
Algorithms for context prediction in
Ubiquitous Systems

Prediction by alignment methods

Stephan Sigg

Institute of Distributed and Ubiquitous Systems
Technische Universität Braunschweig

January 6, 2009

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 1/129



Overview and Structure

Introduction to context aware computing

Basics of probability theory

Algorithms

Simple prediction approaches: ONISI and IPAM
Markov prediction approaches
The State predictor
Alignment prediction
Prediction with self organising maps
Stochastic prediction approaches: ARMA and Kalman filter
Alternative prediction approaches

Dempster shafer
Evolutionary algorithms
Neural networks
Simulated annealing

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 2/129



Overview and Structure

Introduction to context aware computing

Basics of probability theory

Algorithms
Simple prediction approaches: ONISI and IPAM
Markov prediction approaches
The State predictor
Alignment prediction
Prediction with self organising maps
Stochastic prediction approaches: ARMA and Kalman filter
Alternative prediction approaches

Dempster shafer
Evolutionary algorithms
Neural networks
Simulated annealing

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 3/129



Outline
Alignment prediction approaches

1 Introduction to alignment methods
Alignment of two strings
Heuristical approaches for database search
Multiple alignments

2 Prediction with alignment methods
Application scenarios

3 Properties of the alignment prediction approach

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 4/129



Introduction to alignment methods
Introduction

Approximative string matching

Is a string approximatively contained in another string?
Required: Similarity between strings
Align strings to each other and add some gaps so that the
remaining positions are maximally matching
Similarity metric defines similarity between sub-sequences of
strings
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Introduction to alignment methods
Introduction

Application domains

Computational biology
Matching of DNA or Proteine sequences
Compare several sequences of the same genome (e.g. from
various experiments or laboratories)
Search for a string as substring in a string data base
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Introduction to alignment methods
Alignment of two strings

We will discuss approaches to calculate an optimal alignment
between two strings1

What is an alignment
Efficient algorithm to calculate an optimal alignment between
two strings
Variants and Extensions of the approach

1
Hans-Joachim Böckenhauer and Dirk Bongartz, Algorithmische Grundlagen der Bioinformatik, Teubner, 2003
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Introduction to alignment methods
Basic definitions

Alignment

Let s = s1 . . . sm and t1 . . . tn be two strings over an alphabet Σ
and − /∈ Σ a gap symbol. Let Σ′ = Σ ∪ {−}. Let h : (Σ′)∗ → Σ∗

be a homomorphism defined by h(a) = a for all a ∈ Σ and
h(−) = λ.

An alignment between s and t is a pair (s ′, t ′) of length
l ≥ max{m, n} over Σ′ that follows the constraints

|s ′| = |t ′| ≥ max{|s|, |t|}
h(s ′) = s
h(t ′) = t
∀i ∈ {1 . . . l} : s ′i 6= − or t ′i 6= −
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Introduction to alignment methods
Basic definitions

Example

s = GACGGATTATG
t = GATCGGAATAG
One possible alignment:

s ′ = GA CGGATTATG
t′ = GATCGGAATA G
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Introduction to alignment methods
Basic definitions

Example

s = GACGGATTATG
t = GATCGGAATAG
One possible alignment:

s ′ = GA CGGATTATG
t′ = GATCGGAATA G

Possible columns:

Insertion The first string contains a gap in this column
Deletion The second string contains a gap in this column

Match Both strings are identical in this column
Mismatch The strings do not match but the column also

does not contain a gap.
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Introduction to alignment methods
Basic definitions

Possible columns:

Insertion The first string contains a gap in this column
Deletion The second string contains a gap in this column

Match Both strings are identical in this column
Mismatch The strings do not match but the column also

does not contain a gap.

