
ability (1 − pm). A common choice is pm = 1

n
as this represents the case that

one bit is flipped on average in one mutation.

1 bit mutation: The offspring individual is identical to the parent individual in all
but one bit. This bit is chosen uniformly at random from all n bits in the
individual representation.

Mutation operators for Rn: An offspring individual is, in general, generated by adding
a vector m ∈ Rn to the parent individual. For this operation we can distinguish
between restricted or unrestricted mutation. For restricted mutation the vector is
chosen form a restricted interval (e.g. all vector entries are chosen from [−a, a]).

Crossover

Crossover is an alternative technique that produces one or more offspring individuals from
two or more parent individuals.

Crossover operators for Bn :

k-point crossover: From the possible n positions in one individual representation,
k ≤ n positions are chosen uniformly at random. The offspring individuals are
created such that the representation is concatenated from sub-sequences of the
parent individuals when the origin of the sub-sequence is altered at every one of
the k chosen positions. For two parent individuals x1, x2 and 2-point crossover
with k1, k2, an offspring individual y can be created as follows:

x1 = x11, x1,2, . . . , x1,k1|x1k1+1, . . . , x1k2|x1k2+1, . . . , x1n

x2 = x21, x2,2, . . . , x2,k1|x2k1+1, . . . , x2k2|x2k2+1, . . . , x2n

y1 = x11, x1,2, . . . , x1,k1|x2k1+1, . . . , x2k2|x1k2+1, . . . , x1n

y2 = x21, x2,2, . . . , x2,k1|x1k1+1, . . . , x1k2|x2k2+1, . . . , x2n

Uniform crossover: Each bit in the individual representation is chosen with uniform
probability from one of the parent individuals.

Crossover operators for Rn :

k-point crossover: Analogous to k-point crossover in Bn

Uniform crossover: Analogous to uniform crossover in Bn

Arithmetic crossover: An individual I ∈ Rn for the offspring population is created
as weighted sum from k parents x1, . . . , xk:

I =
k∑
i=1

αixi; with
k∑
i=1

αi = 1 (6.1)

75

Figure 6.3: Illustration of an exemplary function that is weak multimodal

6.1.5 Fitness function – Weighting of the offspring population

After the variation, all newly generated offspring individuals are weighted by a fitness
function f .

The structure of this fitness function also impact the performance of random search ap-
proaches applied to the problem. A fitness function with many local optima, for example,
may require that the search approach considers (also) search points in greater distance to
the current best rated search point in order to avoid that the algorithm converges in a local
optimum while the global optimum may still be far away.

Definition 6.1.1 : Optima

Let f : G→ P be a real valued fitness function. x∗ ∈ G is an optimum point of
for ε > 0 with |x− x∗| < ε the inequality f(x∗) ≥ f(x) (f(x∗) ≤ f(x)) holds.

Global optimum An optimum point x∗ is called global optimum, if f(x∗) ≥
f(x) (f(x∗) ≤ f(x)) for all x ∈ G.

Local optimum An optimum point which is not globally optimal is called local
optimum.

We distinguish between multimodal and unimodal functions dependent on the count of
optima.

Definition 6.1.2 : Multimodality and Unimodality

A function f is called unimodal when only one global optimum exists. Otherwise
it is called multimodal.
An unimodal or multimodal function f with no local optima is called strong
multimodal (unimodal). Otherwise it is called weak multimodal (unimodal).

Figure 6.3 depicts an exemplary weak multimodal function.

76

Figure 6.4: Illustration of the assumption that evolutionary algorithms have a better aver-
age performance than classical algorithms

6.1.6 Selection for substitution

Since the number of search points has increased due to the variation, we have to reduce
the population size to µ again for the next iteration. Commonly, individuals with higher
fitness values have a higher probability to stay in the population. Sometimes, also the age of
individuals is considered so that older individuals have a higher probability to be replaced.
The selection operators are basically the same as for the selection for reproduction.

Regarding the pool from which the individuals are drawn, we distinguish between plus
and comma strategies. In (µ+ ν) strategies, the offspring population is chosen from the µ
individuals of the old population ’plus’ the ν offspring individuals created in the variation
phase.

In (µ, ν) strategies, the µ individuals for the next population are drawn from the ν
individuals created in the variation phase while the µ individuals of the old population are
discarded.

6.2 Restrictions of evolutionary algorithms

In the early days of evolutionary algorithms, assumptions have been formulated that these
algorithms are superior to classical algorithms in the sense that the performance of evolu-
tionary algorithms is higher on average over all possible problems although a specialised
algorithm may outperform an evolutionary algorithm on a small set of problems. Figure 6.4
illustrates this intuition.

After some thoughts about this assumption we can easily see that it is a bit absurd
or at least not sufficiently concrete. In particular, how can any algorithm be suited for
all problems? Clearly, the input format might differ among problems. Can an algorithm
suited to solve the travelling salesman-problem also be applied to the task of recognising
patterns in image databases or to the task of computing prime factors of an integer?

We see that we have to be more concrete in order to qualify the assumption illustrated
in figure 6.4.

77

We consider algorithms that operate on the search space S which is mapped onto an
ordered set W by a fitness function f : S → W from the set F of all possible fitness
functions. We assume that both, S and W are finite. This is a reasonable assumption, as
digital computers, which are utilised to host the algorithms can only store finite sets and
address a finite number of points.

We also assume that no search point is requested twice. This is a simplifying assump-
tion for technical reasons in favour of randomised search approaches as especially random
approaches might request a search point more than once. This means that this assumption
does not negatively impact the performance of evolutionary algorithms.

For f ∈ F and an algorithm A we denote the number of search points requested until
an optimum is found by this algorithm with A(f).

Theorem 6.2.3 : No free lunch theorem (NFL)

For two algorithms A and A′ the relation AS,W = A′S,W holds.

Proof. We show this assertion by induction over the size of the search space: s := |S|. We
consider all functions Fs,i,N on an search space S with |S| = s and an fitness domain of
{1, . . . , N} with at least one x ∈ S with f(x) > i. Initially, we have the situation Fs,0,N .
Observe that, since we are talking about all possible functions, i.e. all possible mappings
from S to W , it is not required to consider all search spaces of size |S| = s. Since another
search space is just another permutation of S on W this would only reorder the functions
f . For each function f and each permutation π on S also fπ(s) = f(π(s)) is a member of
Fs,i,N .

We denote the average performance of a search strategy A in Fs,i,N with As,i,N and claim
As,i,N = A′s,i,N for arbitrary search strategies A and A′ and s ∈ N, N ∈ N, 0 ≤ i < N

Induction start: s = 1. Each algorithm has to request the only search point and finds the
optimum with the first request.

Induction step: s− 1→ s. Since for every f and permutations π also fπ belongs to Fs,i,N ,
it exists a function a : S → N so that the share of functions with f(x) = j is a(j)
and thus a(j) is the probability to choose a search point with fitness value j. With
probability a(j), every algorithm observes a search point x ∈ S with f(x) = j.

If j ≤ i, x is not optimal and the new scenario is Fs−1,i,N . For each f ′ ∈ Fs−1,i,N

with S ′ = {1, . . . , s− 1} exists exactly one function f ∈ Fs,i,N with f(x) in f ′(x) for
x ∈ S ′ and f(s) = j. Therefore, all functions from Fs−1,i,N are equally probable.

Let j > i. Since with f also fπ belongs to Fs,i,N , the number of functions with f(x) =
j and x optimal is equal to the number of functions f ′ with f ′(x) = j. Consequently,
the probability to find an optimal point is not dependent on the algorithm in this
scenario.

78

6.3 Design aspects

In the following sections we discuss some general design aspects for the implementation of
evolutionary algorithms.

6.3.1 Search space

For problems that have their origin not in the computer science, the problem has to be
represented as a search problem and, in particular, the representation of individuals and
the search space are to be designed.

It is often sufficient to represent search points as vectors of constant length for a given
set (e.g. R,Z,N,B). The decision taken on the modelling of the search space impacts also
the mutation and crossover operators applicable and can therefore impact the optimisation
performance.

Generally, it is favourable to choose an individual representation that reflects the prob-
lem characteristics well. Otherwise the representation might change the actual problem
and possibly increase its complexity. Assume, for example, that we want to encode num-
bers in their binary representation. The hamming distance between 2n and 2n + 1 is 1
while the hamming distance between 2n and 2n − 1 is n + 1! A solution to this problem
might be the utilisation of Gray codes. A Gray code is recursively defined. The num-
bers 0 and 1 are encoded as 0 and 1. When the numbers 0, . . . , 2n − 1 are encoded by
a0, . . . , a2n−1 we encode 0, . . . , 2n+1 − 1 as 0a0, . . . , 0a2n−1, 1a2n−1, . . . , 1a0. Obviously, the
distance of neighbouring numbers is 1. However, also greater numbers have a smaller
distance: hammingDist(0a0, 1a0) = 1.

6.3.2 Selection principles and population structure

Selection is an important method for evolutionary algorithms. Without selection, the choice
of search points were unguided and thus merely random. Of course, we intend to keep
individuals with good fitness scores but this also contains the danger that the population
might degenerate to an isolated region in the search space that possibly constitutes only a
local optimum.

To circumvent this problem we can consider further measures in the calculation of the
selection probability as, for instance, the distance of search points or the count of points
in a defined neighbourhood.

In order to sustain a diverse population that is spread widely across the search space,
we thrive to keep isolated individuals with respectable fitness score. On the other hand,
we are not so keen to keep many similar individuals with similar fitness values.

In order to achieve this aim we can replace the fitness score f(x) of an individual x by

f ′(x) = f(x)
d(x,P)

where d(x,P) measures the singularity of x in a population P .

In the case that the problem structure is such that multiple global optima exist (multi-
modal fitness function), a crossover of search points from distinct global optima may lead
to a point somewhere in the middle which has a weak fitness value. In such a case it may

79

be beneficial to restrict the crossover parents to individuals from a singular region in the
search space.

6.3.3 Comments on the implementation of evolutionary algorithms

Evolutionary search approaches are very simple schemes that are straightforward to imple-
ment. However, evolutionary algorithms are time consuming optimisation methods when
compared to specialised optimisation approaches since the optimisation progress is guided
by a random process.

Most of this time is spent for the calculation of fitness values. A straightforward approach
is therefore to prevent that a fitness value is calculated multiple times by storing already
visited search points.

Another aspect is the calculation of random bits. As the calculation of good random bits
is expensive and weak random generators can create dependencies between search points,
strategies to reduce the number of random bits are required. This is, for instance, possible
by calculating the next flipping bit in an individual representation instead of taking a
random decision for each bit separately.

6.4 Asymptotic bounds and techniques

To foster the theoretical analysis of evolutionary algorithms, some methods have been de-
rived that are especially well suited for the analysis of evolutionary approaches. Generally,
as dimensions and structure of problems evolutionary approaches are applied to are typi-
cally too complex for a complete analytical consideration, most analytical methods consider
evolutionary algorithms with very restricted population size and offspring population size.

6.4.1 A simple upper bound

In this section we describe the method of the fitness based partition. It is a comparably
simple method that is suitable to provide respectable upper bounds on the expected opti-
misation time of evolutionary algorithms with ’plus’-selection. We describe the method for
the (1 + 1)-EA. However, it can be easily adapted for other random search schemes with
’plus’-selection.

Preparatory, we require the notion of a fitness-based partition.

Definition 6.4.4 : Fitness-based partition

Let f : Bn → R be a fitness function. A partition L0, L1, . . . , Lk ⊆ Bn with
Bn = L0 ∪ L1 ∪ · · · ∪ Lk is a fitness based partition of f when

1. ∀i, j ∈ {0, . . . , k},∀x ∈ Li, y ∈ Lj : (i < j ⇒ f(x) < f(y)) and

2. Lk = {x ∈ Bn|f(x) = max {f(y)|y ∈ Bn}}

hold.

80

Since the considered algorithm utilises plus-selection, the population of the algorithm can
follow these partitions only in ascending order until the optimum is reached with Lk. The
question is then, how long it takes to leave a partition Li.

Definition 6.4.5 : Vacation probability

Let f : Bn → R be a fitness function and L0, . . . , Lk be a fitness based partition
of f . For a standard bit mutation probability of p and i ∈ {0, 1, . . . , k − 1}

si := min
x∈Li

k∑
j=i+1

∑
y=Lj

pH(x,y)(1− p)n−H(x,y) (6.2)

defines the vacation probability of Li. In this formula, H(x, y) describes the
hamming distance from x to y.

We can understand this definition as follows. The term pH(x,y)(1− p)n−H(x,y) describes the
probability to mutate from x to y. When we fix x for several y and sum up these proba-
bilities we obtain the probability to mutate from x to one of these y. Since we have, for an
x ∈ Li summed up the y of all Lj with i < j, we obtain the probability to leave Li. This
probability is minimised over all possible x so that we achieve the worst case probability.
si is a lower bound for the probability to leave Li with one mutation. Consequently, the
expected count of mutations until this happens is bounded from above by s−1

i . This leads
to the following result.

Assertion 6.4.1 : A simple Upper bound

Let f : Bn → R be a fitness function and L0, . . . , Lk a fitness based partition
of f . The expected optimisation time of an (1 + 1)-EA is then bounded from
above by

E[TP] ≤
k−1∑
i=0

s−1
i . (6.3)

6.4.2 A simple lower bound

We show a simple general lower bound for evolutionary algorithms that utilise only muta-
tion as variation operator with standard bit mutation and mutation probability p = 1

n
on

functions f : Bn → R with exactly one global optimum.

Assertion 6.4.2 : A simple lower bound

Let f : Bn → R be a function with exactly one global optimum x∗ and A
an evolutionary algorithm that initialises its population uniformly at random
and utilises only standard bit mutation with mutation probability p = 1

n
. The

expected optimisation time of this algorithm is then

E[TP] = Ω(n log(n)) (6.4)

81

Proof. Let µ be the population size of A. For µ = Ω(n log(n)) the algorithm requires
already Ω(n log(n)) evaluations of fitness values for search points prior to finding x∗ for the
random initialisation of the population with probability 1−2−Ω(n). When µ = O(n log(n)),
we can see by application of Chernoff bounds that the probability that the hamming
distance of a search point x to the optimum x∗ is smaller than n

3
is

P (H(x, x∗) <
n

3
) = 2−Ω(n). (6.5)

We can therefore assume that at least n
3

bits have to be flipped in order to reach the
optimum. The mutation to flip one bit is p = 1

n
. The probability to not flip the bit in

t mutations is (1 − 1
n
)t ≥ e−

t
n−1 . With t = (n − 1) ln(n) we obtain e−t(n−1) = 1

n
. The

probability that from n
3

bits in t mutations at least one not mutates is therefore at least

1− (1− 1
n
)
n
3 ≥ 1− e− 1

3 . This leads to

ETP = (1− 2−Ω(n)) · (1− e−
1
3) · (m− 1) ln(n) = Ω(n log(n)). (6.6)

6.4.3 The method of the expected progress

For some problems the optimisation process is similar over the whole optimisation run.
In such a case we can utilise the idea that an algorithm does not deviate much from the
expectation in most cases.

This can be utilised to derive a lower bound on the optimisation time. The idea is to
identify steps that are required for the optimisation and which are to be applied often in
order to reach a global optimum. When we then bound the probability to achieve such a
step from above, a lower bound can be derived.

When the expected count of these steps can be determined, we can typically bound the
probability to obtain many of these steps fast from above. If the steps are also indepen-
dent from each other, we know the expected number of these steps in a fixed number of
generations.

Through Chernoff bounds we show that the probability to deviate from this expected
number is very small.

We describe the method for the (1 + 1)-EA. We denote the optimisation problem with
P and assume a progress measure F : Bm → R+

0 such that F(st) < ∆ represents the case
that a global optimum was not found in the first t iterations. Let TP denote the count of
iterations required by the optimisation algorithm to reach one of the optimum values for
the problem P .

For every t ∈ N we have

E[TP] ≥ t · P [TP > t]

= t · P [F(st)

< ∆]

= t · (1− P [F(st) ≥ ∆]) (6.7)

82

With the help of the Markov-inequality we obtain P [F(st) ≥ ∆] ≤ E[F(st)]
∆

and therefore

E[TP] ≥ t ·
(

1− E[F(st)]
∆

)
This means that we can obtain a lower bound on the optimisation

time by providing the expected progress after t iterations.

83

84

7 Cooperative transmission schemes

Cooperative transmission is a cross-layer approach
bridging the network and physical layers with the
objective of forwarding information that is avail-
able at multiple terminals more reliably.

(Birsen Sirkeci-Mergen and Anna Scaglione: Randomised
cooperative Transmission in Large-Scale Sensor Net-
works [112])

Cooperation is one of the major challenges of research on sensor networks. It covers
many aspects in sensor networks such as energy consumption, sharing of resources for
computation or finding of routing paths. Cooperation can also be utilised to improve
aspects of data transmission in wireless networks. These approaches generally make use of
spatial diversity of noise or achieve redundancy of transmission.

The utilisation of cooperative diversity in sensor networks has been studied by various
research institutes during the past years [113, 114, 7, 115]. These approaches have in com-
mon that nodes in a network are utilised as relays [24, 25, 26], as it was first proposed
by Cover and El Gamal in [27]. Neighbouring nodes repeat a signal sequence once it was
received and achieve – sufficient temporal synchronisation presumed – constructive inter-
ference between superimposed transmit signals. The major complexity of these approaches
lies in the temporal synchronisation of transmit signals that is commonly preconditioned.
In these schemes, the capacity and robustness of a network of sensor nodes [7, 8] as well
as the maximum transmission range [6] can be increased. Furthermore, the average energy
consumption per node [9] and the time to propagate messages in sensor networks can be
reduced [35] by these approaches. Superimposing signals was studied in [24] with regard
to the probability of packet loss and in [116] with regard to the Shannon-capacity.

Another approach to obtain a transmission gain is to utilise the spatial diversity of
distributed nodes and to combine the RF-transmit signal components of distinct nodes on
the channel.

This problem is addressed by the approach of virtual MIMO in wireless sensor net-
works [21, 20, 22]. In virtual MIMO, single antenna nodes are cooperating to establish
a multiple antenna wireless sensor network. Virtual MIMO has capabilities to adjust to
different frequencies and is highly energy efficient [23, 11]. However, the implementation of
MIMO capabilities in WSNs requires accurate time synchronisation, complex transceiver
circuity and signal processing that might surcharge the power consumption and processing
capabilities of simple sensor nodes.

85

Figure 7.1: An example for network coding

Other solutions proposed are open-loop synchronisation methods as round-trip synchro-
nisation based [36, 37, 38]. In this scheme, the destination sends beacon signals in opposed
directions along a multi-hop circle. Beamforming is achieved when the processing time
along the multi-hop chain is identical in both directions. This approach, however, does not
scale with the size of a network.

Closed-loop feedback approaches include full-feedback techniques, in which carrier syn-
chronisation is achieved in a master-slave manner. The phase-offset between the destination
and a source node is corrected by the receiver node. Diversity between transmit signals
is achieved over CDMA channels [39]. This approach is applicable only to small network
sizes and requires sophisticated processing capabilities at the source nodes.

7.1 Cooperative transmission

In cooperative networks, nodes relay each others messages to provide spatial diversity and
to increase the spectral efficiency by combining a received signal at the physical layer.

7.1.1 Network coding

In traditional approaches, relay nodes forward messages they receive unmodified to reach a
next hop. Another approach, however, is to allow relay nodes to modify incoming messages
before further transmission. The essential idea of network coding is that nodes combine
several incoming messages so that the cost for transmission is reduced [117, 118]. Figure 7.1
illustrates a network coding scenario.

Assume that nodes A and B both transmit messages ma and mb. Clearly, nodes D and E
receive the messages directly from these nodes. Since wireless transmission is inherently a
broadcast scheme, also node C overhears both messages. In traditional broadcast schemes,
node C would transmit messages ma and mb separately so that both nodes D and E
received both messages ma and mb in the end (one message is even received twice by each
of the nodes). In network coding, node C could combine both messages ma and mb by, for

86

Figure 7.2: Error reduction by network coding

instance, XOR to receive a combined message mXOR(a,b). After receiving mXOR(a,b), both
nodes D and E obtain the messing message (ma or mb) by computing the logical XOR
between the messages they received.

Regarding the overall energy consumption, one transmission is omitted in this network
coding example, so that this scheme is more energy efficient compared to the traditional
broadcast scheme.

A similar situation is depicted in figure 7.2.

Both nodes A and B transmit a message (ma, mb) to a remote node C. Also, after
receiving the message from the respective other source node (A or B), both nodes trans-
mit mXOR(a,b′) and mXOR(b,a′). The notion a′ and b′ indicates that the message received
over the wireless channel might be subject to transmission errors. Now, node C holds
m′′a,m

′′
b ,m

′′
XOR(a,b′),m

′′
XOR(b,a′). It can consequently obtain three copies of ma and mb by

combining the received messages. When the probability for bit errors is low, this scheme
can be utilised to detect and correct errors. Consider, for example one bit position i for
three copies of message ma:

• ma(i)
′

• XOR(m′b,mXOR(b,a′)(i)
′

• XOR(m′b,mXOR(a,b′)(i)
′

Assume that one bit is erroneous with probability 1
m

for all transmissions. Then, ma(i)
′,

mb(i)
′ are incorrect with probability 1

m
each and mXOR(b,a′)(i)

′, mXOR(a,b′)(i)
′ are incorrect

with probability 1 −
(
1− 1

m

)2
each. Consequently, the probability that more than one of

the received messages is incorrect at position i is at most 1
m
·
(

1−
(
1− 1

m

)2
)

, which is

smaller than 1
m

.

A more detailed discussion that also considers the coverage area, pathloss and fading is
found in [119].

87

Block 1 Block 2 Block 3 Block 4
Source c1(1, w1) c1(w1, w2) c1(w2, w3) c1(w3, 1)
Relay c2(1) c2(w1) c2(w2) c2(w3)

Figure 7.3: A two-hop strategy for multi-hop relaying

7.1.2 Multi-Hop approaches

In the case of multi-hop-relaying based on the physical channel, multi-hop is interpreted as
a multi dimensional relay channel. Communication is allowed between all nodes [28]. It was
shown that this approach optimally divides the network ressources regarding information
theoretic metrics [12]. In larger multi-hop-scenarios it is, however, not well suited since
the count of successfully transmitted bits per square meter decreases quadratically with
the size of the network [29, 30].

The general idea of this approach is to retransmit received messages by a relay node so
that the destination will receive not only the message from the source destination but also
from the relay. Figure 7.3 illustrates this scheme for a two-hop strategy.

A message w is divided into B blocks w1, . . . , wB. The transmission is performed in B+1
blocks using the code words c1(wi, wj) and c2(wi). The relay node will always transmit the
word wi recently observed from the source node while the source still transmits both, wi
and wi+1. Although omitting further details, the general idea of this approach is to encode
redundancy in c1(wi, wj) and c2(wi) that both depend on wi so that the destination node
can reliably decode wi.

For the destination it can be shown that by sufficiently combining the blocks received
from source and relay the data rate is improved [28].

7.1.3 Data flooding

An alternative approach attempts to ’flood’ the network with a message to be transmitted
[31, 32]. At Cornell University ’Opportunistic Large Arrays’ (OLAs) have been proposed
for cooperative transmission [120, 121, 112]. A node will retransmit a received message
at its reception. It has been shown that the approach outperforms non-cooperative multi-

88

hop schemes significantly. This approach floods the network with nodes that retransmit
a desired transmit signal. Basically, in this scheme, an avalanche of signals is proceeded
through the network. When the network is sufficiently dense, the distinct transmit signals
are superimposed with special OLA modulations it is then even possible to encode infor-
mation into this signal wave. This transmission scheme is robust to environmental noise
but not capable of coping with moving receivers due to the inherent randomness of the
protocol.

It was derived that the average energy consumption of nodes is decreased [9, 10] and
the transmission time is reduced compared to traditional transmission protocols in wireless
sensor networks [35].

7.2 Multiple antenna techniques for networks of single
antenna nodes

Multi antenna systems have been studied for their potential to increase the channel capacity
in fading channels [122]. MIMO systems can achieve higher data rates under identical
transmit power and bit-error-rate as SISO systems. However, a key requirement for these
systems is that the distinct antennas are separated by at least λ

2
. As sensor nodes are

typically of very restricted dimensions, this requirement might easily lead to the conclusion
that single sensor nodes with multiple antennas are absurd. When, however, single nodes
are allowed to cooperate for their transmission so that a set of nodes is treated as a
multi-antenna transmitter or receiver, a cooperative MIMO system can be constructed.
This approach to cooperative transmission was proposed in [123]. The idea is to create
clusters of collaboratively transmitting nodes in a network [12]. Figure 7.4 illustrates this
transmission scheme. It is denoted as virtual MIMO or cooperative MIMO.

In [123] the general idea to apply MIMO transmission schemes to a scenario of dis-
tributed transmitters and receivers was proposed by using Alamouti diversity codes [122].
The Alamouti code with two transmit antennas proposed in [124]. The extension of the
Alamouti code to more than two antennas is discussed in [122]. We will discuss Alamouti
codes with two transmit antennas in the following.

The Alamouti diversity scheme for two receivers is depicted in figure 7.5

In the figure, two transmit nodes transmit to a single receive node. At the receiver,
the system is constituted by a channel estimator, a combiner and a maximum likelihood
detector.

Both transmit nodes will, at a given symbol period t simultaneously transmit two signals.
The signal transmitted from node A is denoted as s0 and the signal transmitted from node
B is denoted s1. In the following symbol period t+ T , node A transmits signal (−s∗1) and
node B transmits s∗0.1 Here, s∗ denotes the complex conjugate of s.

1In this description, distinct signals are separated in time. Therefore, this scheme is referred to space-
time coding. It is, however, also possible to separate signals in frequency by utilising distinct transmit
channels. In this case, the coding scheme is denoted as space-frequency coding

89

Figure 7.4: Illustration of virtual MIMO in wireless sensor networks

Figure 7.5: Illustration of the Alamouti transmit diversity scheme with two receivers

90

Assume that the channel at time t is modelled by a complex multiplicative distortion
HA(t) for node A and HB(t) for node B. when we further assume that fading is constant
over one symbol period, we can write

HA(t) = HA(t+ T) = HA = αAe
jΘA

HB(t) = HB(t+ T) = HB = αBe
jΘB (7.1)

The received signals are then expressed as

r0 = r(t) = HAs0 +HBs1 + n0

r1 = r(t+ T) = −HAs
∗
1 +HBs

∗
0 + n1 (7.2)

with r0 and r1 representing the received signals at t and t+T . n0 and n1 represent receiver
noise and interference.

The combiner module depicted in figure 7.5 creates the signals

s0 = H∗Ar0 +HBr
∗
1 = (α2

A + α2
B)s0 +H∗An0 +HBn

∗
1

s1 = H∗Br0 −HAr
∗
1 = (α2

A + α2
B)s1 −HAn

∗
1 +H∗Bn0 (7.3)

and forward these to the maximum likelihood detector. The maximum likelihood detector
uses for s0 and s1 the decision rules

• Choose si iff

(α2
0 + α2

1 − 1)|si|2 + d2(s0, si)

≤ (α2
0 + α2

1 − 1|sk|2 + d2(s0, sk),

∀i 6= k (7.4)

• Choose si iff

d2(s0, si) ≤ d2(s0, sk),∀i 6= k (7.5)

where d2(si, sj) is the squared Euclidean distance between signals si and sj:

d2(si, sj) = (si − sj)(s∗i − s∗j). (7.6)

In virtual MIMO schemes, it is assumed that each node has a preassigned index i and will
transmit the transmission sequence that the i-th antenna would transmit in an Alamouti
MIMO system. At the receiver side, the receiver nodes join the received sum signals
cooperatively.

All nodes in a cluster cooperate when receiving or transmitting data from and to neigh-
bouring nodes. Basically, a cluster is seen as a single multiple antenna device so that
MIMO, SIMO, or MISO transmission is possible in wireless sensor networks. By grouping
of nodes, the complexity of synchronising nodes in a cluster is reduced. [12, 5] derive results

91

regarding the energy efficiency and the optimum cluster design. It was shown that this
scheme can be more energy efficient than traditional SISO transmission between nodes
of a sensor network. The approach allows the utilisation of existing routing algorithms
and multi-hop theory when a cluster is understood as minimum entity. The capacity of
a sensor network that is organised by this approach is, however, decreased compared to
other approaches of cooperative transmission [30, 125].

It was presumed that the local oscillators of all transmit and receive nodes are synchro-
nised. However, this synchronisation is typically not easy to establish among distributed
wireless nodes.

Several solutions to this requirement are proposed by distributed transmit beamform-
ing. A key distinguishing feature of distributed transmit beamforming with respect to
centralised beamforming is that each source node in a distributed beamformer has an in-
dependent local oscillator. These typically multiply the frequency of a crystal oscillator
up to a fixed nominal frequency. Carrier frequencies generated in this manner, however,
typically exhibit variations in the order of 10-100 parts per million (ppm) with respect to
the nominal. If uncorrected, these frequency variations among sources are catastrophic for
transmit beamforming since the phases of the signals may drift out of alignment over the
duration of the transmission and may even result in destructive combining at the desti-
nation. The first goal, therefore, is to synchronise the carrier frequencies for the different
sources to minimise or eliminate frequency offset.

One approach to frequency synchronisation is to employ a master-slave architecture [18]
where slave source nodes use phase-locked loops (PLLs) to lock their phase to a reference
carrier signal broadcast by a master node.

A simple form of a PLL consists of three components:

• A phase detector that compares the phase offset of an input signal Y (s) with the
phase offset of a controlled oscillator. It creates an output signal E(s) – the error
signal – that is proportional to the phase offset

• A filter that computes with the function F (s) from the error signal E(s) the control
signal C(s).

• A variable electronic oscillator. This module might, for instance be implemented
by a Voltage Controlled Oscillator (VCO) that might be altered in its frequency
by, for instance, a capacity diode. Other possible implementations are Numerically
Controlled Oscillators (NCO) that takes numerical inputs to alter the oscillation
frequency.

Alternatively, the destination node could broadcast a reference carrier to facilitate fre-
quency synchronisation among the source nodes [36, 37, 39]. A source node that estimates
its frequency offset to be ∆f can multiply its complex baseband transmitted signal by
e−j2π∆ft. When frequency synchronisation is achieved, the phase of the transmission from
distinct transmitters must be synchronised to achieve reasonable phase coherence at a
receiver.

92

Figure 7.6: Schematic illustration of a phase locked loop

Figure 7.7: Illustration of the master-slave open-loop distributed adaptive carrier synchro-
nisation scheme

In the following sections we detail open-loop and closed-loop distributed carrier synchro-
nisation.

7.2.1 Open-loop distributed carrier synchronisation

In open-loop phase synchronisation schemes, transmit nodes communicate to cooperatively
achieve phase synchronisation at a remote receiver. Interaction with the receiver is min-
imised in these approaches. The receiver may, for instance, transmit a sinusoidal signal.
Transmitters utilise this signal together with the signals from other transmitters to achieve
sufficient phase synchronisation.

Master-slave open-loop distributed carrier synchronisation

The master-slave open-loop carrier synchronisation approach was described in [18]. The
general principle is illustrated in figure 7.7

Initially, among the transmitters one is identified as master node, while the others are

93

Figure 7.8: Illustration of the open-loop distributed beamforming scenario with known rel-
ative node locations

considered slaves. These master and slave nodes in the sensor network communicate to
synchronise their frequency and local oscillators. For frequency synchronisation, the master
node broadcasts a sinusoidal signal to the slave nodes that in turn estimate and correct
their relative frequency offset to this signal. Phase synchronisation is then achieved in a
closed-loop method.

In order to achieve beamforming to a receiver node, all transmitters then estimate their
channel response to the destination. This can be achieved by the destination broadcasting
a sinusoidal signal on the carrier frequency. As transmitters are already synchronised, they
can estimate their individual complex channel gain to the destination using their phase and
frequency synchronised local oscillators. The transmitters then transmit as a distributed
beamformer by applying the complex conjugate of the gains to their transmitted signals.

Carrier synchronisation when locations of distributed nodes are known

An approach to synchronise the carrier phase offsets of a set of distributed nodes was
described in [17]. The assumption in this approach is that the distance between the receiver
node and the transmit nodes is known and that a Line-of-sight (LOS) scenario is considered.
The receiver node serves as a master node broadcasting both, carrier and timing signals.
Assume that a slave node i is located at distance d(i) = d0(i) + de(i) from a receiver node.
In this formula, d0(i) denotes the distance between the receiver and node i and de(i) is an
additional placement error. Figure 7.8 illustrates this scenario.

The receiver node broadcasts a carrier signal <
(
m(t)ej(2πf0t)

)
. A transmit node i receives

a noisy signal

<
(
ni(t)m(t)ej(2πf0t+γ0(i)+γe(i))

)
(7.7)

where

γ0(i) =
2πf0d0

c
=

2πd0

λ0

(7.8)

is the normal phase offset from the transmitted carrier and

γe(i) =
2πf0di(i)

c
=

2πdi(i)

λ0

(7.9)

94

Figure 7.9: Illustration of the Round-trip open-loop distributed adaptive carrier synchro-
nisation scheme

represents the phase error resulting from the placement error de(i). ni(t) is the noise signal.
Each transmit node applies a PLL to lock on to the carrier with the result

<
(
ni(t)m(t)ej(2πf0t+γ∆(i))

)
(7.10)

In this equation, γ∆(i) = γ0(i) + γe(i)− γpll(i). The phase variations across different slaves
originate from placement errors and PLL errors. The PLL error can be reduced by in-
creasing the SNR. When the locations of nodes are sufficiently well known and fixed, phase
synchronisation among distributed carrier signals is therefore possible with this approach.

Carrier synchronisation when locations of distributed nodes are not known

In a scenario where distances among nodes are not known, the same approach as above can
be applied when relative distances among nodes are calculated and the slave clocks are up-
dated accordingly. The authors of [39] describe this approach. In advance of synchronising
carrier phase offsets, clock-offsets are estimated by a standard approach [126].

When nodes are moving, this estimation of clock offsets is a constant procedure. How-
ever, when the velocity is too high, it is not feasible to synchronise a sufficiently large
number of nodes by this approach. Furthermore, the overhead for the time synchronisa-
tion is energy demanding.

Round-trip open-loop distributed carrier synchronisation

An approach to open-loop phase synchronisation between two source nodes and one receiver
node that allows for high mobility of source and destination nodes was presented in [36,
37, 38]. Figure 7.9 illustrates this scenario. The destination node C will in this system
transmit a sinusoidal beacon signal <

(
m(t)ej(2πf0t+γ0)

)
to both source nodes. At the nodes

the signals <
(
m(t)ej(2πf0t+γA0)

)
and <

(
m(t)ej(2πf0t+γB0)

)
are received. Both source nodes

employ a primary frequency synthesis PLL [127] tuned onto the beacon frequency f0 and
generate a low-power secondary sinusoidal beacon that is phase locked to the received

beacon but of frequency fA1 =
NA

1

MA
1
fA0 and fB1 =

NB
1

MB
1
fB0 . N1 and M1 are integers. The

95

signals <
(
m(t)ej(2πf

A
1 t+γ

A
1)
)

and <
(
m(t)ej(2πf

B
1 t+γ

B
1)
)

are then transmitted among the

source nodes. At receiving a secondary beacon signal, a source node again generates

a carrier signal at frequency fAc =
NA

1

MA
1
· fB1 = fBc =

NB
1

MB
1
· fA1 that is phase locked to

the secondary beacon signal. These carrier signals are then utilised to transmit to the
destination node. The received signal at the destination can be written as

<
(
m(t)ej(2πf

A
c t+γ

A
2) +m(t)ej(2πf

B
c t+γ

B
2)
)
. (7.11)

Observe that frequencies from both source nodes are identical. Also, when the round trip
time along C → A → B → C and C → B → A → C are similar, the phase offset
γ∆ = γA2 − γB2 is small at the destination node.

Since the round-trip signal propagation has low delays, this method can be applied also
at high velocities of nodes. It is, however, only feasible for exactly two source nodes. The
expected maximum gain is therefore limited.

7.2.2 Closed-loop distributed carrier synchronisation

In closed-loop phase synchronisation schemes, the destination directly controls the relative
phase offset between RF transmit signal components. This is achieved by measuring a
function of the received phases of the source transmissions and then transmitting feed-
back signals that guide the transmitter’s phase adjustment process. Interaction between
transmit nodes is minimal in these approaches.

Full feedback closed-loop synchronisation

A full feedback based closed-loop carrier synchronisation technique suitable for distributed
beamforming is described in [39]. Carrier frequency synchronisation is achieved over a
master-slave approach. The Receiver node acts as the master node. The phase offset
between the master and the i-th transmitter is corrected over a closed-loop protocol:

• The master broadcasts a common beacon to all source nodes.

• Source nodes ’bounce’ this beacon back to the master utilising a different frequency.
Transmission from source nodes to the master nodes is achieved in a direct-sequence
code division multiple access (DS-CDMA) scheme in which all source nodes utilise
distinct codes. By this approach, the master is then able to distinguish the received
signals.

• After receiving the bounced beacons, the master estimates the phase of each source
relative to its originally transmitted beacon. These estimates are divided by two,
quantised and then transmitted to the source nodes via DS-CDMA. This message
is utilised by the source nodes for phase compensation and may also contain clock
correction information to facilitate symbol timing synchronisation.

96

• Source nodes extract their phase compensation estimate, and adjusts their carrier
phase.

When phase offsets did not change significantly between synchronisation and beamforming
intervals, the bandpass transmissions from all source nodes will then combine coherently.
The authors of [39] also considered the impact of energy allocation between synchronisa-
tion and information transmission on the error probability of signals transmitted in this
distributed beamforming manner. It was derived that an optimal energy tradeoff exists
and that allocating too much or too little energy to carrier synchronisation is inefficient.

1-bit feedback based closed loop synchronisation

In [15] an iterative process to synchronise signal phases of transmit signals at a remote
receiver without inter-node communication is described. It is assumed that, for a network
of size n, initially the carrier phase offsets γi of transmit signals ej(2π(f+fi)t+γi); i ∈ {1..n}
are arbitrarily distributed. When a receiver requests a transmission from the network,
carrier phases are synchronised in an iterative process.

1. Each source node i adjusts its carrier phase offset γi and frequency offset fi randomly

2. The source nodes transmit to the destination simultaneously as a distributed beam-
former.

3. The receiver estimates the level of phase synchronisation of the received sum signal
(e.g. by SNR or comparison to an expected signal).

4. A feedback on the level of synchronisation is broadcast to the network. Nodes sustain
their phase adjustments if the feedback has improved or else reverse them.

These four steps are iterated repeatedly until a stop criteria is met (e.g. maximum it-
eration count or sufficient synchronisation). Figure 7.10 illustrates this procedure. The
computational complexity for transmit nodes in this approach is low as only the phase
and frequency of the transmit signal is adapted according to a random process. Further
processing is not required for synchronisation.