Interpretation

Alignment as sequence of insertion and deletion operands on
the first string to obtain the second string.
Origin of this interpretation in computational biology
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Introduction to alignment methods
Basic definitions

Alignment score

Let p(a, b) ∈ Q for all a, b ∈ Σ and g ∈ Q. The alignment score
δ(s ′, t ′) for s ′ = s ′1 . . . s

′
l and t ′1 . . . t

′
l is defined as

δ(s ′, t ′) =
l∑

i=1

δ(s ′i , t
′
i ) (1)

With

δ(x , y) =


p(x , y) x , y ∈ Σ

g x = −
g y = −

(2)

The optimasation goal is goalδ ∈ {min,max}
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Introduction to alignment methods
Basic definitions

Alignment similarity

The similarity simδ of two strings s and t with regard to δ is the
score of an optimal alignment:

simδ(s, t) = goalδ{δ(s ′, t ′)|(s ′, t ′)ist ein Alignment von s und t}
(3)
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Introduction to alignment methods
Global alignment

Global alignment

Alignment of two strings s and t

Local alignment

Alignment of substrings from s and t

Semiglobal alignment
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Introduction to alignment methods
Global alignment

Global alignment problem

Input Two strings s and t over Σ and an alignment score δ
with the optimisation aim goalδ

Valid solutions All alignments of s and t

Cost For each alignment A = (s ′, t ′): cost(A) = δ(A)

Optimisation aim goalδ
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Introduction to alignment methods
Global alignment

Calculation of the global alignment between two strings s and t by
integer programming:

sim(s1 . . . si , t1 . . . tj) = goalδ



sim(s1 . . . si−1, t1 . . . tj) + g︸ ︷︷ ︸
insertion

sim(s1 . . . si , t1 . . . tj−1) + g︸ ︷︷ ︸
deletion

sim(s1 . . . si−1, t1 . . . tj−1) + p(si , tj)︸ ︷︷ ︸
Match/Mismatch
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Introduction to alignment methods
Global alignment
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Introduction to alignment methods
Global alignment

Initialisation: Row 0 and column 0

Multiples of g

Fill the matrix by integer programming

row after row or column after column

Every possible path from (0,0) to (m,n) is one possible
alignment between s and t

The Algorithm calculates the cheapest path or the optimum
alignment2

2
S.B. Needleman and C.D. Wunsch, A general method applicable to the search for similarities in the amino

acid sequence of two proteins, Journal of Molecular biology 48, pp443-453, 1970.
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Introduction to alignment methods
Global alignment

Calculation of similarity

Input: s = s1 . . . sm, t = t1 . . . tn
Output: sim(s, t) = M(m, n)
1 for i = 0 to m do Initialisation

2 for j = 0 to n do
3 M(i , j) := 0
4 for i = 0 to m do Initialise borders

5 M(i , 0) = i · g
6 for j = 0 to n do
7 M(0, j) = j · g
8 for i = 1 to m do Fill out matrix

9 for j = 1 to n do
10 M(i , j) := max{M(i − 1, j) + g ,M(i , j − 1) + g ,

M(i − 1, j − 1) + p(si , sj)}
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Introduction to alignment methods
Global alignment

Calculation of an optimum alignment

Input: Similarity matrix M
Output: Alignment (s ′, t ′)
1 for i = j = 0 then Align (i,j) –Recursive procedure

2 for s ′ := t ′ := λ
3 else if M(i , j) = M(i − 1, j) + g then
4 (s, t) := Align(i − 1, j)
5 s ′ := s · si; t ′ := t · −
6 else if M(i , j) = M(i , j − 1) + g then
7 (s, t) := Align(i , j − 1)
8 s ′ := s · − ; t ′ := t · tj
9 else {M(i , j) = M(i − 1, j − 1) + p(si , tj)}
10 (s, t) := Align(i − 1, j − 1)
11 s ′ := s · si ; t ′ := t · tj
12 return (s’,t’)
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Introduction to alignment methods
Global alignment

Example

s = AAAT
t = AGT

p(x , y) =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 21/129



Introduction to alignment methods
Global alignment
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Introduction to alignment methods
Global alignment

Computational complexity to calclate an optimum global
alignment

Time to compute the similarity matrix: O(nm)
Calculation of the optimum alignment: O(n + m)
Overall computation time: O(nm)

The algorithm can also be extended to compute all optimum
alignments

In the worst case, the count of optimum alignments is
exponential
Consequently, the WC runtime is also exponential.
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Introduction to alignment methods
Local and semiglobal alignments

Alignment of substrings of two input strings s and t.