This process was successfully applied in [13, 14, 40, 42].

97

Figure 7.10: An iterative approach to closed-loop distributed adaptive transmit beamform-
ing

98

8 Analysis of a simple closed loop
synchronisation approach

[...] distributed adaptive beamforming is on the
cusp of feasibility. The prototypes reported in the
literature thus far have focused on demonstrating
that the critical task of aligning carrier phases
at the intended destination is feasible. The next
step is to investigate and demonstrate distributed
Beamforming in a networked context.

(Raghuraman Mudumbai et al: Distributed Transmit
Beamforming: Challenges and Recent Progress [15])

As detailed in section 7.2.2, the 1-bit feedback based closed loop synchronisation is
probably the slowest approach to synchronise carrier phases from the methods presented.
However, the computational load for a single node is also by far the smallest among all
methods. Beside applying a random decision on the carrier phase offset of single nodes,
in each iteration only an additional binary decision is taken whether to keep the carrier
phase based on the feedback received from a master node.

The process has been studied by different authors [41, 42, 43, 13]. The distinct ap-
proaches proposed differ in the implementation of the first and the fourth step specified
above. The authors of [43] show that it is possible to reduce the number of transmitting
nodes in a random process and still achieve sufficient synchronisation among all nodes.

In [41, 42, 43] a process is described in which each node alters its carrier phase offset γi
according to a normal distribution with small variance in each iteration. In [13] a uniform
distribution is utilised instead but the probability for one node to alter the phase offest of
it’s carrier signal is low. Only in [42] not only the phase but also frequency is adapted.

Significant differences among these approaches also apply to the feedback and the reac-
tions of nodes in the iterative process. In [15, 42, 43] a one-bit feedback is utilised. Nodes
sustain their phase modifications when the feedback has improved and otherwise reverse
them. In [43] it was shown that the optimisation time is improved by factor two when a
node as response to a negative feedback from the receiver applies a complementary phase
offset instead of simply reversing its modification. In [13], authors suppose to utilise more
than one bit as feedback so that parameters of the optimisation can be adapted with regard
to the optimisation progress.

99

Figure 8.1: A schematic overview on feedback based closed-loop distributed adaptive trans-
mit beamforming in wireless sensor networks

The strength of feedback based closed-loop distributed adaptive beamforming in wireless
sensor networks is its simplicity and low processing requirements that make it feasible for
the application in networks of tiny sized, low power and computationally restricted sensor
nodes.

The first step to problem analysis is always a very precise understanding of the problem
itself. A reasonable general understanding of the optimisation process was already gained
by the definition of the iterated process detailed in section 7.2.2. We will in this chapter
describe this process algorithmically exact to become able to provide some quantitative re-
sults on the optimisation performance as well es impacts of parameter and problem settings.
This discussion will detail design decisions as, for example, the random phase alteration
method or the feedback function. After describing these aspects in a mathematical sense,
we are able to provide and possibly even prove sound results on the optimisation scenario.

8.1 Analysis of the problem scenario

In this section we discuss algorithmic aspects of the 1-bit feedback based closed loop phase
synchronisation approach for distributed adaptive transmit beamforming in wireless sensor
networks. Figure 8.1 illustrates a general scenario for this approach.

As a first observation, note that the iterative optimisation approach basically represents
an evolutionary random search method. By altering the phase offset of carrier signals, new
search points are requested. When the fitness value feedback by the remote receiver is
decreasing, the modifications of one iteration are discarded.

100

Generally, this is the behaviour of a (1 + 1)-evolutionary algorithm. Naturally, the
population size and the offspring population size are 1, since at one time instant, each node
can only transmit a carrier signal at one distinct carrier phase offset (and not multiple phase
offsets at once). Although also greater population sizes may be modelled by subsuming
several iterations, the standard optimisation approach proposed can be modelled by a
standard (1 + 1)-EA. A suitable algorithmic representation of the optimisation problem is
discussed in the following.

8.1.1 Representation of individuals

The optimisation process described consists of several iterations. During each iteration
(e.g. after step 1) the phases and frequencies of all transmit signals are fixed while they
might change from one iteration to another. We therefore model the iteration-wide fixed
phase and frequency configurations of all distinct transmit signals as one individual in the
sense of the optimisation process. In other words, an individual in the optimisation process
is the set of all phase and frequency modifications (γi, fi) of the base band signal for all
source nodes i ∈ {1, . . . , n}.

How shall we represent an individual for the analytic consideration in the following
sections? Possible representations are

• As ordered set of phase and frequency pairs (γi, fi). A drawback of this solution
is that similarity measures between individuals are not straightforward so that an
intuitive understanding of a neighbourhood of individuals is not provided.

• A vector V = v1, . . . , v2n of phases and/or frequencies (e.g. v2i−1 = γi; v2i = fi).
This representation has the favourable property that we can then represent configu-
rations as points in multi dimensional search spaces so that simple distance (similar-
ity) measures between configurations are straightforward (e.g. Euclidean distance).
Therefore, a neighbourhood measure for the configuration is implicitly given.

• Binary representations in which possible phase and/or frequency shifts are encoded
for each source node and source node sub-configurations are concatenated to one
global binary representation of individuals (Figure 8.2 illustrates this representation
scheme exemplary). Basically, all possible phase shift values for a single source node
are enumerated and represented by a binary value. Although the number of possible
phase shifts is infinite, any practical sensor node implementation can only realise a
finite number of possible phase shifts. We therefore assume that this abstraction
from an infinite number of possibilities does represent the problem scenario well.

This solution is favourable since various results to binary search spaces are known
and can be applied. In order to respect neighbourhood relationships, similar phase
offsets are to be mapped onto similar binary representations. One problem with a
binary configuration is the neighbourhood function. The hamming distance between
neighbouring points (with similar phase shift for a single source node) might be

101

I =

Phase offset
of node 1
|

0 . . . 1︸ ︷︷ ︸
log(k) bits

Frequency
offset for
node 1
|

0 . . . 1︸ ︷︷ ︸
log(ϕ) bits

. . .

Phase offset
for node i

|

0100 . . . 1001︸ ︷︷ ︸
log(k) bits encode k

distinct possible
phase offsets of node i

Frequency
offset for
node i
|

0100 . . . 1001︸ ︷︷ ︸
log(ϕ) bits encode ϕ
distinct frequency
offsets of node i

. . .

Phase offset
for node n

|

0 . . . 1︸ ︷︷ ︸
log(k) bits

Frequency
offset for
node n
|

0 . . . 1︸ ︷︷ ︸
log(ϕ) bits

Figure 8.2: Possible binary representation of individuals

very large when possible phase offsets are simply enumerated. We can overcome his
problem by using Gray codes (cf. section 8.1.3). A drawback of Gray Codes is that
numbers that are very far apart also have hamming distance 1.

For our analytic consideration, Grey Codes will be sufficient. We therefore assume in
the following that individuals are encoded by Grey Codes as described above.

8.1.2 Feedback function

At receiving the superimposed sum signal

ζsum = <

(
m(t)ej2πfct

n∑
i=1

RSSie
j(γi+φi+ψi)

)
(8.1)

the receiver estimates the quality of the synchronisation. A possible, simple implementation
for this calculation is to utilise the signal power or SNR of the superimposed signal ζsum
at the receiver. Figure 8.3 illustrates the superimposition of received signals components
<
(
m(t)ej(2πfit+γi+φi+ψi)

)
and <

(
m(t)ej(2πfit+γi+φi+ψi)

)
from two nodes i and i. For ease of

presentation, the phase offset due to the signal propagation, φi and the phase offset due
to distinct phases of the local oscillator ψi are omitted in the figure. At the receiver, both
signals combine to a new, overlayed signal

ζi,i = <

m(t)ej2πfct
∑
ς∈[i,i]

RSSie
j(γς+φς+ψς)

 (8.2)

After the quality of the synchronisation is calculated at the receiver, a feedback is broad-
cast to the sensor nodes to guide the optimisation process. The authors of [40, 41] propose
to utilise a one bit feedback. A ’0’ in this feedback scheme means that the synchronisation
quality has deteriorated while a feedback of ’1’ means that the quality is at least as good
as in the last iteration. The advantage of this approach is that the amount of data trans-
mitted between network and receiver is minimised. This efficiency can be ’invested’ into
higher redundancy schemes for the transmission in order to guard the information from
transmission errors. A drawback of this solution is, however, that the expected progress of
the optimisation is not known at the source nodes, although it might be known at the re-
ceiver node. The receiver might, for instance, require a minimum SNR so that the distance

102

Figure 8.3: Superimposition of received signal components from nodes i and i.

to the currently reached SNR represents the progress of the approach. When only a binary
feedback is provided, the transmit nodes have restricted means to estimate the progress
of the optimisation process. When the progress is not known, only less advanced opti-
misation schemes are possible. In section 8.3.3 we discuss a synchronisation scheme that
greatly improves the synchronisation performance but requires more than binary feedback
information.

Another approach not feasible with binary feedback values is an adaptive random search
operator. The idea is that early in the optimisation process the reached search point
is not well synchronised with high probability. In this case, many search points have a
higher fitness value than the current one. In particular, we expect the search points in the
neighbourhood of the current one to differ only slightly so that it is probable to reach a
search point with improved fitness value by applying greater changes to the current search
point. When, however, later in the optimisation process the optimum is nearly reached,
most other search points have a fitness value worse than the current one and one global
optimum is expected to be near, it is more beneficial to apply only slight modifications to
the search points (i.e. to search in its direct proximity).

In [40, 41, 42] this was achieved by changing the standard deviation of the Gaussian
process to alter the signal phases over the course of the optimisation. Since a progress was
not reported, in these implementations the modification scheme was purely time based.
With progress information, more ambiguous optimisation schemes are possible.

One solution to this problem is to transmit the (possibly normalised) output of the
quality function to the network e.g. as integer value. When maximum and minimum
values are known by the sensor nodes, an estimation on the optimisation progress and

103

Figure 8.4: Schematic illustration of a calculated expected signal and a received superim-
posed sum signal.

therefore a more exact control of the optimisation process is possible.

In order to calculate the synchronisation quality of the received signals at a receiver, var-
ious approaches are feasible. Apart from very ambiguous (and computationally expensive)
methods, less accurate and computationally cheaper methods are detailed in the following.

SNR

One possible approach is to calculate the SNR of the received signal. The SNR specifies
the strength of the received sum signal above thermal noise. When the SNR increases,
the transmit signals are probably better synchronised than before so that the amount of
constructive vs. destructive interference is increased.

A higher SNR is therefore interpreted as an improved synchronisation of transmit signals.

Simple distance between received signals

Another possible solution is to estimate an expected sum signal and to calculate the differ-
ence (basically the surface) between the received superimposed sum signal and the (possibly
phase shifted) expected signal (see figure 8.4).

When the surface becomes smaller, this is interpreted as an improved phase synchroni-
sation. In order to estimate the expected signal when all signals are perfectly synchronised
we would like to specify the signal strength of each single signal component, the frequency
and the transmit sequence.

Regarding the transmit sequence utilised for synchronisation purposes we assume that
this is predefined among all nodes and known by the receiver. The same is assumed for
the transmit power of each single node. Although the receiver is not able to communicate
with distinct nodes separately, it is possible to estimate a median distance to the sensor
network over the round trip time between the network and the receiver.

Together with the transmit power of distinct nodes, this directly leads to an estimated
signal strength of a received and optimally synchronised superimposed sum signal. The
missing value, is now the count of transmitting nodes. In [128] an approach was detailed by
which the count of simultaneously transmitting sensor nodes can be estimated from signal

104

statistics of the received signal. Basically, the absolute energy received from simultaneously
transmitting unsynchronised nodes is related to the number of nodes transmitting.

8.1.3 Search space

The performance of the optimisation algorithm is heavily dependent on the underlying
search space. In particular, we would like to know if the search space is unimodal or
multimodal, i.e. if local optima exist. In this case, the optimisation approach could
converge in a local optimum. We easily see that the feedback function is not unimodal.
The reason is that, given the search point corresponding to an optimum sum signal ζopt
we can state another optimum by adding the same phase offset γ′ to all carrier signals.
In particular, the fitness function is weak multimodal which means that no local optimum
exists. We detail this observation in the following.

Identical transmit frequencies

When carrier frequencies among nodes are identical, i.e.

ej(2πft+γi);∀i ∈ {1, . . . , n} (8.3)

a local optimum exists if we can identify at least one search point sζ for which all small
phase modifications decrease the fitness value, while some larger modifications increase
it. The smallest possible modification is realised when the transmit phase is altered for
exactly one carrier signal ζi. Figure 8.5 illustrates that the fitness of a signal is given by
the distance between the rotation angles ϕopt and ϕi of an optimal configuration sζopt and
sζi as ∣∣cos(ϕopt)− cos(ϕi)

∣∣ . (8.4)

A phase shift of δi 6= 0 alters the fitness value. For some t the fitness increases while for
others it decreases. W.l.o.g. assume (ϕi + δi) − ϕopt < 180◦ and ϕi > ϕopt. As depicted
in figure 8.5, for ϕi > 180◦ ∧ ϕopt < 180◦ (or ϕi > 360◦ ∧ ϕopt < 360◦, respectively) the
contribution to the fitness function F is zero overall, while in all other cases a phase offset
of δi will have either always positive or always negative impact on the fitness value.

Compared to sopt no configuration short of the optimum configuration si = sopt exists
for which the distance between signal components is increased for phase offset δi regardless
of the sign of δi (cf. figure 8.5).

Distinct transmit frequencies

Although no local optima exist when all transmit frequencies are identical, this might
differ when frequencies are also subject to change. For this configuration it is sufficient to
consider the phase offset between two signals only: An individual carrier signal ζi that is
to be modified in order to improve the amplitude of the sum signal ζsum and the nearest
global optimum ζopt to the superimposed sum signal.

105

Figure 8.5: Fitness calculation of signal components. The fitness of the superimposed sum
signal is impacted by the relative phase offset of an optimally aligned signal
and a carrier signal i.

Figure 8.6: Pattern of periodic signals.

When signal frequencies differ, the feedback function is not affected by phase modifica-
tions only. The reason for this is that we can for every positive contribution to the fitness
function also find a negative contribution of the same amount in the common period of
ζopt and ζi. The periodic function of the second half of the common period Φ is a reflection
of the first half of the function at the point (Φ, 0). This property is illustrated in figure 8.6.

Consequently, for any time t relative to the common period Φ, when the relative dis-
tance between a point of the individual signal ζi(t mod Φ) and the optimum signal ζopt(t
mod Φ) is decreased by an arbitrary phase offset γ′i applied to the carrier phase of ζi, we
can state a value t′ for at which the distance is increased by the same amount at ζi(t

′

mod Φ). This means that, in between these two configurations, the paths of the vectors
are symmetrical so that for each t mod Φ a corresponding t′ mod Φ exists with

ej(2π(f1)t mod Φ+γ1) − ej(2πft mod Φ)

= −
(
ej(2π(f1)t′ mod Φ+γ1) − ej(2πft′ mod Φ)

)
(8.5)

When the phase of one singal is now shifted, this property is not impacted. Also, when

106

the frequency is changed, the length of the overall period is impacted but within the period
the property described remains unchanged. The important points to note here are that

1. signal quality is not affected by phase adaptations when frequencies are unsynchro-
nised

2. without frequency synchronisation, phase synchronisation alone is useless in order to
improve the signal quality

In summary, in both cases no local but several global optima exist in the search space
so that local random search approaches will always converge a global optimum.

8.1.4 Variation operators

Generally, for revolutionary algorithms, mutation and crossover can be applied in order to
proceed to new search points in the search space. We discuss both in the following.

Mutation

Mutation of individuals shall apply small modifications on the individual in general so
that a target individual with small distance to the current individual is more probable
than individuals that are farther away.

For feedback based phase adaptation of nodes for distributed adaptive beamforming in
wireless sensor networks, mutation constitutes phase modifications of one or more carrier
signal components. Design parameters are therefore the number of altered carrier signal
components and the alteration method. An example for a possible mutation operator is
detailed in [41].

Example 8.1.1 :

The authors apply normal distributed phase modifications and propose to re-
strict the standard deviation in order to receive a local search module. The
probability that a signal phase is adapted by a source node was chosen as 1.
This means that each node alters the phase of its carrier signal in each iter-
ation. Later in the optimisation this might lead to a small convergence speed
and, when the optimum is near, many transmit signal components already have
a nearly optimal phase offset and need not be modified.
It was proposed in [41] to adapt the mutation speed purely by changing the
standard deviation of the phase modification and not by the probability to apply
phase modifications of single transmit signals.

Figure 8.18 illustrates the impact of the standard deviation of the normal distributed phase
modification on the synchronisation performance. These results have been achieved in a
Matlab-based simulation environment in which 100 nodes are randomly distributed on a
30m × 30m square area. The receiver node is located 30m above the center of this area

107

Figure 8.7: Uniform distribution of phase mutations

Property Value
Node distribution area 30m× 30m
Location of the receiver (15m, 15m, 30m)
Mobility stationary nodes
Base band frequency fbase = 2.4 GHz
Transmission power of nodes Ptx = 1 mW
Gain of the transmit antenna Gtx = 0 dB
Gain of the receive antenna Grx = 0 dB
Iterations per simulations 6000
Identical simulation runs 10
Random noise power [94] −103 dBm
Pathloss calculation (Prx) Ptx

(
λ

2πd

)2
GtxGrx

Figure 8.8: Configuration of the simulation environment. Prx is the the received signal
power, d is the distance between transmitter and receiver and λ is the wave-
length of the signal

108

Figure 8.9: A point in the search space (configuration of transmit nodes) spanned by the
phase offsets of the carrier signals s1 and s2

(see figure 8.1) For each one configuration, 10 simulation runs are completed to obtain the
median values depicted in the figure. In the figure, the Root of the mean square error

RMSE =

√√√√ τ∑
t=0

(
ζsum + ζnoise − ζopt

)2

n
. (8.6)

between the optimum signal ζopt and the received superimposed sum signal ζsum is illus-
trated. In this formula, τ is chosen to cover several signal periods.

We can observe that better synchronisation performances are achieved with small vari-
ances (i.e. greater probability to proceed to similar individuals) for the normal distributed
phase alteration operation. This property is further discussed in section 8.2.4.

Of course, also a uniformly distributed phase offset is possible for the mutation operator.
For the uniform distributed operator we can only modify the number of nodes altering the
phase offset of their carrier phase in each iteration but not the deviation of the distribution.
The uniform distribution leads to a global random search approach since all points in the
search space have a positive probability to be elected as next search point.

Since the uniform distribution is better suited for our individual representation, we will
assume a uniformly distributed phase alteration procedure in our theoretical analysis in
section 8.2. In section 8.2.4 we will observe that the performance of uniform and normal
distributed phase modification operators is similar.

For both distributions it is of course possible to restrict the neighbourhood for the
search by applying sharp neighbourhood boundaries. This approach leads to a local
random search mechanism and is detailed in section 8.3.2. Figure 8.9 illustrates the effect
of various distributions for the phase offset on the neighbourhood size.

109

Crossover

Until now, we considered the basic scenario to be solved by a (1 + 1)-EA. This approach
is straightforward in that it considered only one individual at a time. As an individual
is constituted by one configuration (phase- and frequency changes applied to the carrier
signal of transmit nodes) of all signal components, multiple individuals are achieved arti-
ficially at most. Also, when only mutation is applied, a multi-start strategy seems to be
equally beneficial as an increased population size. With population size 1, however, no
recombination (crossover) is possible.

In general, two approaches might enable crossover in collaborative transmission scenarios.

1. Simultaneous transmission of distinct transmit signals by source nodes

2. Time-shifted transmission of transmit signals related to distinct individuals

The first solution, however, would at least require more ambiguous source nodes, and
can therefore be disregarded in wireless sensor networks. For the second solution and
population size of µ > 1, one iteration of the algorithm is then extended to µ transmission
periods each of which is associated to one individual. This scenario has not yet been
considered in the literature. We will in section 8.4.3 discuss this approach for optimisation
purposes.

8.1.5 Discussion

Does collaborative transmission always converge? In [41] it was proved that this is the
case when all transmit signals are of identical frequency. We have discussed the problem
scenario thoroughly regarding several aspects so that we can easily come to the same result
and even disregard the frequency constraint.

As observed in section 8.1.3 that no local optima exist in the search space. Also, the
random uniform and normal distributed search methods are not restricted to any local
neighbourhood in the search space (although more similar points have greater probability
to be reached). Furthermore, the algorithm does never accept search points with a worse
fitness value. These results together are already sufficient to see that one of the global
optima is reached with probability 1. Even if the mutation operator were a local search
operator, an optimum would be reached with probability 1 since the fitness function is only
weak multimodal, i.e. no local optima exist.

In the following section we will derive the expected time until a global optimum is reached
for this phase synchronisation approach.

110

8.2 Analysis of the convergence time of 1-bit feedback
based distributed adaptive transmit beamforming in
wireless sensor networks

We analyse the process of distributed adaptive beamforming in wireless sensor networks as
described above and assume that each one of the n nodes in step 1) decides with probability
1
n

to change the phase of its carrier signal uniformly at random in the interval [0, 2π]. On
obtaining the feedback of the receiver, nodes that recently updated the phase of their
carrier signal either sustain this decision or reverse it, depending on whether the feedback
has improved or not. A feedback function F : ζ∗sum → R maps the superimposed received
carrier signal

ζsum = <

(
m(t)ej2πfct

n∑
i=1

RSSie
j(γi+φi+ψi)

)
(8.7)

to a real-valued fitness score. A possible feedback function that is proportional to the
distance between an observed superimposed carrier ζsum and an optimum sum carrier
signal

ζopt = <
(
m(t)RSSopte

j(2πfct+γopt+φopt+ψopt)
)

(8.8)

is F (ζsum) =
∫ 2π

t=0

∣∣ζsum − ζopt
∣∣. Since this function can be mapped onto other fitness

measures as, for instance, the signal to noise ratio (SNR) or the received signal strength
(RSS), the following discussion remains valid for these fitness measures. While the multi-
modality of this fitness function is straightforward, observe that it is also weak multimodal
so that no local optima exist (The weak multimodality of the fitness function is derived in
section 8.1.3).

Distributed adaptive beamforming in wireless sensor networks is a search problem. The
search space S is given by the set of possible combinations of phase and frequency offsets
γi and fi for all n carrier signals. A global optimum is a configuration of individual
carrier phases that result in identical phase and frequency offset of all received direct
signal components. For the analysis, we assume that the optimisation aim is to achieve for
an arbitrary k a maximum relative phase offset of 2π

k
between any two carrier signals. We

therefore divide the phase space for a single carrier signal into k intervals of width 2π
k

.
For a specific superimposed carrier signal ζ at a receiver we model the corresponding

search point sζ = (Γt, Ft)ζ ∈ S at iteration t by a specific combination of phase and
frequency offsets with Γt = (γt,1, . . . , γt,n) and Ft = (ft,1, . . . , ft,n). In order to respect
neighbourhood similarities we represent search points as Gray encoded binary strings sζ ∈
Bn·log(k) so that similar search points have a small hamming distance [129]. A search point
is then composed from n sections of log(k) bits each. Every block of length log(k) describes
one of the k intervals for the phase offset of one carrier signal. For the analysis, we assume
that the frequency offset fi is zero for all carriers. The optimisation problem is denoted
as P and TP describes the count of iterations required to reach one of the optimum values
for the problem P .

111

8.2.1 An upper bound on the expected optimisation time

The value of the fitness function increases with the number of carrier signals ζi that share
the same interval for their phase offset γi at the receiver. We can roughly divide the values
of the fitness function into n · log(k) partitions L1, . . . , Ln·log(k) depending on the number of
bits in the individual representation that are identical with an individual global optimum.
For each one transmitter, the probability to adapt its phase to one specific interval is 1

k
.

The probability to increase the fitness value so that at least the next partition is reached
is then at least

1

k
· 1

n · log(k)
(8.9)

since one carrier signal ζi is altered with probability 1
n·log(k)

and the probability to reach

any particular of the partitions that would increase the fitness value is 1
k
. In partition i, a

total of (
n · log(k)− i

1

)
= n · log(k)− i (8.10)

carrier signals each suffice to improve the fitness value with probability 1
n·log(k)

· 1
k
. We

therefore require that at least one of the not synchronised carrier signals is correctly altered
in phase while all other n− 1 signals remain unchanged. This happens with probability(

n · log(k)− i
1

)
· 1

n · log(k)
·
(

1− 1

n · log(k)

)n·log(k)−1

=

(
n− i
n · k

)
·
(

1− 1

n

)n−1

. (8.11)

Since (
1− 1

n

)n
<

1

e
<

(
1− 1

n

)n−1

(8.12)

We obtain the probability P [Li] that Li is left and a partition j with j > i is reached as

P [Li] ≥
n · log(k)− i
n · log(k) · e

. (8.13)

The expected number of iterations to change the layer is bounded from above by P [Li]
−1.

We consequently obtain the overall expected optimisation time as

E[TP] ≤
n·log(k)−1∑

i=0

e · n · log(k)

n · log(k)− i

= e · n · log(k) ·
n·log(k)∑
i=1

1

i

< e · n · log(k) · (ln(n · log(k)) + 1)

= O (n · log (n · log(k) + k)) . (8.14)

112

8.2.2 A lower bound on the expected optimisation time

After the initialisation, the phases of the carrier signals are identically and independently
distributed. Consequently for a superimposed received sum signal ζ, each bit in the binary
string sζ that represents the corresponding search point has an equal probability to be 1
or 0. The probability to start from a search point sζ with hamming distance h(sopt, sζ)
not larger than l ∈ N ; l � n · log(k) to one of the global optima sopt directly after the
random initialisation is at most

P [h(sopt, sζ) ≤ l] =
l∑

i=0

(
n · log(k)

n · log(k)− i

)
· k

2n·log(k)−i

≤ (n · log(k))l+2

2n·log(k)−l

In this formula, (
n · log(k)

n · log(k)− i

)
(8.15)

is the count of possible configurations with i bit errors to a given global optimum, 1
2n·log(k)−i

represents the probability for all these bits to be correct and k is the count of global optima.
This means that with high probability (w.h.p.) the hamming distance to the nearest

global optimum is at least l. We will use the method of the expected progress to calculate
a lower bound on the optimisation time. The general idea is the following.

Let (sζ , t) denote the situation that search point sζ was achieved after t iterations of
the algorithm. We assume a progress measure Λ : Bn·log(k) → R+

0 such that Λ(sζ , t) < ∆
represents the case that a global optimum was not found in the first t iterations. For every
t ∈ N we have

E[TP] ≥ t · P [TP > t]

= t · P [Λ(sζ , t) < ∆]

= t · (1− P [Λ(sζ , t) ≥ ∆]). (8.16)

With the help of the Markov-inequality we obtain

P [Λ(sζ , t) ≥ ∆] ≤ E[Λ(sζ , t)]

∆
(8.17)

and therefore

E[TP] ≥ t ·
(

1− E[Λ(sζ , t)]

∆

)
. (8.18)

This means that we can obtain a lower bound on the optimisation time by providing the
expected progress after t iterations. The probability for l bits to correctly flip is at most(

1− 1

n · log(k)

)n·log(k)−l

·
(

1

n · log(k)

)l
≤ 1

(n · log(k))l
. (8.19)

113

In this formula,
(

1− 1
n·log(k)

)n·log(k)−l
describes the probability that all ’correct’ bits do not

flip while the remaining l bits mutate with probability
(

1
n·log(k)

)l
. The expected progress

in one iteration is therefore

E[Λ(sζ , t),Λ(sζ′ , t+ 1)] ≤
l∑

i=1

i

(n · log(k))i

<
2

n · log(k)
(8.20)

and the expected progress in t iterations is consequently not greater than 2t
n·log(k)

.

When we choose t = n·log(k)·∆
4

− 1, the double of the expected progress is still smaller
than ∆. With the Markov inequality we can show that this progress is not achieved with
probability 1

2
. Altogether we conclude that the expected optimisation time is bounded

from below by

E[TP] ≥ t ·
(

1− E[Λ(sζ , t)]

∆

)
≥ n · log(k) ·∆

4
·

(
1−

2·n·log(k)
4·n·log(k)

·∆
∆

)
= Ω(n · log(k) ·∆) (8.21)

With ∆ = log(n · log(k)) we obtain a lower bound in the same order as the upper bound
derived in section 8.2.1 and consequently an asymptotically sharp bound of

E[TP] = Θ (n · log (n · log (k) + k))) . (8.22)

8.2.3 Simulation and experimental results for the basic scenario

In the analytic consideration in section 8.2 we could derive asymptotic bounds on the ex-
pected synchronisation time of a (1+1) evolutionary algorithm with standard bit mutation
and mutation probability 1

n
in the scenario of distributed adaptive transmit beamforming.

In the analysis we had to abstract from several physical properties. These are, for instance,
the noise of the receiver, multipath propagation as well as distinct transmit and receiver
powers of nodes or phase and frequency instability of local oscillators.

The following sections detail the performance of a (1 + 1) evolutionary algorithm for
distributed adaptive beamforming achieved in simulations and experimental settings.

Simulation results

We have implemented the scenario of distributed adaptive beamforming in Matlab to obtain
simulation results for greater scale sensor networks. In these simulations, 100 transmit

114

Property Value
Node distribution area 30m× 30m
Location of the receiver (15m, 15m, 30m)
Mobility stationary nodes
Base band frequency fbase = 2.4 GHz
Transmission power of nodes Ptx = 1 mW
Gain of the transmit antenna Gtx = 0 dB
Gain of the receive antenna Grx = 0 dB
Iterations per simulations 6000
Identical simulation runs 10
Random noise power [94] −103 dBm
Pathloss calculation (Prx) Ptx

(
λ

2πd

)2
GtxGrx

Table 8.1: Configuration of the simulations. Prx is the the received signal power, d is the
distance between transmitter and receiver and λ is the wavelength of the signal

nodes are placed uniformly at random on a 30m×30m square area. The receiver is located
30m above the centre of this area. Receiver and transmit nodes are stationary. Simulation
parameters are summarised in Table 8.1.

Frequency and phase stability are considered perfect. We derived the median and stan-
dard deviation from 10 simulation runs. One iteration consists of the nodes transmitting,
feedback computation, feedback transmission and feedback interpretation at the network
side. It is possible to perform these steps within few singal periods so that the time con-
sumed for a synchronisation of 6000 iterations is in the order of milliseconds for a base
band signal frequency of 2.4 GHz. Signal quality is measured by the RMSE of the received
signal to an expected optimum signal.

RMSE =

√√√√ τ∑
t=0

(
∑n

i=1 si + snoise − sopt)2

n
(8.23)

In this formula, τ was chosen to cover several signal periods. The terms
si = RSSi<

(
m(t)ej(2π(f+fi)t+γi)

)
and sopt = nRSSsum<

(
m(t)ej(2πfoptt+γopt)

)
represent the

i-th signal component of the received sum signal and the expected optimum signal, re-
spectively. The optimum signal is calculated as the perfectly aligned and properly phase
shifted received sum signal from all transmit sources. For the optimum signal, noise is
disregarded.

Figure 8.10(a) depicts the optimum carrier signal, the initial received sum signal and the
synchronised carrier after 6000 iterations when carrier phases are altered with probability
1
n

in each iteration according to a uniform distribution. In figure 8.10(b), the phase offset of
received signal components for an exemplary simulation run with the same parameters are
illustrated. We observe that after 6000 iterations about 98% of all carrier signals converge
to a relative phase offset of about +/- 0.1π. The median of all variances of the phase offsets
for simulation runs with this configuration is 0.2301 after 6000 iterations.

115

(a) Received sum signal from 100 transmit nodes
without synchronisation and after 6000 iterations

(b) Evolution of the phase adaptation process

Figure 8.10: Simulation results for a simulation with 100 transmit over 6000 iterations of
the random optimisation approach to distributed adaptive beamforming in
wireless sensor networks.

Experimental results

We have utilised USRP software radios (http://www.ettus.com) to model a sensor network
capable of distributed adaptive transmit beamforming. Figure 8.11(b) depicts an exper-
imental setting for this scenario. The software radios are controlled via the GNU radio
framework (http://gnuradio.org). GnuRadio is a software to control the USRP software
radios from a personal computer. It enables processing, analysis and visualisation of RF-
signals from standard hardware (cf. figure 8.12(a)) The signal flow graph can be assembled
graphically (cf. figure 8.12(b)).

The transmitter and receiver modules implement the feedback based distributed adaptive
beamforming. For the superimposed transmit channel and the feedback channel we utilised
widely separated frequencies so that the feedback could not impact the synchronisation
performance. Two experiments have been conducted with low and high RF transmit
frequencies of 27MHz and 2.4GHz, respectively. Table 8.2.3 summarises the configuration
and results of both experiments.

After 10 experiments at an RF transmit frequency of 27MHz we achieved a median
gain in the received signal strength of 3.72dB for three independent transmit nodes after
200 iterations. In 14 experiments with 4 independent nodes that transmit at 2.4GHz
the achieved median gain of the received RF sum signal was 2.19dB after 500 iterations.
In figure 8.13(a) the synchronisation performance is depicted over 600 iterations of the
synchronisation algorithm.

While the amplitude achieved in these synchronisations differs for various positions of
the receiver nodes relative to the transmit nodes, figure 8.13(b) shows that the general
synchronisation run is similar in all cases.

116

(a) A single USRP software radio with two
transceiver boards

(b) Experimental setting with four clock synchro-
nised USRP software radios

Figure 8.11: An experimental setting for a distributed adaptive beamforming scenario with
USRP software radios

(a) Scope plot of Gnuradio while synchronising four
USRP software radios at 2.4 GHz

(b) A GnuRadio flow graph

Figure 8.12: GnuRadio is utilised to control the USRP software radios

117

Experiment 1 Experiment 2
Sender 4 3
Mobility stationary stationary
Distance to receiver [m] ≈ 0.75 ≈ 4
Separation of TX antennas [m] ≈ 0.21 ≈ 0.3
Transmit RF Frequency [MHz] fTX = 2400 fTX = 27
Receive RF Frequency [MHz] fRX = 902 fRX = 902
Gain of receive antenna [dBi] GRX = 3 GRX = 3
Gain of transmit antenna [dBi] GTX = 3 GTX = 1.5
Iterations per experiment 500 200
Identical experiments 14 10
Median gain (PRX) [dB] 2.19 3.72

Table 8.2: Experimental results of software radio instrumentations

(a) Experimental measurement of distributed adap-
tive transmit beamforming by USRP software ra-
dios

(b) Optimisation performance for nodes at distinct
relative locations to a receiver

Figure 8.13: Performance of distributed adaptive beamforming in an experimental setting
with USRP software radios

118

The transmit nodes have been synchronised in their clock but no other communication
or synchronisation between nodes was allowed. The clock synchronisation is necessary
to ensure that the frequency of transmit nodes is identical. Otherwise, as derived in
section 8.1.3 a phase synchronisation is not feasible since signals would quickly run out
of phase. In future implementations GPS for the clock synchronisation of nodes could be
utilised.

8.2.4 Impact of distinct parameter configurations

In distributed adaptive beamforming in wireless sensor networks an individual node i in a
network of size n cooperates with other nodes to reach a distant receiver by superimposing
its individual carrier signal <

(
m(t)ej(2π(f+fi)t+γi)

)
with carrier signals transmitted from

other nodes. The approach constitutes a closed-loop feedback technique that is attained in
an iterative process. During each iteration, following a random distribution, each transmit
node i adds random phase and frequency offsets γ′i, f

′
i to its carrier phase γi and frequency

fi. According to the random distribution it is possible that all, some or no node adjusts the
phase or frequency of its carrier signal. The nodes then transmit to the destination simulta-
neously. From this received superimposed sum signal <

(
RSSsumm(t)

∑n
i=1 e

j(2π(f+fi)t+γi)
)

the receiver estimates the level of phase synchronisation achieved (e.g. by SNR or com-
parison to an expected signal). At the end of each iteration, the receiver broadcasts
this estimation as a channel quality indicator to the network. Nodes then sustain their
(adapted) carrier phases γi + γ′i and frequencies fi + f ′i when the feedback has improved to
the feedback obtained during the last iteration or else reverse them.

These steps are repeated until a stop criteria is met. Possible stop criteria are, for
example, the maximum iteration count or sufficient quality of the estimated channel.

The exact implementation of the phase alteration process in each iteration impacts the
performance of the optimisation approach. Generally, two parameters are of importance.
One is the number of nodes altering their carrier phase and frequency in each iteration and
the other is the probability distribution applied on the alteration of phases and frequencies
of one carrier signal.

When we illustrate the search space of the algorithm with respect to these parameters
we observe that they effectively impact the neighbourhood size of the search approach (see
figure 8.14). When the probability to alter the carrier phase of a single node is low, few
carrier signals are altered in one iteration. In the figure this might translate to the situation
that the phase offset of only one carrier signal is altered. The new search point then differs
from the recent one in only one dimension. When a uniform distribution is implemented,
all points along this dimension are equally probable while for a normal distribution the
most probable points are near to the recent search point as specified by the variance of the
probability distribution utilised to alter phase and frequency offsets. When, however, the
mutation probability is increased, so that more often several carrier signals (in the figure,
for example, both carrier signals s1 and s2) are altered, the new search point is drawn from
a region in the search space. In the case of the uniform distribution the whole search space
might constitute this region. Consequently, a smaller probability for nodes to alter their

119

Figure 8.14: A point in the search space (configuration of transmit nodes) spanned by the
phase offsets of the carrier signals s1 and s2

phase and frequency or a smaller variance for the random process to alter these parameters
increases the probability to draw a search point that is near to the recent one.

We expect that a moderate size of the neighbourhood (i.e. probability to alter phase or
frequency of one carrier signal and variance for the random process to alter these values)
is beneficial at the start of the synchronisation. The initial search point or the initial
synchronisation of carrier phases is typically far away from the optimum. Therefore, many
search points have a higher fitness value (are better synchronised) than the initial one.
Consequently, since the probability to improve the fitness value is high, it might be ben-
eficial to increase the neighbourhood size so that also bigger improvements are possible.
Later in the optimisation process, however, when the optimum is near, most search points
reduce the fitness value so that the probability to increase it is best for search points drawn
from a small neighbourhood.

In this section we consider various different parameter configurations for feedback based
distributed adaptive transmit beamforming in wireless sensor networks. These are the
probability for individual nodes to alter the phase offset as well as the distribution with
which the phase is altered. We distinguish between a uniformly distributed and a normal
distributed offset. Both are considered in the following.

Uniformly distributed phase offset

In the first set of simulations we consider the impact of the mutation probability on the
synchronisation performance when new transmit phase offsets are drawn according to a
uniform distribution.