Generalisation of the global alignment problem
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Introduction to alignment methods
Local and semiglobal alignments

Local alignment

A local alignment of two strings s and t is a global alignment of
the substrings s = si1 . . . si2 and t = ti1 . . . ti2 .
an Alignment A = (s ′, t ′) of the substrings s, t is an optimal local
alignment of s and t, if

δ(A) = max{sim(s, t)|s is a substring of s, t is a substring of t}
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Introduction to alignment methods
Local and semiglobal alignments

Local alignment problem

Input Two strings s and t over Σ and an alignment score δ
with the optimisation aim goalδ

Valid solutions All local alignments of s and t

Cost For a local alignment A = (s ′, t ′): cost(A) = δ(A)

Optimisation aim Maximisation

For local alignments, the optimisation aim is always
maximisation.

If the optimisation aim were minimisation, the resulting
alignment were often very short (i.e. only one symbol)
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = AAAAACTCTCTCT
t = GCGCGCGCAAAAA

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = AAAAACTCTCTCT
t = GCGCGCGCAAAAA

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum local alignment

AAAAA(CTCTCTCT)
(GCGCGCGC)AAAAA
Alignment score: 5
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = AAAAACTCTCTCT
t = GCGCGCGCAAAAA

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum global alignment

AAAAACTCTCTCT
GCGCGCGCAAAAA
Alignment score: -11
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Introduction to alignment methods
Local and semiglobal alignments

We can calculate the optimum local alignment with a
modified version of the algorithm for calculating the optimum
global alignment

M(i , j) = max


M(i − 1, j) + g ,
M(i , j − 1) + g ,
M(i − 1, j − 1) + p(si , sj)
0

Row 0 and column 0 are initialised with 0

Suffix and prefix are disregarded

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 30/129



Introduction to alignment methods
Local and semiglobal alignments

Semiglobal alignment

Align whole strings
Gap symbols at the beginning or at the end of the strings are
for free
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = ACTTTATGCCTGCT
t = ACAGGCT

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum global alignment

ACTTTATGCCTGCT
AC A G GCT
Alignment score: −7

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 32/129



Introduction to alignment methods
Local and semiglobal alignments

Example

s = ACTTTATGCCTGCT
t = ACAGGCT

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum semiglobal alignment

ACTTTAT GCCTGCT
ACAGGCT

Alignment score: 0
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = ACTTTATGCCTGCT
t = ACAGGCT

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum local alignment

(ACTTTATGCCT)GCT
(ACAG)GCT

Alignment score: 3
But: Only short sequence aligned compared to the semiglobal
alignment
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Introduction to alignment methods
Local and semiglobal alignments

Types of semiglobal alignments

Variants can be combined with each other

Gap symbols for free Modification of the algorithm

Beginning of first string Initialise first row of M with 0

End of first string
Similarity corresponds to
the maximum of the last
row

Beginning of second string Initialise first column of M with 0

End of second string
Similarity corresponds to
the maximum of the last
column
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = AAAT
t = AGTA

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −
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Introduction to alignment methods
Local and semiglobal alignments
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Introduction to alignment methods
Local and semiglobal alignments

Example

s = AAAT
t = AGTA

δ =

 1 x = y
−1 x 6= y
−2 x = −; y = −

Optimum semiglobal alignment

AAAT
AGTA

Alignment score: 1
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Introduction to alignment methods
Generalised scoring function