When the average number of carrier signals that are modified in one iteration is altered,
this affects the performance of the optimisation approach, as the stepwidth of the random
process is changed. We are interested in the optimum percentage of nodes that alter their

120

Figure 8.15: Performance of distributed adaptive beamforming in a wireless sensor network
of 100 nodes and normal and uniform probability distributions on the phase
mutation probability. Uniform distribution of phase mutations.

phase per iteration (mutation probability) when the phase-alteration for each mutating
node is drawn according to a uniform distribution. Figure 8.2.4 depicts simulation results
for several mutation probabilities.

A mutation probability of κ represents the case that on average κ · n out of n transmit
signal components mutate (randomly alter their phase offset) in one iteration.

We observe that with a low mutation probability the overall performance of the synchro-
nisation process is improved. At the start of the optimisation, however, higher mutation
probabilities are more beneficial. This accounts for the fact that initially many configura-
tions exist that would improve the fitness value as the initial point is not well synchronised
with high probability (cf. section 8.2).

Since a mutation probability of 0.01 translates to 1 node to adapt the phase offset of its
carrier signal per iteration on average, smaller mutation probabilities are not beneficial.

Normal distributed phase offset

We also considered a normal distribution for the phase alteration as it was applied in
[42, 16, 41, 18] and study the impact of the mutation probability and the variance utilised.

Figure 8.16 shows the performance of this approach with several values for the mutation
variance applied to the phase mutation process when all nodes mutate in every iteration
(mutation probability of 1). This configuration is identical to the simulations conducted
in [42, 16, 41, 18]. For ease of presentation, error bars are omitted in this figure.

We observe that a smaller variance is beneficial for the performance of the synchroni-
sation process. The reason for this is again the reduced neighbourhood size of the search
method at smaller variances. In particular, by means of the mutation variance the neigh-
bourhood size can be adapted to an optimum for a given mutation probability.

However, when both, the variance and the mutation probability are small, the simulation

121

Figure 8.16: Normal distribution of phase mutations with mutation probability 1

performance degrades as the improvements in the fitness space are minor. Figure 8.17
depicts this property for various combinations of pγ and σ2

γ.
We observe that the mutation performance can be improved by altering the mutation

variance only to a particular extent. When the variance is decreased further, the overall
synchronisation performance degrades.

We approximated the optimum variance for several mutation probabilities. Generally,
a higher mutation probability necessitates a smaller variance to achieve the optimum per-
formance. Figure 8.18 depicts the performance for mutation probabilities of 0.2, 0.05 and
0.01 and near optimum variance, respectively.

For these configurations the performance is similar to the performance of the uniform
distribution with mutation probability 0.01.

Discussion

Summarising, we conclude that the best performance was achieved for small modifications
of a search point in each iteration. This is achieved for the uniformly distributed phase
offset by a small probability to alter the phase offset of an individual node. For the normal
distributed process, small steps in the search space can be achieved either by a small
variance or by a small probability to alter the phase offset of an individual node.

This optimisation performance can be further improved at the start of the synchroni-
sation process when a moderate mutation probability is implemented that is gradually
adapted in the course of the synchronisation process.

For the normal distribution the performance can be improved by adopting the variance
of the process.

Overall, results for near optimum configurations are similar for normal and uniform dis-
tributed phase alteration processes. A straightforward implementation would, for instance,
constitute an adaptive phase mutation process with uniform distribution.

Since in [130] the search space of distributed adaptive beamforming was classified as

122

(a) Normal distribution of phase mutations with mu-
tation probability 0.2 and various values for the mu-
tation variance σ2

γ

(b) Normal distribution of phase mutations with mu-
tation probability 0.05 and various values for the mu-
tation variance σ2

γ

Figure 8.17: Normal distribution of phase mutations with a fixed mutation probability and
various values for the mutation variance σ2

γ

Figure 8.18: Performance of distributed adaptive beamforming in a wireless sensor network
of 100 nodes and normal and uniform probability distributions on the phase
mutation probability. Normal distribution of phase mutations.

123

Figure 8.19: Performance of normal and uniform distributions for a network size of 100
nodes and pγ = 0.01, σ2

γ = 0.5π.

weak unimodal, we expect a nearest neighbour search approach to be best suited to achieve
fast synchronisation. We implemented and tested a local random search heuristic for this
scenario with various neighbourhood sizes. The implementation differs from the normal
distribution mainly since it utilises a fixed size neighbourhood instead of a variance on the
phase alteration process. Figure 8.19 shows that the performance is similar to the imple-
mentation with uniformly distributed phase alteration probabilities. We therefore conclude
that the global random search approaches utilised are already near optimal solutions for
distributed adaptive beamforming in wireless sensor networks.

Distributed adaptive beamforming in wireless sensor networks has been studied in the
literature according to various random phase alteration processes. The authors in [15, 16,
17] report good results when the probability pγ to alter the phase of a single carrier signal
in one iteration is 1 for all nodes and the phase offset is chosen according to a normal
distribution. The variance σ2

γ applied is not reported. In [13, 14] pγ was set to 1
n

for each
one of the n nodes while the phase is altered according to a uniform distribution.

For both, uniform and normal distributed processes, we consider several values for pγ
and σ2

γ. Generally, we achieved good performance when modifications in one iteration were
small. For the uniform distribution this translates to pγ = 1

n
. For the normal distribution,

good results are achieved when σ2
γ and pγ are balanced so that the modification to the

overall sum signal is small. With increasing pγ good results are achieved with decreasing
σ2
γ. Figure 8.19 depicts the simulation results for pγ = 1

n
and σ2

γ = 0.5π

The figure shows the median RMSE value achieved in 10 simulations by normal and uni-
form distributed processes over the course of 600 iterations. For ease of presentation, error
bars are omitted in this figure. However, the standard deviation is low for both processes
(the standard deviation of this normal distributed process is depicted in figure 8.29(b)).

The normal distributed process has a slightly improved synchronisation performance.
The optimum fitness value reached is, however, identical to the uniformly distributed
process.

124

Figure 8.20: The synchronisation performance for various network sizes in a uniformly
distributed process with pγ = 0.05.

8.2.5 Impact of environmental parameters

Apart from parameters of the optimisation algorithm, also the environmental setting might
impact the synchronisation performance of distributed adaptive beamforming in wireless
sensor networks. We consider the impact of the network size and the distance between a
receiver and the network.

Impact of the network size

When the count of nodes that participate in the synchronisation is altered, this also impacts
the performance of this process (cf. section 8.2). We conducted several simulations with
network sizes ranging from 20 to 100 nodes. Figure 8.20 depicts the performance of several
synchronisation processes with varying network sizes.

In these simulations, we set pγ = 0.05 and utilised a uniformly distributed phase alter-
ation process. We see that the maximum fitness value achieved is lower for smaller network
sizes. This is due to the RMSE measure that compares the achieved sum signal to an ex-
pected optimum superimposed signal. As the count of participating nodes diminishes, also
the amplitude of the optimum signal decreases. As expected, the optimum value is reached
earlier for smaller network sizes.

Distance between receiver and network

We are also interested in the performance of distributed adaptive beamforming when the
distance between the network and a receiver is increased. For a uniformly distributed
phase alteration process with pγ = 1

n
we increase the transmission distance successively.

Figure 8.21 depicts the phase coherency achieved and the received sum signal for various
transmission distances.

Although the noise power relative to the sum signal increases, synchronisation is possible
at about 200 meters distance. Observe that in our model with Ptx = 1mW we expect a

125

(a) Receiver distance: 100 meters – Received RF
signal

(b) Receiver distance: 100 meters – Relative phase
shift of signal components

(c) Receiver distance: 200 meters – Received RF
signal

(d) Receiver distance: 200 meters – Relative phase
shift of signal components

(e) Receiver distance: 300 meters – Received RF
signal

(f) Receiver distance: 300 meters – Relative phase
shift of signal components

Figure 8.21: RF signal strength and relative phase shift of received signal components
for a network size of 100 nodes after 10000 iterations. Nodes are distributed
uniformly at random on a 30m×30m square area and transmit at PTX = 1mW
with pγ = 1

n
.

126

(a) Receiver distance: 300 meters, pγ = 0.2 (b) Receiver distance: 300 meters, pγ = 0.6

Figure 8.22: RF signal strength and relative phase shift of received signal components for
a network size of 100 nodes after 10000 iterations. Nodes are distributed
uniformly at random on a 30m × 30m square area and transmit at PTX =
1mW .

signal strength at the receiver of 0.1µW or −40dBm for each single carrier at this distance.
When the distance is further increased to 300 meters, however, synchronisation is not

possible with this configuration. This is due to the high impact of the noise fluctuation on
the received signal. The fluctuation of the noise figure has a higher impact on the signal
than the alteration of single carrier signals.

However, when more carrier signals are altered simultaneously, a weak synchronisation
is still possible. Figure 8.22 depicts the received carrier signal after 100 iterations for the
uniformly distributed process with pγ = 0.2 and pγ = 0.6. We see that the synchronisation
quality is improved with increasing pγ. While the superimposed signal is indistinguishable
for pγ = 0.2, the synchronisation quality increases with pγ = 0.6. Although the signal is
heavily distorted, the carrier can be extracted.

8.2.6 Impact of algorithmic modifications

The iterative feedback-based distributed adaptive beamforming in wireless sensor networks
was analysed from various authors in the literature. Some of these have proposed small
algorithmic alterations of the basic approach in order to improve the synchronisation per-
formance. We present three of these approaches in the following sections.

Reelection of unsuccessful nodes

The author of [43] observed that when nodes discard their last alteration to their carrier
phases at the end of an iteration, the information available from the receiver feedback is
not optimally utilised.

In particular, when a set of nodes alters their individual phase offsets simultaneously,
this constitutes a distinct shift in the carrier phase of the received sum signal.

127

Figure 8.23: Performance of distributed adaptive beamforming in WSNs when successful
nodes are re-considered for mutation

When the fitness value reached after this operation is decreased, however, it means that
the distance between the phase of an optimal configuration and the current superimposition
was increased. Consequently, when all nodes would apply the inverse of their last applied
phase offset, this distance would be decreased and the fitness improved.

In [43] it was proposed to apply the inverse of the last applied phase modulation each
time a fitness value is decreased. The author could show that the optimisation time is
reduced by factor 1

2
by this approach. The reason is, clearly, that the fitness decrease

which is achieved with probability about 1
2

(an improved fitness value in in every second
iteration on average) is now converted into an increase of the fitness value.

Reelection of successful nodes

For distributed adaptive beamforming, an optimum is reached when all received transmit
signal components are in phase. In the random synchronisation process, this situation is
approached iteratively, which means that several steps to an optimum are required. In
particular, as long as the optimum phase offset for one transmit signal component is not
reached, the fitness value can be improved by sufficiently altering the phase offset for this
transmit signal component again. To exploit this property we modify the implementation
of the original approach in such a way that transmit signal components that were altered in
an iteration in which the fitness value was increased are altered again in the next iteration.
The intuition behind this approach is that for a transmit signal component which was
successfully altered we expect that the optimum phase offset is not yet reached so that
further benefit is possible. We implemented two distinct approaches. The first approach
is to alter the phase offset of the same transmit signal component again uniformly at
random. For the second implementation also the direction in which the phase was altered
is sustained. Figure 8.23 depicts simulation results for these two approaches when compared
to the standard uniformly distributed phase alteration approach. We observe that both

128

Figure 8.24: Performance of distributed adaptive beamforming in WSNs when participat-
ing nodes are chosen based on random experiments

approaches have similar performance and improve the fitness early in the synchronisation
process. With increasing iteration count, however, the standard approach catches up.

Preconfigured nodes

In distributed adaptive beamforming, several nodes in a network collaboratively reach a
distant receiver. The synchronisation time for these nodes is dependent on the number of
nodes that participate in the synchronisation (cf. [14, 15]). Consequently, when not all
nodes are required to reach a given distance, it is beneficial to utilise only a subset of nodes.
In particular, we would like to pick those nodes for the synchronisation process that are well
pre-synchronised so that the initial fitness value is already high. We conducted several sim-
ulation runs in which a set of pre-synchronised nodes is identified in random experiments
prior to the synchronisation. In these random experiments a set of 100 randomly chosen
nodes transmit simultaneously. The fitness value reached in this simultaneous transmission
is stored for each experiment. After all random experiments are completed the synchroni-
sation is conducted with the nodeset that scored the best fitness value during the random
experiments. Figure 8.24 details the simulation results. For a network size of 1000 and
120 nodes, 100 nodes are picked in 500 and 100 random experiments, respectively. These
simulations are compared to simulation results in which a network of 100 nodes is synchro-
nised with uniformly distributed phase alterations and a mutation probability of 0.01 but
without pre-synchronisation of nodes. We see that the pre-synchronised node-sets reach
better fitness values earlier in the simulation. In particular, an improvement is already
visible for 100 nodes chosen in 100 random experiments out of 120 nodes. This shows
that we can benefit from the node choice already with few random experiments and with
network sizes that deviate from the required network size only slightly. However, observe
also that the lead in fitness value is shrinking with increasing iteration count.

129

8.3 Alternative algorithmic approaches

We have so far discussed the feasibility of a simple iterative approach to achieve dis-
tributed adaptive beamforming in wireless sensor networks. Based on these findings we
discuss three modifications to this general iterative method that are suited to improve the
synchronisation performance.

8.3.1 Hierarchical clustering

Since this bound on the synchronisation time is more than linear in n (cf. section 8.2),
it strikes that the RSSsum changes linear with the network size n. Therefore, the overall
energy consumption and synchronisation time might benefit from a reduced number of
nodes transmitting at increased power level.

We propose the following hierarchical clustering scheme that synchronises all transmit
nodes iteratively in clusters of reduced size.

1. Determine clusters (e.g. by a random process initialised by the receiver node)

2. Guided by the receiver node, synchronise clusters successively as described above
with possibly increased transmit power for nodes. When cluster ι is sufficiently syn-
chronised, all nodes in this cluster sustain their carrier signal and stop transmitting
until all other clusters are synchronised.

3. At this stage, carrier signals in each one of the clusters are in phase but carrier
phases of distinct clusters might differ. To achieve overall synchronisation, we build
an overlay-cluster of representative nodes from all clusters. These nodes are then
synchronised.

4. Nodes in all clusters alter the phase of their carrier signal by the phase offset experi-
enced by the corresponding representative node. Let ζi = <

(
m(t)RSSie

j2πfct(γi+φi+ψi)
)

and ζ ′i = <
(
m(t)RSSie

j2πfct(γ′i+φi+ψi)
)

be the carrier signals of representative node
i from cluster ι before and after synchronisation between representative nodes was
achieved. A node h from the same cluster ι will then alter its carrier signal ζh =
<
(
m(t)RSShe

j2πfct(γh+φh+ψh)
)

to ζ ′h = <
(
m(t)RSShe

j2πfct(γh+φh+ψh+γi−γ′i)
)
. Under

ideal conditions, all nodes should be in phase after this step although an overall
synchronisation was not applied.

5. To account for synchronisation errors a final synchronisation phase in which all nodes
participate concludes the overall synchronisation process.

Figure 8.25 illustrates this procedure. A potential problem for this approach is phase
noise. As only one cluster is synchronised at a time, due to practical properties of oscil-
lators, phases of nodes in the inactive clusters experience phase noise and start drifting

130

Figure 8.25: Illustration of the approach to cluster the network of nodes in order to improve
the synchronisation time of feedback based closed-loop distributed adaptive
beamforming.

131

out of phase. However, sufficient synchronisation is possible in the order of milliseconds. 1

Therefore, we do not consider phase noise an important issue for the hierarchical clustering
approach.

Observe that all coordination is initiated by the receiver node so that no inter-node
communication is required for coordination. Clusters are formed by a random process
and synchronisation between and within clusters is achieved by the distributed adaptive
beamforming approach described above.

Depending on the size of the network, more than one hierarchy stage might be optimal
for the optimisation time and the energy consumption. In order to estimate the optimal
hierarchy depth and the optimum cluster size, the count of nodes participating in the
synchronisation process must be computed. We assume that the nodes themselves do not
know of the network size. This means that the remote receiver derives the network size,
calculates optimal cluster sizes and hierarchy depths and transmits this information to the
nodes in the network. In [128] it was demonstrated that the superimposed sum signal
from arbitrarily synchronised nodes over some time interval is sufficient to compute an
estimation on the number of transmitting nodes. We can derive the optimum hierarchy
depth and cluster size by integer programming in time O(n2).

We estimate the expected optimisation time for a network of size n by E[TPn] = c · k ·
n · log(n) (cf. section 8.2) for a suitable constant c and the expected energy consumption
by E[EPn] = c · k · n · log(n) · EPn where EPn is the energy consumption of all n nodes in
one iteration [14]. A hierarchy and cluster structure that minimises these formulae when
summed over all hierarchy stages is optimal in our sense. We derive the optimum cluster
sizes and hierarchy depths by integer programming. Observe that for a cluster size of m
the above formulae have the property

E[TPn] = E[TP n
m

] · n
m
· E[TPm]

E[EPn] = E[EP n
m

] · n
m
· E[EPm].

We define the recursion by

Eopt[TPn] = minm

[
Eopt[TP n

m
] · n
m
· Eopt[TPm]

]
Eopt[EPn] = minm

[
Eopt[EP n

m
] · n
m
· Eopt[EPm]

]
and the start of the recursion by Eopt[TPη] and Eopt[EPη] with η being the minimum feasible
cluster size for distributed adaptive beamforming when the maximum transmission power
and distance are given. Since η is dependent on the distance to the receiver, it can be
calculated over the round trip time between the sensor network and the receiver.

1Consider, for instance, that the synchronisation sequence requires several ten signal periods and that
the RSS estimation and application of phase shift is also possible in similar order. A simple calculation
(e.g. frequency f = 2.4GHz, transmission distance d = 100m, c = 3 · 108m

s) reveals that a single
iteration requires only microseconds.

132

The time required for the calculation of the optimum hierarchy depth and cluster sizes
is quadratic. With a network of n nodes, at most n2 distinct terms Eopt[TPi] and Eopt[EP i]
with i ∈ {1, . . . , n} are of relevance. We can start by calculating Eopt[EPη] and Eopt[TPη]
and obtain all other values by table look-up according to Eopt[TPn] and Eopt[EPn] in time
O(n2) since every one of the (at most) n entries has not more than n possible predecessors.

8.3.2 A local random search approach

Recent approaches to distributed adaptive transmit beamforming in wireless sensor net-
works utilise a random search approach that could in each iteration reach any point in
the search space with positive probability. We define a search point as one combination of
phase offsets for all RF signal components and a neighbourhood relation over the difference
in phase offsets in these configurations. As the search space is multimodal, no local optima
exist so that in an arbitrary neighbourhood around a given search point the fitness value
is either optimal or search points with an improved fitness value exist.

Therefore, a local random search can not converge in a local minima. Also, the opti-
misation landscape for a local search approach is then simple. As long as it manages to
follow a path with increasing fitness values, it will find an optimum with probability 1.

We can also show that, when the distance to the optimum and to the worst point is
greater than the neighbourhood radius, the algorithm has an equal chance to improve or
worsen the fitness score. We see this as follows. Assume that the fitness of the sum signal
is proportional to the amplitude of the signal. When n− 1 signal components are received
simultaneously at a given frequency f the resulting sum signal is of the same frequency as
the individual RF signal components. When the phase offset of the n-th signal component
is identical or complementary to the phase offset of the sum signal, the amplitude of the
signal created by the superimposition of these two signals is at its maximum or minimum,
respectively. In between these two values it degrades symmetrically. Consequently, when
the minimum or maximum is not inside the neighbourhood, an equal number of points
incorporate better or worse fitness values (cf. figure 8.26) – although the slope of the
fitness landscape might differ among search points that improve or decrease the fitness
value.

This means that an algorithm with restricted neighbourhood size has a probability of
0.5 to increase the fitness value for a long time during the optimisation until the optimum
point is within the neighbourhood. The price for this high probability to improve the fitness
value in each iteration is that the chance to reach the optimum in one step or, generally
to achieve great progress in one step (as possible with an unrestricted neighbourhood size)
is lost. Since this event is intuitively less probable, we are prepared to pay this price. We
provide an upper bound on the optimisation time of a local random search approach for
distributed adaptive beamforming in wireless sensor networks.

To ease the analysis we model the optimisation problem in a binary representation. We
assume that each one of the sensor nodes is able to apply k distinct phase offsets of transmit
RF signals. For each of the n nodes, we binary encode the distinct phase offsets by log(k)
bits. Overall, a binary string of length n · log(k) describes the contribution of phase offsets

133

Figure 8.26: Example of sinusoid sum signals. The amplitude of the sum signal degrades
symmetrically when the phase offset between the two signal components in-
creases

in one iteration. The neighbourhood of a given configuration is defined by the maximum
phase offset applicable to an individual node altering the phase of its carrier signal. An
individual node i alters the phase offset γi of its carrier signal uniformly at random within
a range of [γi − κ, γi + κ] for suitable κ. We assume that configurations are encoded such
that the hamming distance between two configurations increases with increasing difference
in phase offsets.

We analyse the count of bit mutations of this representative bitstring until a bitstring
is found that encodes the phase configurations of a global optimum. We define a global
optimum as a superimposition of signal components in which all signal components are
within 2π

k
of a superimposition with perfect phase coherency. We choose the mutation

probability as 1
n

for a network of n nodes. In this case, the log(k) bits that represent
the phase offset of the corresponding node are altered uniformly at random inside the
neighbourhood boundaries. With Chernoff bounds we can show that w.h.p. the hamming
distance to an optimum is not much smaller than n·log(k)

2
.

An asymptotic upper bound

We derive an upper bound for the local random search approach similar to the upper bound
derived in section 8.2. We define the neighbourhood of sizeN for each binary representation
for a binary representation of an individual carrier signal ζi (remember that the individual
representation was concatenated from all n binary representations of individual carrier
signals of length log(k) (cf. figure 8.2)) individual string I as all individual representations
with hamming distance at most N to I. As long as the optimum is far away (i.e. outside
the neighbourhood boundaries of all carrier signals), the probability to reach a new search
point with better fitness value is at least 1

2
as detailed above. The expected time until all

134

carrier signals have the optimum inside their neighbourhood boundaries is then

E[P1] = O(n · log(k)). (8.24)

Afterwards, the analysis of the optimisation time is similar to the upper bound derived
for the global random search approach in section 8.2. The difference for the local random
search approach is, that the distance to the optimum is n ·N at most. Consequently, the
estimation of the upper bound on the synchronisation performance in equation (8.14) is
then altered to

E[TP2] ≤
n·log(k)−1∑

i=n·log(k)−n·N

e · n · log(k)

n · log(k)− i

= e · n · log(k) ·
n·log(k)∑

i=n·log(k)−n·N+1

1

i

< e · n · log(k) · (ln(n · log(k)) + 1− ln(n · log(k)− n ·N) + 1)

= O
(
n · log

(
n · log(k)

n · log(k)− n ·N
+ k

))
. (8.25)

The upper bound on the expected overall optimisation time is then composed from the
upper bound on the optimisation times of both phases as

E[TP] = E[TP1] + E[TP2]

= O
(
n · log

(
n · log(k)

n · log(k)− n ·N
+ k

))
. (8.26)

An asymptotic lower bound

For the local random search approach we can obtain a lower bound on the synchronisa-
tion performance by the method of the expected progress similar to the approximation in
section 8.2. With similar arguments as in section 8.2 this leads to a lower bound of

Ω

(
n · log

(
n · log(k)

n · log(k)− n ·N
+ k

))
. (8.27)

Simulation results

For our implementation of the local random search algorithm we modify the phase al-
teration mechanism applied by individual nodes. While for the original random search
approach the phase offset is chosen uniformly at random from all possible phase offsets
in [−π, π], we restrict the set of possible future phase offsets to a subset of this range:
γ ∈ [σ1, σ2] with −π ≤ σ1 < σ2 ≤ π. Figure 8.27 shows the simulation results of the
algorithm. We observe that the hill-climbing approach reaches lower fitness values faster
than the original approach. In particular, the near optimal fitness value reached by the
original algorithm after 6000 iterations is achieved by the hill climber already after about
3000 iterations.

135

Figure 8.27: Performance of the local random search implementation for distributed adap-
tive beamforming in wireless sensor networks

8.3.3 Multivariable equations

The recent approaches discussed for distributed adaptive transmit beamforming in wireless
sensor networks all heavily rely on random experiments. This was necessary since distinct
nodes in the scenario do not communicate with each other. Therefore, each node has access
only to very limited information on the current search point. Consequently, as a concise
view on the current synchronisation progress is not given, a random search heuristic can
be seen as the natural approach for this problem scenario.

The introduction of randomness into the search approach, however, also decreases the
synchronisation performance. First approaches to reduce the amount of randomness have
been introduced in section 8.3.1 and section 8.3.2. In the former approach, the problem
was divided into sub-problems of smaller size. For these smaller problem instances the syn-
chronisation performance improved since the search space is drastically smaller for smaller
network sizes. In particular, it decreases exponentially in n as each node corresponds to a
further dimension in the search space.

For the latter approach, randomness was reduced by restricting the neighbourhood size
of the search approach. As long as the optimum is not inside the neighbourhood, the
probability to improve the fitness value was 1

2
.

In the following section we present an approach by which a single node is able to es-
timate the optimum phase offset of its carrier signal relative to the current phase offsets
of all other nodes. Due to the distributed nature of this scenario, we are still bound to
a small amount of randomness. However, we can show that the approach achieves an
asymptotically optimal synchronisation performance.

The idea to reach this synchronisation performance is to optimally utilise the receiver
feedback. In the approaches discussed above, the feedback required is binary. However,
when more information is encoded into the feedback value so that information on the actual

136

feedback function can be derived, transmitters can utilise this additional information to
apply improved synchronisation methods.

Consequently, a vital requirement on the design of the algorithm is that a rich feedback
is provided by the receiver node. In particular, the approach described is not feasible with
binary feedback values.

Algorithmic modelling

Since no local optimum exists in the search space due to its weak multimodality (cf. sec-
tion 8.1.3), the performance of Θ(n · log(n · log(k) + k)) we derived for the random search
approach seems weak. In every iteration the receiver provides additional information over
a feedback value so that a node i can learn the optimum phase offset of its own carrier

ζi = <
(
m(t)RSSie

j2πfct(γi+φi+ψi)
)

relative to the superimposed sum signal

ζsumri = <

m(t)ej2πfct
∑

o∈[1,n];o 6=i

RSSoe
j(γo+φo+ψo)


of all other nodes, provided that the latter does not change significantly. ζsumri is a sinusoid
signal. The fitness value is at its maximum when ζi and ζsumri have identical phase offset
at a receiver. With increasing phase offset

|(γi + φi + ψi)− (γsumri + φsumri + ψsumri)|

the fitness value decreases symmetrically. Consequently, the fitness function (note that we
are now considering the fitness function F and not the received superimposed sum signal
ζsum) is of the form

F(γi) = A sin (γi + Φ) + c. (8.28)

This is an equation with the three unknowns A (amplitude), Φ (phase offset of F) and the
additive term c so that a node i can calculate it with three distinct measurements.

These three function values for three distinct phase offsets γ1, γ2, γ3 of a carrier signal can
be calculated when the one node with a non-fixed carrier signal acquires the corresponding
feedback values from the remote receiver. In figure 8.28(a), we depict the accuracy at
which the RMSE fitness function can be estimated by this procedure. We calculate the
root of the mean square error (RMSE) in this figure as

RMSE =

√√√√ τ∑
t=0

(
ζsum + ζnoise − ζopt

)2

n
. (8.29)

In this formula, τ is chosen to cover several signal periods.

137

(a) RMSE-γ-relationship when only one sender node
changes the phase offset

(b) RMSE-γ-relationship when three sender nodes
change the phase offset at once

Figure 8.28: Approximation of the RMSE- phase offset- relationship

The dashed line in the figure depicts the fitness function estimated from three distinct
feedback values while the solid line is created from 100 feedback calculations in a Matlab-
based simulation environment. The 100 nodes are placed randomly in a field with a minimal
distance of 30 meters from the receiver. The transmit nodes send with 2.4 GHz and a
transmission power of 0.1 mW. From the calculated expected fitness function we can can
easily determine the optimum phase offset for this carrier signal.

We experienced a maximum deviation between the the approximated and the measured
RMSE values of less than 1% when all but one node keep their phase offset constant. In
our measurements, the deviation of the calculated fitness curve did not exceed 0.6% when
only one node adapts its phase offset.

However, since inter-node communication is not assumed in the scenario of distributed
adaptive transmit beamforming in wireless sensor networks, more than one node might
alter its phase offset at once. In this case, we can show that the calculated fitness curve
more significantly deviates from the actual fitness function. With two nodes simultaneously
adapting their phase offset we already experienced a deviation of approximately 1.5%. Fig-
ure 8.28(b) represents the approximation of the fitness function when three nodes change
their phase offset simultaneously. The deviation between the approximated and the mea-
sured values is greater than that in the previous case and reaches values of more than
3%.

This observation leads to two important conclusions. The first is that a precise cal-
culation of the optimum phase offset for a single node is possible when only one sender
changes the phase offset of its carrier signal during a single iteration. The second fact is
that verification of the correctness of the results is possible by measuring the significance
of the deviation between calculated and actual fitness function.

In the following we describe the steps of the synchronisation procedure. Each four
iterations are logically aggregated to one action. During an action, a node my either
participate in by calculating it’s optimum phase offset γ∗i (active node) or it may transmit

138

its carrier signal unmodified (passive node).
With a probability pi = 1

n
(for a network of n nodes) a node i becomes an active

participant and otherways stays passive.

An active node will :

1. Transmit it’s carrier signal with three distinct phase offsets γ1 6= γ2 6= γ3 and
measure the feedback generated by the remote receiver. Feedback value and
corresponding phase offset are stored by the node.

2. From these three feedback values and phase offsets, it estimates the feedback
function and calculates the optimum phase offset γ∗i .

3. Transmit a fourth time with γ4 = γ∗i .

4. If the deviation is less than 1% save γ∗i as the optimal phase offset, otherwise
discard it.

A passive node will :

1. Transmit the carrier signal four times with identical phase offset γi.

As nodes are chosen according to a random process, it is possible that more than one
node simultaneously alters its phase offset. In this case, the node’s conclusions on the
impact of their phase-alteration on the fitness value are biased. Therefore, in the fourth
measurement, when the measured value deviates significantly from the expected fitness
value a node concludes that it was not the only one to alter its phase and reverses its
decision.

In order to decrease the count of idle actions at which either more than one node or no
node actively participate, the nodes may adjust the value of pi. After receiving the fourth
feedback message, an active node i that has calculated γ∗i successfully, becomes a passive
node for a certain number of iterations. The node sets pi = 0 to reduce the interference
for other active nodes. All passive nodes that register an improvement of the feedback
value after the fourth transmission assume that a node has calculated its γ∗i successfully
and alter their pi-value to pi = 1

n−successful actions . The probability that during a time slot
a node successfully calculates γ∗i is 0.35.

As this procedure is guided purely by the feedback of the receiver node, inter-node
communication is not required as the feedback is broadcast to all nodes in the network.

Further performance improvements can be achieved when nodes utilise only three sub-
sequent iterations and acquire the first measurement from the last transmission of the
preceding three subsequent iterations.

Analytic consideration

In our current implementation, we require about 12n iterations for all nodes to finally find
and set the optimum phase offset of their carrier signal. This is asymptotically optimal,
since the optimum phase offset of the carrier signal has to be calculated for each single
node. Asymptotically, the synchronisation time of this algorithm is Θ(n) since on average
the count of carrier signals that are in phase increases by 1 in each iteration.

139

(a) Phase offset achieved by the proposed optimisa-
tion algorithm for distributed adaptive beamforming
in WSNs

(b) Performance of the proposed optimisation al-
gorithm for distributed adaptive beamforming in
WSNs

Figure 8.29: Distributed adaptive beamforming with a network size of 100 nodes where
phase alterations are drawn uniformly at random. Each node adapts its carrier
phase offset with probability 0.01 in one iteration. In this case, multivariable
equation are solved to determine the optimum phase offset of the carrier signal.

Simulation results

We also conducted simulation runs in which our implementation of the numerical algorithm
described in section 8.3.3 is compared to the classical process with normal distributed phase
alterations. When optimum phase offsets are calculated by solving multivariable equations
at the transmit nodes, the synchronisation performance can be greatly improved as detailed
in section 8.3.3. Figure 8.29 depicts the performance improvement achieved by solving
multivariable equations to determine the fitness function compared to a global random
search approach. We observe that the global random search heuristic is outperformed
already after about 1000 iterations and the fitness value reached is greatly improved.

The phase offset of distinct nodes is within +/− 0.05π for up to 99% of all nodes.
Figure 8.30(a) shows the relative deviation of the phase offsets γi among 100 nodes. The

results have been obtained in a Matlab-based simulation environment. After about 1500 it-
erations most of the nodes (about 90 %) have near optimum phase offsets. For comparison,
the global random search approach typically utilised for distributed adaptive beamforming
in wireless sensor networks has a greatly degraded performance (cf. figure 8.30(b)).

8.4 Environmental changes

For distributed adaptive beamforming in wireless sensor networks not only the algorithm
applied to the problem scenario but also the environmental aspects impact the synchroni-
sation performance. In section 8.2.5 we have already observed that a higher noise figure
negatively impacts the synchronisation performance. Also, we learned that this effect can

140

(a) Results using the numeric algorithm (b) Results using a global random search approach

Figure 8.30: Deviation of the phase offsets from the optimal phase offsets using the numer-
ical and the random method

be partly compensated with an increased mutation probability.

Also, velocity of nodes might impact the synchronisation performance of distributed
adaptive transmit beamforming in wireless sensor networks. Since the transmission beam
sought is focused on a restricted area, the synchronisation of nodes might be biased if the
receiver traverses out of this area. We consider this problem in section 8.4.1.

Another natural scenario regards the consideration of more than one receiver node.
Typically, in a sensor network, the nodes in the network are identically and a special
exposed node with extended capabilities does not exist. When a sub-network is, however,
separated from another part of the network, distributed adaptive transmit beamforming
might help to establish a connection between both sub-networks. The central question in
this scenario, however, is how communication between both sub-networks is feasible when
nodes are not able to overhear messages from nodes of the other sub-network directly. This
probelm is considered in section 8.4.2.

So far, we considered a population size of 1 for the evolutionary optimiser since this
seemed to be the natural choice. Section 8.4.3 discusses several aspects regarding the
utilisation of increased population sizes for distributed adaptive beamforming in wireless
sensor networks.

Finally, in section 8.4.4 we consider the problem of receive beamforming. This concept
might decrease the communication amount in the network sufficiently.

8.4.1 Velocity of nodes

In current studies on distributed adaptive beamforming in wireless sensor networks, all
nodes are considered static. An interesting case to be studied is that of mobility of nodes.
The next section presents results from a Matlab-based simulation environment where mo-
bility is applied to transmitter or receiver nodes.

141

All nodes in the following simulations transmit at a frequency of 2.4 GHz. The sender
nodes utilise a transmission power of 0.1 mW. Ambient white Gaussian noise (AWGN)
with a noise power of −103dBm is applied as proposed in [94]. 100 nodes are placed in
a 30m × 30m × 30m field. The transmit nodes are distributed randomly at the bottom
of the field and the receiver is placed initially at the center of the field’s top, so that the
minimum possible distance between a sender and receiver is 30 meters.

In the simulation, we considered the Doppler effect due to the mobility of nodes. Individ-
ual signal components are summed up at the receiver node to generate the superimposed
sum signal ζsum. Path loss was calculated by the Friis free space equation [84]

Ptx

(
λ

2πd

)2

GtxGrx (8.30)

with Gtx = Grx = 0. We disregarded shadowing and signal reflection so that only the
direct signal component is utilised but not multipath propagation. We implemented a
global random search approach and the asymptotically optimal algorithm introduced in
section 8.3.3 for this scenario as well as two mobility models. The first mobility model is
a random-walk model and the second a linear model.

Nodes in the random-walk model have no specific constant direction. After every it-
eration the movement direction is altered uniformly at random. The distance travelled
between two consecutive iterations is constant and depends on the speed of motion speci-
fied. In the linear model, the sender or the receiver move linearly in a constant direction
and with a constant speed.

In order to quantify the maximum speed at which a synchronisation is possible, we define
a synchronisation as successful when the signal strength achieved is at minimum 75% of
the signal strength possible with perfect synchronisation. All simulation results obtained
are depicted in figure 8.31. These results are discussed in the following sections.

Performance of the global random search approach

In our first scenario, the receiver node moves in a random walk mode. All transmit nodes
remain static. We observed that a successful synchronisation in this scenario is possible
with a movement speed of 5m/sec at most. Figure 8.31(a) shows the relative phase offset
of individual carrier signals.

The standard deviation σ is about 0.1π for about 95% of all nodes after 6000 iterations.
When, however, transmitters follow a random-walk movement while the receiver is not
moving, the maximum speed is about 2 m/sec (cf. figure 8.31(b)).

For the linear movement, the maximum relative speed between transmit and receive
nodes with the global random search implementation is 30 m/sec regardless of whether the
receive or the transmit nodes are moving (cf. figure 8.31(e).

Performance of the numeric algorithm

For the proposed numerical algorithm we applied the same settings as in section 8.4.1. when
the receiver moves in a random-walk model while transmitters are static, the movement

142

(a) Receiver moving at 5 m/sec following a random-walk
model

(b) Transmit nodes move at 2 m/sec following in a
random-walk model

(c) Receiver node moving at 5 m/sec following a random-
walk model

(d) Transmit nodes moving at 5 m/sec following a
random-walk model

(e) Nodes move with 30 m/s in a linear mode (f) Nodes move with 60 m/s in a linear mode

Figure 8.31: Performance of two approaches to distributed adaptive transmit beamforming
for wireless sensor networks in a Matlab-based simulation environment

143

speed of 5 m/sec is easily supported (cf. figure 8.31(c)).
In the figure, the standard deviation σ is about 0.03 π. Figure 8.31(d) depicts the phase

deviations when the receiver is static and the transmit nodes are moving. In this case, a
standard deviation of σ = 0.22π is achieved after 6000 iterations.

Concluding, we remark that the numeric method enables well higher movement speeds
as well as an improved synchronisation performance. The maximum relative movement
speed for the linear movement model is about 60 m/sec. Figure 8.31(f) depicts deviations
of phase offsets.

The standard deviation in this case is σ = 0.18π

8.4.2 Consideration of multiple receivers

Nicht prüfungsrelevant (WS 09/10).

8.4.3 Increase of Population size – On the use of crossover

Nicht prüfungsrelevant (WS 09/10).

8.4.4 Receive beamforming

Nicht prüfungsrelevant (WS 09/10).