The scoring function defines the properties of a given scenario

By modifying the scoring function, the alignment cost is
adapted to the scenario

Cost for gap symbols

Scoring matrices

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 39/129



Introduction to alignment methods
Generalised scoring function

Cost for gap symbols

Various gaps that occur en block model the case that a novel
context sequence was interleaved
The observed context sequence differs from the typical
sequence

Interruption
Seldom action sequence

Blocks of gap symbols should then have fewer costs than
single gap symbols
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Introduction to alignment methods
Generalised scoring function

Gap of length k

A substring s ′i+1 . . . s
′
i+k = −k with s ′i , s

′
i+k+1 6= − is called a gap

of length ka

a
In the literature, a singe gap is often referred to as a space while a gap of any length is called a gap
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Introduction to alignment methods
Generalised scoring function

Recently, a gap of lenght k had cost k · g
Another approach is the affine gap score:

A gap of length k has cost −(%+ σk)
%, σ > 0
In addition to the cost σk for the lenght of the gap, the
opening of the gap has cost %

The calculation of affine gap symbols is possible by the
algorithms detailed above.

The recursion, however, becomes more complicated
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Introduction to alignment methods
Generalised scoring function

Scoring matrices

Transitions between some contexts might be more probable
than between others
The scoring function might respect this aspect by weighting
the cost for various transitions differently
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Introduction to alignment methods
Generalised scoring function

Scoring matrices

Σ× Σ scoring matrix
Every transition between context has distinct cost
Two approaches in the literature3

PAM-Matrices
BLOSUM-Matrices

3
The notation have their origin in computational biology
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

Accepted mutation

An accepted mutationis a mutation that only slightly modifies a
context
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

PAM-interval

Two sequences s and t are one PAM-interval apart, if s can be
modified to t by accepted point mutations (substitution of
contexts, no insertion or deletion), so that on average one
accepted mutation occurs per 100 symbols
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

k-PAM matrix

A k-PAM matrix is a scoring matrix to compare sequences that are
k PAM-intervals apart.

How do we create a k-PAM matrix?
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

How to create k-PAM matrices (cont.)
Assumptions

Set of training sequence pairs given, that are k PAM intervals
apart
For every pair, the optimum alignment is known/given

A: Set of optimum alignments
Sp(A): Multiset of all columns that do not contain a gap
symbol
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

How to create k-PAM matrices
Relative frequency of columns with (ai , aj) or (aj , ai ) from all
columns in Sp(A): freq(ai , aj)

freq(ai , aj) =
count of pairs (ai , aj) or (aj , ai ) in Sp(A)

2 · |Sp(A)|
(4)

Relative frequency of ai in all alignments:

freq(ai ) =
count of occurences of ai in all alignments

overall length of all sequences
(5)

The PAM matrix is then defined by

PAMk(i , j) = log
freq(ai , aj)

freq(ai ) · freq(aj)
(6)
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

Explanation

PAMk(i , j) = log
freq(ai , aj)

freq(ai ) · freq(aj)
(7)

Entry (i , j) in the PAM matrix describes the relation between
the probability to mutate ai to aj and the probability that this
pair occurs in an alignment uniformly random.

For ease of calculation with these values, the logarithm is
applied to this result
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

Problem

Typically no such training sequences available

Idea

Take a set of very similar sequences that most probably
constitute one typical context sequence
Assume that these sequences are only one PAM interval apart
Calculate freq(ai , aj) and freq(ai )
Then: Calculation of PAM matrix for greater values possible
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Introduction to alignment methods
Generalised scoring function

PAM Matrices

Calculate k-PAM matrices

Let F (i , j) be the probability that ai mutates in one PAM
interval to aj

F k = F · F · · · · · F︸ ︷︷ ︸
k times

Derive k-PAM-matrix as

PAMk(i , j) = log
freq(ai ) · F k(i , j)

freq(ai )freq(aj)
= log

F k(i , j)

freq(aj)
(8)
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Introduction to alignment methods
Generalised scoring function

BLOSUM Matrices

Calculation of matrix based on data base
Data base contains information about similar and typical
sequences
BLOSUM matrix therefore based on empirically derived
sequences
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Heuristical approaches for database search
Introduction

Exact calculation of alignments polynomial runtime but too
slow.

Practical implementations utilise fast heuristics

Faster than exact approaches
Optimum solution not guaranteed

Popular approaches

FASTA4

BLAST5

4
W.R. Pearson and D.J. Lipman, Improved tools for biological sequence comparison, Proceedings of the

National academy of sciences of the U.S.A. 85, pp 2444-2448, 1988.
5

S.F. Altschul, T.L. Madden, A. Zhang, Z. Zhang, W. Miller and D.J. Lipman, Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs, Nucleic acids research 25, pp 3389-3402,
1997.
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Heuristical approaches for database search
The FASTA approach

FASTA

Origin: Computational biology
Short for ’fast all’
Referenece to FASTP

Only applicable to alignment of Proteine sequences
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Heuristical approaches for database search
The FASTA approach

FASTA – Operation principle

Pattern iteratively compared with all sequences stored in the
data base
Comparison with the pattern is obtained in four steps

Search for ’Hot-spots’
Combine ’Hot-spots’ and find sub-alignment
Consider sub-alignments that exceed threshold
Calculate alternative alignment
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Heuristical approaches for database search
The FASTA approach

FASTA – Operation principle

Step 1 Search for ’Hot spots’

Choose parameter k and each exact match of
length k (Hot Spots)
Identified by starting-positions in both strings
Typical values of k : 2, 6
Simple pattern matching approaches feasible
for these short sequences (e.g. Boyer-Moore)
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Heuristical approaches for database search
The FASTA approach

FASTA – Operation principle

Step 2 Combine ’Hot-spots’ and find sub-alignments

Create ’Hot-spot’ matrix
Idetify diagonal sub-sequences that contain
’Hot-spots’ (sequence starts and ends in ’Hot
spot’)
Calculate local alignments for these
sub-seqeunces
Optimum local alignment utilised in step 4
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Heuristical approaches for database search
The FASTA approach
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Heuristical approaches for database search
The FASTA approach

FASTA – Operation principle

Step 3 Consider sub-alignments that exceed threshold
1 Try to enlarge sub-alignments that exceed

predefined threshold
2 Represent sub-alignments as nodes in a graph

Sub-alignment u ends at (i , j)
Sub-alignment v starts at (i ′, j ′)
Insert directed edge iff i < i ′ and j < j ′

(Concatenation of alignments principally possible)
(Negative) weight of the edge depends on

distance between (i , j) and (i ′, j ′)
Alignment-cost: Sum of weights along

’alignment-path’

3 Algorithm outputs this alignment as one
possible solution
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Heuristical approaches for database search
The FASTA approach

FASTA – Operation principle
Step 4 Calculate alternative alignment

Calculate optimal local alignment based on the
exact approach
Search for optimal local alignment restricted to
small corridor around the optimum alignment
found in step 2
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Heuristical approaches for database search
The BLAST approach

BLAST (Basic Local Alignment Search Tool)

Various implementations and specialised approaches
Search in DNA- or proteine databases
Two components:

Search component
Estimation of statistic relevance
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Heuristical approaches for database search
The BLAST approach

BLAST (Basic Local Alignment Search Tool)

Search component :

Search for ’hits’
Search for pairs of ’hits’
Calculate extensions of ’hits’
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Heuristical approaches for database search
The BLAST approach

Step 1 Search for ’hits’

Search for local alignments without gaps that
exceed a given cost threshold (Hits)
FASTA-approach: Exact matchings (Hot-spots)
Calculation efficiently possible
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Heuristical approaches for database search
The BLAST approach

Step 2 Search for pairs of ’hits’

Search for pairs of ’hits’ with a maximum
distance of d
All other ’hits’ are not considered further
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Heuristical approaches for database search
The BLAST approach

Step 3 Calculate extensions of ’hits’