144

Index

(1 + 1)-strategy, 72
(Π, P), 64
(µ+ ν)-strategy, 72
(µ, ν)-strategy, 72
B, 53
K, 51
PLFS(ζi), 50
PN , 53
PRX , 50
PTX , 47
T , 53
Π, 64
χ, 64
η, 40
γ, 47
λ, 47
I, 74
P , 74−−→
ζRX , 58
σ, 50
υ, 40
ζRX , 58
ζTX , 58
ζsum, 54
{}, 63
c, 47
f , 47
k-point crossover, 75
var[χ], 67
xi, 64
1 bit mutation, 75
1-bit closed-loop synchronisation, 97

Acquisition, 29
Actuator, 35

ADC, 35, 36
Alamouti diversity scheme, 89
Ambient white Gaussian noise, 142
Antenna gain, 49
Arithmetic crossover, 75
AWGN, 142

Balls, 63
Indistinguishable, 63

Bandwidth, 53
Bayes rule, 66
Beamforming, 59
Bins, 63

Indistinguishable, 63
Bluetooth, 55
Boltzmann constant, 53

CDMA, 54, 55, 96
Cellular network, 54
Chernoff bound, 68
Clear To Send, 43, 46
Closed-loop distributed carrier synchroni-

sation, 96
Cluster-based cooperative transmission, 89
Clustering, 54, 56
Code division, 55
Code division multiple access, 96
Coding scheme

Space-frequency coding, 89
Space-time coding, 89

Coin tossing, 62
Collaborative transmission, 99
Collision, 41
Communication technology, 47
Communication unit, 35

145

Complex conjugate, 89
Computation centric, 27
Computation-centric, 28
Conditional probability, 66
Constructive interference, 48
Context, 25

Acquisition, 29
Context abstraction level, 26
Context data type, 30
Context feature, 18, 21, 24
Context pre-processing, 28, 29
Context processing, 28, 29
Context representation, 31
Context source, 24
Context type, 25
Context-awareness, 20
High-level context, 28
Interpretation, 29
Low-level context, 28
Raw context data, 28
Raw data, 28
User context, 19

Context abstraction level, 26
Context acquisition, 29
Context data type, 30
Context element, 25
Context feature, 18, 21, 24
Context interpretation, 29
Context pre-processing, 28, 29
Context processing, 28, 29
Context source, 24
Context type, 25
Cooperative MIMO, 89
Cooperative transmission, 85, 86

Cluster-based, 89
Data flooding, 88
Multi-hop, 88
Network coding, 86
Opportunistic large arrays, 88

Crossover, 75
k-point crossover, 75
Arithmetic, 75
Operators, 75

Uniform, 75
Crossover operators, 75
CSMA, 42
CTS, 43, 46

Data flooding, 88
DDC, 36
Density, 40
Destructive interference, 48
Diffraction, 48
Direct line of sight, 48
Direct-sequence code division multiple ac-

cess, 96
Distributed carrier synchronisation

1-bit closed-loop, 97
Closed-loop, 96
Full feedback closed-loop, 96
Master-slave feedback open-loop, 93
Open-loop, 93
Round-trip feedback open-loop, 95

Distribution
Normal distribution, 107
Uniform distribution, 109

Diversity scheme
Alamouti, 89

DS-CDMA, 56, 96
Duty Cycle, 45

Electromagnetic wave, 47
Event, 64

Impossible event, 63
Negation, 64

event, 62
Event probability, 65
Evolution strategies, 71
Evolutionary algorithm

Design aspects, 79
Implementation, 80
Initialisation, 73
Restrictions, 77
Search space, 79
Selection, 74
Selection for substitution, 77

146

Variation, 74
Weighting of the offspring population,

76
Weighting of the population, 73

Evolutionary algorithms, 71
Evolutionary programming, 71
Expectation, 66

Linearity of expectation, 67
Expected progress, 82
experiment, 62

Fading, 47, 50
Fast fading, 47
Slow fading, 47

Fading incursion, 51
Failure rate, 40
Fast fading, 47
Fault tolerance, 10, 39
Feature, 18, 21, 24
Fitness function, 71–73, 76
Fitness value, 71
Fitness-based partition, 80
Fitnessproportional selection, 74
Fogel, Larry, 71
Free-space equation, 49
Frequency, 47
Frequency diversity, 56
Frequency hopping, 55

Hop sequence, 55
Friis equation, 49
Full feedback closed-loop distributed car-

rier synchronisation, 96

Gain, 49
Gauss, 53
Gauss distribution, 53
Gaussian distribution, 50
Generation, 72
Genetic algorithms, 71
Genetic programming, 71
Global optimum, 76
Gray code, 79, 102

Hamming distance, 79

Hans-Paul Schwefel, 71
High-level context, 28
Holland, John, 71
Hop sequence, 55

IAC, 55
Idle listening, 41
Idle state, 37
Impossible event, 63
Independence, 66
Indicator variable, 68
Indistinguishable balls, 63
Indistinguishable bins, 63
Individual, 72, 74
Ingo Rechenberg, 71
Initialisation, 73
Inquiry access code, 55
Inter-cell interference, 54
Interference, 48, 53

Constructive interference, 48
Destructive interference, 48
Inter-cell, 54

Interpretation, 29
ISM, 55

John Holland, 71
John Koza, 71

Koza, John, 71

Larry Fogel, 71
Line of sight, 48
Line-of-sight, 94
linearity of expectation, 67
Local optimum, 76
Local random search, 109, 133
Log-distance, 50
log-normal distribution, 50
LOS, 48, 94
Low-level context, 28
Lower bound, 81, 82

Expected progress, 82
Method of the expected progress, 82
Simple lower bound, 81

147

MAC, 41
Protocols, 41

Markov inequality, 67
Markov-inequality, 83
Master-slave feedback open-loop distributed

carrier synchronisation, 93
Matlab, 107
Medium Access Control, 41
Method of the expected progress, 82
MIMO, 56

Cooperative MIMO, 89
Virtual MIMO, 89

MISO, 58
Mobility

Node mobility, 40
Multi-hop cooperative transmission, 88
Multimodal, 76

Strong, 76
Weak, 76

Multivariable equations, 136
Mutation, 74

1 bit mutation, 75
Operators, 75
Standard bit mutation, 75

Mutation operators, 75
mutually exclusive, 64

NAV, 43
NCO, 92
Negation, 64
Neighbourhood, 109

Neighbourhood boundaries, 109
Neighbourhood restrictions, 109

Network Allocation Vector, 43
Network coding, 86
Network size, 40
NFL, 77, 78
No free lunch theorem, 77, 78
Node mobility, 40
Noise, 53

Thermal noise, 53
Normal distribution, 107
Numerically controlled oscillator, 92

Offspring population, 72
Open-loop distributed carrier synchroni-

sation, 93
Operators, 31
Opportunistic large arrays, 88
optimisation problem, 82
Optimum, 76

Global, 76
Local, 76

Orthogonal variable spreading factor, 56
Oscillator

Numerically controlled, 92
Voltage controlled, 92

Overhearing, 41
OVSF, 56

Path-loss, 47, 49, 50
Free space, 50
Log-distance, 50
Path-loss exponent, 50

Phase locked loop, 92
Phase offset, 47
PLL, 92
Population, 71, 74
Power harvesting, 34
Power unit, 34
Probability

Conditional, 66
Expectation, 66
Linearity of expectation, 67

Probability of events, 65
Probability space, 64
Processing unit, 35
progress measure, 82
Pseudo-noise sequence, 56

Query response, 46

Random experiment, 62
Raw context data, 28
Raw data, 28
Rayleigh, 52
Rayleigh distribution, 50–52
Ready To Send, 43, 46

148

Receive state, 37
Received signal strength, 10, 50
Rechenberg, Ingo, 71
Reflection, 48
Representation of contexts, 31
Restrictions

Neighbourhood boundaries, 109
Neighbourhood restrictions, 109

Rice distribution, 50, 51
Rice factor, 51
RMSE, 109
Root of the mean square error, 109
Round-trip feedback open-loop distributed

carrier synchronisation, 95
RSS, 10
RTS, 43, 46

S-MAC, 45
Sample point, 62, 64
Sample space, 64
Scalability, 40
Schwefel, Hans-Paul, 71
Search point, 71
Search space, 79
search space, 71
Sectored antenna, 54
Selection

Fitnessproportional, 74
Principles, 79
Tournament, 74
Uniform, 74

Selection for reproduction, 74
Selection for substitution, 77
Selection principles, 79
Sensing unit, 35
Sensor, 24
Sensor network, 37

Fault tolerance, 39
Scalability, 40
Transmission range, 10, 40

Sensor networks, 33
Sensor node, 33

Communication unit, 35

Power unit, 34
Processing unit, 35
Sensing unit, 35

Signal
Diffraction, 48
Reflection, 48

Signal wave, 47
SIMO, 58
Simple lower bound, 81
Sink, 38
SINR, 54, 59
Sleep state, 37
Slow fading, 47
Source, 38
Space-frequency coding, 89
Space-time coding, 89
Spatial diversity, 56
speed of light, 47
Spread spectrum, 55
Spread spectrum systems, 53
Spreading, 56
Spreading factor, 56
Standard bit mutation, 75
Standard Deviation, 107
Standard deviation, 50
Statistical independence, 66
STEM, 45
Stop criteria, 72
Strong multimodal, 76
Strong unimodal, 76
Sum signal, 48, 54
Superimposition, 48

Temperature, 53
Thermal noise, 53
Tournament selection, 74
Transceiver, 35, 36

States, 37
Transmission power, 47
Transmission range, 10, 40
Transmit state, 37

UbiComp, 24

149

Ubiquitous computing, 24
Uniform crossover, 75
Uniform distribution, 109
Uniform selection, 74
Unimodal, 76

Strong, 76
Weak, 76

Upper bound, 80
Fitness-based partition, 80

User context, 19

variance, 67
Variation, 74

Crossover, 75
Mutation, 74

VCO, 92
Vector matrix, 58
Virtual MIMO, 89
Voltage controlled oscillator, 92

Wake up radio, 45
Wave, 47
Wavelength, 47
Weak multimodal, 76
Weak unimodal, 76
Weighting of the offspring population, 76
Weighting of the population, 73
Wireless channel, 47
Wireless communication, 47
Wireless sensor network, 33
WSN, 33

150

List of Tables

2.1 High-level contexts, low-level contexts and raw context data for exemplary
context sources. 28

2.2 Operators applicable to various context types 31

3.1 Mean power loss and shadowing variance obtained over the range 800-1000
MHz and with an antenna height of about 15cm [85]. 36

8.1 Configuration of the simulations. Prx is the the received signal power, d is
the distance between transmitter and receiver and λ is the wavelength of
the signal . 115

8.2 Experimental results of software radio instrumentations 118

151

152

List of Figures

1.1 Schematic illustration of feedback based distributed adaptive beamforming
in wireless sensor networks . 12

1.2 Possible scenario for distributed adaptive transmit beamforming 14

2.1 Concepts related to Ubiquitous computing 17
2.2 Aspects of context . 27
2.3 Context pre-processing steps. 30
2.4 Illustration of the context interpretation step. 32

3.1 Components that typically constitute a sensor node [8] 34
3.2 Schematic of a transceiver design. 37
3.3 Schematic illustration of a sensor network implementation [8] 38
3.4 Schematic illustration of the hidden node problem and the exposed node

scenario . 42
3.5 Schematic illustration of IEEE 802.11 RTS/CTS handshake 43
3.6 Schematic illustration of the hidden node problem and the exposed node

scenario . 44
3.7 A generic Wake Up Radio scheme . 45
3.8 A schematic illustration of the mediation protocol 46

4.1 Schematic illustration of a signal wave . 48
4.2 Composition of a superimposed sum signal from two individual signal com-

ponents . 49
4.3 Schematic illustration of fading effects on the RF signal 51
4.4 Probability density functions for various values of K 52
4.5 Superimposition of signal waves . 54
4.6 Cellular network structures . 55
4.7 Frequency hopping communication in Bluetooth 56
4.8 DS-CDMA scheme . 57
4.9 Orthogonal OVSF spreading codes of length 16 with c1,1 = (1) 57

5.1 Which door hides the treasure? . 62

6.1 Approaches to algorithmic development: A comparison 72
6.2 Modules of an evolutionary algorithms . 73
6.3 Illustration of an exemplary function that is weak multimodal 76

153

6.4 Illustration of the assumption that evolutionary algorithms have a better
average performance than classical algorithms 77

7.1 An example for network coding . 86

7.2 Error reduction by network coding . 87

7.3 A two-hop strategy for multi-hop relaying 88

7.4 Illustration of virtual MIMO in wireless sensor networks 90

7.5 Illustration of the Alamouti transmit diversity scheme with two receivers . 90

7.6 Schematic illustration of a phase locked loop 93

7.7 Illustration of the master-slave open-loop distributed adaptive carrier syn-
chronisation scheme . 93

7.8 Illustration of the open-loop distributed beamforming scenario with known
relative node locations . 94

7.9 Illustration of the Round-trip open-loop distributed adaptive carrier syn-
chronisation scheme . 95

7.10 An iterative approach to closed-loop distributed adaptive transmit beam-
forming . 98

8.1 A schematic overview on feedback based closed-loop distributed adaptive
transmit beamforming in wireless sensor networks 100

8.2 Possible binary representation of individuals 102

8.3 Superimposition of received signal components from nodes i and i. 103

8.4 Schematic illustration of a calculated expected signal and a received super-
imposed sum signal. 104

8.5 Fitness calculation of signal components. The fitness of the superimposed
sum signal is impacted by the relative phase offset of an optimally aligned
signal and a carrier signal i. 106

8.6 Pattern of periodic signals. 106

8.7 Uniform distribution of phase mutations 108

8.8 Configuration of the simulation environment. Prx is the the received sig-
nal power, d is the distance between transmitter and receiver and λ is the
wavelength of the signal . 108

8.9 A point in the search space (configuration of transmit nodes) spanned by
the phase offsets of the carrier signals s1 and s2 109

8.10 Simulation results for a simulation with 100 transmit over 6000 iterations of
the random optimisation approach to distributed adaptive beamforming in
wireless sensor networks. 116

8.11 An experimental setting for a distributed adaptive beamforming scenario
with USRP software radios . 117

8.12 GnuRadio is utilised to control the USRP software radios 117

8.13 Performance of distributed adaptive beamforming in an experimental setting
with USRP software radios . 118

154

8.14 A point in the search space (configuration of transmit nodes) spanned by
the phase offsets of the carrier signals s1 and s2 120

8.15 Performance of distributed adaptive beamforming in a wireless sensor net-
work of 100 nodes and normal and uniform probability distributions on the
phase mutation probability. Uniform distribution of phase mutations. . . . 121

8.16 Normal distribution of phase mutations with mutation probability 1 122

8.17 Normal distribution of phase mutations with a fixed mutation probability
and various values for the mutation variance σ2

γ 123

8.18 Performance of distributed adaptive beamforming in a wireless sensor net-
work of 100 nodes and normal and uniform probability distributions on the
phase mutation probability. Normal distribution of phase mutations. . . . 123

8.19 Performance of normal and uniform distributions for a network size of 100
nodes and pγ = 0.01, σ2

γ = 0.5π. 124

8.20 The synchronisation performance for various network sizes in a uniformly
distributed process with pγ = 0.05. 125

8.21 RF signal strength and relative phase shift of received signal components
for a network size of 100 nodes after 10000 iterations. Nodes are distributed
uniformly at random on a 30m × 30m square area and transmit at PTX =
1mW with pγ = 1

n
. 126

8.22 RF signal strength and relative phase shift of received signal components
for a network size of 100 nodes after 10000 iterations. Nodes are distributed
uniformly at random on a 30m×30m square area and transmit at PTX = 1mW .127

8.23 Performance of distributed adaptive beamforming in WSNs when successful
nodes are re-considered for mutation . 128

8.24 Performance of distributed adaptive beamforming in WSNs when partici-
pating nodes are chosen based on random experiments 129

8.25 Illustration of the approach to cluster the network of nodes in order to
improve the synchronisation time of feedback based closed-loop distributed
adaptive beamforming. 131

8.26 Example of sinusoid sum signals. The amplitude of the sum signal degrades
symmetrically when the phase offset between the two signal components
increases . 134

8.27 Performance of the local random search implementation for distributed adap-
tive beamforming in wireless sensor networks 136

8.28 Approximation of the RMSE- phase offset- relationship 138

8.29 Distributed adaptive beamforming with a network size of 100 nodes where
phase alterations are drawn uniformly at random. Each node adapts its
carrier phase offset with probability 0.01 in one iteration. In this case,
multivariable equation are solved to determine the optimum phase offset of
the carrier signal. 140

8.30 Deviation of the phase offsets from the optimal phase offsets using the nu-
merical and the random method . 141

155

8.31 Performance of two approaches to distributed adaptive transmit beamform-
ing for wireless sensor networks in a Matlab-based simulation environment 143

156

Bibliography

[1] Culler, D., Estrin, D., Srivastava, M.: Overview of sensor networks. IEEE Computer 37(8)
(2004) 41–49

[2] Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach.
Morgan Kaufmann, Los Altos, CA (2004)

[3] Norman, D.: The invisible computer. MIT press (1999)

[4] Butera, W.J.: Programming a paintable computer. PhD thesis, Massachusetts Institute of
Technology (2002)

[5] Pillutla, L., Krishnamurthy, V.: Joint rate and cluster optimisation in cooperative mimo
sensor networks. In: Proceedings of the 6th IEEE Workshop on signal Processing Advances
in Wireless Communications. (2005) 265–269

[6] Scaglione, A., Hong, Y.W.: Opportunistic large arrays: Cooperative transmission in wire-
less multihop ad hoc networks to reach far distances. IEEE Transactions on Signal Pro-
cessing 51(8) (2003) 2082–2092

[7] Sendonaris, A., Erkop, E., Aazhang, B.: Increasing uplink capacity via user cooperation
diversity. In: IEEE Proceedins of the International Symposium on Information Theory
(ISIT). (2001) 156

[8] Laneman, J., Wornell, G., Tse, D.: An efficient protocol for realising cooperative diversity
in wireless networks. In: Proceedings of the IEEE International Symposium on Information
Theory. (2001) 294

[9] Hong, Y.W., Scaglione, A.: Critical power for connectivity with cooperative transmission
in wireless ad hoc sensor networks. In: IEEE Workshop on Statistical Signal Processing.
(2003)

[10] Hong, Y.W., Scaglione, A.: Energy-efficient broadcasting with cooperative transmission in
wireless sensor networks. IEEE Transactions on Wireless communications (2005)

[11] Jayaweera, S.K.: Energy analysis of mimo techniques in wireless sensor networks. In: 38th
conference on information sciences and systems. (2004)

[12] del Coso, A., Sagnolini, U., Ibars, C.: Cooperative distributed mimo channels in wireless
sensor networks. IEEE Journal on Selected Areas in Communications 25(2) (2007) 402–414

[13] Sigg, S., Beigl, M.: Collaborative transmission in wsns by a (1+1)-ea. In: Proceedings of the
8th International Workshop on Applications and Services in Wireless Networks (ASWN’08).
(2008)

157

[14] Sigg, S., Beigl, M.: Randomised collaborative transmission of smart objects. In: 2nd In-
ternational Workshop on Design and Integration principles for smart objects (DIPSO2008)
in conjunction with Ubicomp 2008. (2008)

[15] Mudumbai, R., Brown, D.R., Madhow, U., Poor, H.V.: Distributed transmit beamforming:
Challenges and recent progress. IEEE Communications Magazine (2009) 102–110

[16] Mudumbai, R., Wild, B., Madhow, U., Ramchandran, K.: Distributed beamforming using
1 bit feedback: from concept to realization. In: Proceedings of the 44th Allerton conference
on communication, control and computation. (2006) 1020–1027

[17] Barriac, G., Mudumbai, R., Madhow, U.: Distributed beamforming for information transfer
in sensor networks. In: Proceedings of the third International Workshop on Information
Processing in Sensor Networks. (2004)

[18] Mudumbai, R., Barriac, G., Madhow, U.: On the feasibility of distributed beamforming in
wireless networks. IEEE Transactions on Wireless communications 6 (2007) 1754–1763

[19] Ochiai, H., Mitran, P., Poor, H.V., Tarokh, V.: Collaborative beamforming for distributed
wireless ad hoc sensor networks. IEEE Transactions on Signal Processing 53(11) (2005)
4110 – 4124

[20] Chen, W., Yuan, Y., Xu, C., Liu, K., Yang, Z.: Virtual mimo protocol based on clustering
for wireless sensor networks. In: Proceedings of the 10th IEEE Symposium on Computers
and Commmunications. (2005)

[21] Youssef, M., Yousif, A., El-Sheimy, N., Noureldin, A.: A novel earthquake warning system
based on virtual mimo wireless sensor netwroks. In: Canadian conference on electrical and
computer engineering. (2007) 932–935

[22] del Coso, A., Savazzi, S., Spagnolini, U., Ibars, C.: Virtual mimo channels in cooperative
multi-hop wireless sensor networks. In: 40th annual conference on information sciences and
systems. (2006) 75–80

[23] Jayaweera, S.K.: Energy efficient virtual mimo based cooperative communications for
wireless sensor networks. IEEE Transactions on Wireless communications 5(5) (2006) 984–
989

[24] Laneman, J., Wornell, G.: Distributed space-time coded protocols for exploiting coopera-
tive diversity in wireless networks. IEEE Transactions on Information theory 49(10) (2003)
2415–2425

[25] Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity – part i: System
description. IEEE Transactions on Communications 51(11) (2003) 1927–1938

[26] Zimmermann, E., Herhold, P., Fettweis, G.: On the performance of cooperative relaying
protocols in wireless networks. European Transactions on Telecommunications 16(1) (2005)
5–16

[27] Cover, T.M., Gamal, A.A.E.: Capacity theorems for the relay channel. IEEE Transactions
on Information Theory 525(5) (1979) 572–584

158

[28] Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity theorems for
relay networks. IEEE Transactions on Information Theory 51(9) (2005) 3037–3063

[29] Scaglione, A., Hong, Y.W.: Cooperative models for synchronization, scheduling and trans-
mission in large scale sensor networks: An overview. In: 1st IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing. (2005) 60–63

[30] Gupta, P., Kumar, R.P.: The capacity of wireless networks. IEEE Transactions on Infor-
mation Theory 46(2) (2000) 388–404

[31] Mitran, P., Ochiai, H., Tarokh, V.: Space-time diversity enhancements using collaborative
communications. IEEE Transactions on Information Theory 51(6) (2005) 2041–2057

[32] Simeone, O., Spagnolini, U.: Capacity region of wireless ad hoc networks using oppor-
tunistic collaborative communications. In: Proceedings of the International Conference on
Communications (ICC). (2006)

[33] Krohn, A., Beigl, M., Decker, C., Varona, D.G.: Increasing connectivity in wireless sensor
network using cooperative transmission. In: 3rd International Conference on Networked
Sensing Systems (INSS). (2006)

[34] Krohn, A.: Optimal non-coherent m-ary energy shift keying for cooperative transmission in
sensor networks. In: 31st IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). (2006)

[35] Hong, Y.W., Scaglione, A.: Cooperative transmission in wireless multi-hop ad hoc networks
using opportunistic large arrays (ola). In: SPAWC. (2003)

[36] Brown, D.R., Prince, G., McNeill, J.: A method for carrier frequency and phase synchro-
nization of two autonomous cooperative transmitters. In: sixth IEEE workshop on signal
processing advances in wireless communications. (2005)

[37] Brown, D.R., Poor, H.V.: Time-slotted round-trip carrier synchronisation for distributed
beamforming. IEEE Transactions on Signal Processing 56 (2008) 5630–5643

[38] Ozil, I., Brown, D.R.: Time-slotted round-trip carrier synchronisation. In: Proceedings of
the 41st Asilomar conference on signals, signals and computers. (2007) 1781–1785

[39] Tu, Y., Pottie, G.: Coherent cooperative transmission from multiple adjacent antennas to a
distant stationary antenna through awgn channels. In: Proceedings of the IEEE Vehicular
Technology Conference. (2002) 130–134

[40] Mudumbai, R., Hespanha, J., Madhow, U., Barriac, G.: Scalable feedback control for
distributed beamforming in sensor networks. In: Proceedings of the IEEE International
Symposium on Information Theory. (2005) 137–141

[41] Mudumbai, R., Hespanha, J., Madhow, U., Barriac, G.: Distributed transmit beamforming
using feedback control. IEEE Transactions on Information Theory ((In review))

159

[42] Seo, M., Rodwell, M., Madhow, U.: A feedback-based distributed phased array technique
and its application to 60-ghz wireless sensor network. In: IEEE MTT-S International
Microwave Symposium Digest. (2008) 683–686

[43] Bucklew, J.A., Sethares, W.A.: Convergence of a class of decentralised beamforming algo-
rithms. IEEE Transactions on Signal Processing 56(6) (2008) 2280–2288

[44] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: Toward distraction-
free pervasive computing. IEEE Pervasive computing 4 (2002) 22–31

[45] Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J., Weiser,
M.: An overview of the parctab ubiquitous computing experiment. In: IEEE personal
communications. Volume 2. (1995) 28–43

[46] Gellersen, H.W., Beigl, M., Krull, H.: The mediacup: Awareness technology embedded in
an everyday object. In Gellersen, H.W., ed.: 1th International Symposium on Handheld
and Ubiquitous Computing (HUC99). Volume 1707 of Lecture notes in computer science.,
Springer (1999) 308–310

[47] Capra, L., Musolesi, M.: Autonomic trust prediction for pervasive computing. In: Proceed-
ings of IEEE Workshop on Trusted and Autonomic Computing Systems 2006 (TACS’06).
(2006)

[48] Ferscha, A., Holzman, C., Leitner, M.: Interfaces everywhere – interacting with the perva-
sive computer (2006) Half-day tutorial, 10th ACM International Conference on Intelligent
User Interfaces (IUI 2006), Sydney, Australia.

[49] Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. In:
ACM Transactions on Information Systems. Volume 1. (1992) 91–102

[50] Weiser, M.: The computer for the 21st century. In: Scientific American. Volume 3. (1991)
66–75

[51] Dourish, P.: What we talk about when we talk about context. In: Personal and Ubiquitous
Computing. Volume 8. (2004)

[52] Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. In:
IEEE Network. Volume 5. (1994) 22–32

[53] Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In: IEEE
Workshop on Mobile Computing Systems and Applications. (1994)

[54] Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from the laboratory to
the marketplace. In: IEEE personal communications. Volume 4. (1997) 58–64

[55] Pascoe, J.: The stick-e note architecture: Extending the interface beyond the user. In:
Proceedings of the 2nd International Conference on Intelligent user Interfaces. (1997) 261–
264

[56] Dey, A.K., Abowd, G.D., Wood, A.: Cyberdesk: A framework for providing self-integrating
context-aware services. In: Knowledge-Based Systems. Volume 11. (1998) 3–13

160

[57] Schmidt, A., Beigl, M.: There is more to context than location: Environment sensing
technologies for adaptive mobile user interfaces. In: Workshop on Interactive Applications
of Mobile Computing (IMC’98). (1998)

[58] Dey, A.K.: Providing architectural support for building context–aware applications. PhD
thesis, Georgia Institute of Technology (2000)

[59] Mäntyjärvi, J.: Sensor-based context recognition for mobile applications. PhD thesis, VTT
Technical Research Centre of Finland (2003)

[60] Henricksen, K.: A Framework for Cotnext-Aware Pervasive Computing Applications. PhD
thesis, School of Information Technology and Electrical Engineering at the University of
Queensland (2003)

[61] Lieberman, H., Selker, T.: Out of context: Computer systems that adapt to, and learn
from, context. In: IBM Systems Journal. Volume 39. (2000) 617–632

[62] Fitzpatrick, A., Biegel, G., Cahill, S.C.V.: Towards a sentient object model. In: Workshop
on Engineering Context-Aware Object Oriented Systems and Environments (ECOOSE).
(2002)

[63] Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: Proceedings
of the second International Symposium on Wearable Computers. (1998) 92–99

[64] Dey, A.K., Salber, D., Abowd, G.D., Futakawa, M.: The conference assistant: comtining
context-awareness with wearable computing. In: Proceedings of the third International
Symposium on Wearable Computers. (1999) 21–28

[65] Kortuem, G., Segall, Z., Bauer, M.: Context-aware, adaptive wearable computers as re-
mote interfaces to ’intelligent’ environments. In: Proceedings of the second International
Symposium on Wearable Computers. (1998) 58–65

[66] Chen, G.: Solar: Building A Context Fusion Network for Pervasive Computing. PhD
thesis, Hanover, New Hampshire (2004)

[67] Schmidt, A.: Ubiquitous Computing – Computing in Context. PhD thesis, Lancaster
University, UK (2002)

[68] Himberg, J.: From insights to innovations: data mining, visualisation, and user interfaces.
PhD thesis, Helsinki University of Technology (2004)

[69] Himberg, J., Korpiaho, K., Mannila, H., Tikanmäki, J., Toivonen, H.: Time series seg-
mentation for context recognition in mobile devices. In: Proceedings of the 2001 IEEE
International Conference on Data Mining. (2001) 203–210

[70] Mäntyjärvi, J., Himberg, J., Huuskonen, P.: Collaborative context recognition for handheld
devices. In: Proceedings of the first IEEE International Conference on Pervasive Computing
and Communications (PerCom’03). (2003) 161–168

[71] Schilit, W.N.: A System Architecture for Context-Aware Mobile Computing. PhD thesis,
Columbia University (1995)

161

[72] Dey, A.K., Abowd, G.D., Salber, D.: A context-based infrastructure for smart environ-
ments. In: Proceedings of the first International Workshop on Managing Interactions in
Smart Environments (MANSE’99). (1999) 114–128

[73] Schmidt, A., Laerhoven, K.V., Strohbach, M., Friday, A., Gellersen, H.W.: Context acqui-
sition based on load sensing. In: Proceedings of Ubicomp 2002, Lecture Notes in Computer
Science. Volume 2498., Springer Verlag (2002) 333 – 351

[74] Jacob, R.J., Ishii, H., Pangaro, G., Patten, J.: A tangible interface for organising informa-
tion using a grid. In: Conference on Human Factors in Computing Systems (CHI 2002).
(2002)

[75] Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: HUC ’99: Proceedings of
the 1st international symposium on Handheld and Ubiquitous Computing, London, UK,
Springer-Verlag (1999) 304–307

[76] Mayrhofer, R.M.: An Architecture for Context Prediction. PhD thesis, Johannes Kepeler
University of Linz, Altenbergstrasse 69, 4040 Linz, Austria (2004)

[77] Mayrhofer, R.M., Radi, H., Ferscha, A.: Recognising and predicting context by learning
from user behaviour. In: The International Conference On Advances in Mobile Multimedia
(MoMM2003). Volume 171. (2003) 25–35

[78] Brooks, R.A.: Elephants don’t play chess. In: Robotics and Autonomous Systems. Vol-
ume 6. (1990)

[79] Padovitz, A., Bartolini, C., Zaslavski, A., Loke, S.W.: Extending the context space ap-
proach to management by business objectives. In: 12th Workshop of the HP OpenView
University Association. (2005)

[80] Padovitz, A., Loke, W.W., Zaslavsky, A.: On uncertainty in context-aware computing:
Appealing to high-level and same-level context for low-level context verification. In: Pro-
ceedings of the 1st International Workshop on Ubiquitous Computing (IWUC’04). (2004)
62–72

[81] Padovitz, A., Loke, S.W., Zaslavsky, A., Burg, B.: Towards a general approach for reason-
ing about context, situations and uncertainty in ubiquitous sensing: Putting geometrical
intuitions to work. In: 2nd International Symposium on Ubiquitous Computing Systems
(UCS’04). (2004)

[82] Li, Y., Thai, M., Wu, W.: Wireless sensor networks and applications. Signals and Com-
munication Technology. Springer (2008)

[83] Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley
(2005)

[84] Rappaport, T.: Wireless Communications: Principles and Practice. Prentice Hall (2002)

[85] Sohrabi, K., Manriquez, B., Pottie, G.: Near-ground wideband channel measurements. In:
Proceedings of the 49thvehicular technology conference. (1999) 571–574

162

[86] Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: Mobile networking for
smart dust. In: Proceedings of the ACM MobiCom. (1999) 271–278

[87] Hoblos, G., Staroswiecki, M., Aitouche, A.: Optimal design of fault tolerant sensor net-
works. In: Proceedings of the IEEE International Conference on Control Applications.
(2000) 467–472

[88] Bulusu, N., Estrin, D., Girod, L., Heidemann, J.: Scalable coordination for wireless sensor
netwroks: Self-configuring localisation systems. In: Proceedings of the 6th IEEE Interna-
tional Symposium on Communication Theory and Application. (2001)

[89] Shen, C.C., Srisathapornphat, C., Jaikaeo, C.: Sensor information networking architecture
and applications. IEEE Personal Communications 8(4) (2001) 52–59

[90] Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat monitoring:
Application driver for wireless communications technology. In: Proceedings of the ACM
SIGCOMM Workshop on Data Communications in Latin America and the Caribbean.
(2001)

[91] of IEEE 802.11, T.E.: Ieee standard for wireless lan medium access control (mac) and
physical layer (phy) specifications (1997)

[92] Jerome, J.K.: Three men in a boat. Collector’s Library (2005)

[93] Seybold, J.S.: Introduction to RF propagation. Wiley (2005)

[94] 3GPP: 3rd generation partnership project; technical specification group radio access net-
works; 3g home nodeb study item technical report (release 8). Technical Report 3GPP TR
25.820 V8.0.0 (2008-03) (March)

[95] Ohm, J.R., Lüke, H.D.: Signalübertragung – Grundlagen der digitalen und analogen
Nachrichtenübertragungssysteme. Volume 10. Springer (2007)

[96] Feller, W.: An Introduction to Probability Theory and its Applications. Wiley (1968)

[97] Duda, R., Hart, P., Stork, D.: Pattern Classification. 2nd edn. Wiley Interscience (2001)

[98] Schwefel, H.P.: Direct search for optimal parameters within simulation models. Proceedings
of the twelfth annual simulation symposium (1979) 91–102

[99] Holland, J.: Genetic algorithms and the optimal allocation of trials. SIAM, Journal of
computing 3(4) (1974) 88–105

[100] Schwefel, H.P.: Evolution and optimum seeking. Wiley-Interscience (1995)

[101] Fogel, L.J., Fogel, D.B.: A preliminary investigation on extending evolutionary program-
ming to include self-adaptation on finite state. Informatica 18(4) (1994)

[102] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

163

[103] Bäck, T.: An overview of parameter control methods by self-adaptation in evolutionary
algorithms. Fundamenta Informaticae 35 (1998) 51–66

[104] Droste, S.: Efficient genetic programming for finding good generalizing boolean functions.
In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L., eds.:
Proceedings of the second Genetic Programming conference (GP 97), Morgan Kaufmann
(1997) 82–87

[105] Droste, S., Heutelbeck, D., Wegener, I.: Distributed hybrid genetic programming for learn-
ing boolean functions. In Schoenauer, M., ed.: Proceedings of the 6th Parallel Problem Solv-
ing from Nature (PPSN VI). Volume 1917 of Lecture Notes in Computer Science (LNCS).,
Springer (2000) 181–190

[106] Jansen, T., Wegener, I.: Evolutionary algorithms – how to cope with plateaus of constant
fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary
Computation 5(6) (2001) 589–599

[107] Wegener, I., Witt, C.: On the optimization of monotone polynomials by the (1+1)ea and
randomized local search. In: Genetic and Evolutionary Computation Conference (GECCO).
Number 2723 in Lecture notes in computer sciences (LNCS) (2005) 622–633

[108] Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic
pseudo-boolean functions. Journal of Discrete Algorithms (3) (2005) 61–78

[109] Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1+1) evolution-
ary algorithm for linear functions with boolean inputs. In: Proceedings of the third IEEE
International conference on Evolutionary computation (ICEC 98), Piscataway, NJ, IEEE
press (1998) 499–504

[110] Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1+1) evolution-
ary algorithm for separable functions with boolean inputs. Evolutionary Computation 6(2)
(1998) 185–196

[111] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science 276(1-2) (2002) 51 – 81

[112] Sirkeci-Mergen, B., Scaglione, A.: 10. In: Randomized cooperative transmission in large
scale sensor networks. A. Swami, Q. Zhao, Y. Hong, and L. Tong, Wiley (2007)

[113] Laneman, J., Wornell, G.: Energy-efficient antenna sharing and relaying for wireless net-
works. In: Proceedings of the IEEE Wireless Communication Networking Conference.
(2000) 294

[114] Lanemann, J., Tse, D., Wornell, G.: Cooperative diversity in wireless networks: Efficient
protocols and outage behaviour. Transactions on inforamtion Theory 50(12) (2004)

[115] Nabar, R., Bölscskei, H., Wornell, G.: Fading relay channels: Performance limits and
space-time signal design. IEEE Journal on Selected Areas in Communications 22(6) (2004)
1099–1109

164

[116] Gastpar, M., Vetterli, M.: On the capacity of large gaussian relay networks. IEEE Trans-
actions on Information Theory 51(3) (2005) 765–779

[117] Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.: Network information flow. IEEE Transactions
on Information Theory 46(4) (2000) 1204–1216

[118] Li, S.Y., Son, S., Stankovic, J.: Linear network coding. IEEE Transactions on Information
Theory 49(2) (2003) 371–381

[119] Woldegebreal, D.H., Karl, H. In: Network-Coding-Based Cooperative Transmission in
Wireless Sensor Networks: Diversity-Multiplexing Tradeoff and Coverage Area Extension.
Volume 4913 of Lecture Notes in Computer Science (LNCS). Springer-Verlag (2008) 141–
155

[120] Scaglione, A., Hong, Y.W.: Opportunistic large arrays. In: IEEE International Symposium
on Advances in Wireless Communications. (2002)

[121] Salhotra, A., Scaglione, A.: Multiple access in connectionless networks using cooperative
transmission. In: Allerton Conference. (2003)

[122] Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless communications.
Cambridge University Press (2003)

[123] Shuguang, C., Goldsmith, A.: Energy-efficiency of mimo and cooperative mimo techniques
in sensor networks. IEEE Journal on Selected Areas in Communications 22(6) (2004)
1089–1098

[124] Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE
Journal on select areas in communications 16(8) (1998)

[125] Gastpar, M., Vetterli, M.: On the capacity of wireless networks: the relay case. In:
Proceedings of the IEEE Infocom. (2002) 1577–1586

[126] Hagmann, W.: Network synchronisation techniques for satellite communication systems.
PhD thesis, USC, Los Angeles (1981)

[127] Best, R.: Phase-Locked Loops: Design, Simulation and Applications. McGraw-Hill (2003)

[128] Krohn, A.: Superimposed Radio Signals for Wireless Sensor Networks. PhD thesis, Tech-
nical University of Braunschweig (2007)

[129] Bennett, W.: Introduction to signal transmission. McGraw-Hill (1971)

[130] Sigg, S., Masri, R.M.E., Beigl, M.: A sharp asymptotic bound for feedback based closed-
loop distributed adaptive beamforming in wireless sensor networks. Transactions on mobile
computing (2009 (submitted))

165