’Hit’-pairs are extended at their ends until the
alignment score does not further increase
Extended ’Hit’-pairs that exceed a given
threshold S are considered ’high scoring pairs’
(HSP)
Algorithms outputs ordered list of HSPs
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Heuristical approaches for database search
The BLAST approach

BLAST (Basic Local Alignment Search Tool)

Estimation of statistic relevance :

Similar to FASTA approach
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Outline
Alignment prediction approaches

1 Introduction to alignment methods
Alignment of two strings
Heuristical approaches for database search
Multiple alignments

2 Prediction with alignment methods
Application scenarios

3 Properties of the alignment prediction approach
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Multiple alignments
Introduction

Calculation of alignments between more than two strings

Various approaches in the literature

Algorithmic solution much harder than alignment between
two strings
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Multiple alignments
Definition and scoring of multiple alignments

Multiple alignment

Given k strings over an alphabet Σ:
s1 = s11 . . . s1m1 , . . . , sk = sk1 . . . skmk

A multiple alignment of s1, . . . , sk is a tupel (s ′1, . . . , s
′
k) of strings

of length l ≥ max{mi |1 ≤ i ≤ k} with

|s ′1| = |s ′2| = · · · = |s ′k |
h(s ′i ) = si for all i ∈ {1, . . . , k}
For all j ∈ {1, . . . , l} exists one i ∈ {1, . . . , k} with s ′i ,j 6= −
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Multiple alignments
Definition and scoring of multiple alignments

Problem: How to calculate alignment score?

Various solutions feasible to calculate alignment score
Alignment score determined by ’Consensus’
Alignment score defined by score of pairwise alignment scores
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Multiple alignments
Definition and scoring of multiple alignments

Alignment score determined by ’Consensus’

Choose for every column of all alignments the symbol that
occurs most often
The concatenation of these most common symbols is the
’Consensus’
Alignment score determined by distance to the ’Consensus’
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Multiple alignments
Definition and scoring of multiple alignments

Alignment score determined by ’Consensus’

Consensus

Let (s ′1, . . . , s
′
k) be a multiple alignment of length l = |s ′1|. A string

c = c1 . . . cl ∈ Σl is called Consensus for (s ′1, . . . , s
′
k), if

cj = argmaxa∈Σ|{s ′ij = a|1 ≤ i ≤ k}| for all 1 ≤ j ≤ l (9)

This method to determine a Consensus is called ’Majority
voting’.

In the literature, also other approaches to obtain a consensus
are discussed.
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Multiple alignments
Definition and scoring of multiple alignments

Alignment score determined by ’Consensus’

Distance to Consensus

The distance of an alignment (s ′1, . . . , s
′
k) of length l = |s ′1| to a

Consensus c is defined as

dist(c , (s ′1, . . . , s
′
k)) =

i∑
j=1

|{s ′ij |1 ≤ i ≤ k, s ′ij 6= cj}| (10)
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Multiple alignments
Definition and scoring of multiple alignments

Alignment score determined by ’Consensus’

Lemma: Distance to consensus strings

Let (s ′1, . . . , s
′
k) be a multiple alignment with two Consensus

strings c and c . Then, the following equation holds

dist(c, (s ′1, . . . , s
′
k)) = dist(c , (s ′1, . . . , s

′
k)) (11)
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Multiple alignments
Definition and scoring of multiple alignments

Example

s ′1 = AATGCT

s ′2 = A TTC

s ′3 = TCC

c = AATTCT

dist(c , (s ′1, s
′
2, s
′
3)) = 1 + 2 + 1 + 1 + 0 + 2 = 7
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Multiple alignments
Definition and scoring of multiple alignments

Mult-Consensus-Align-Problem

Input A set S = {s1, . . . , sk} of strings over an alphabet Σ

Valid solutions All multiple alignments of S

Costs The cost of a multiple alignment (s ′1, . . . , s
′
k) with a

Consensus c is

cost((s ′1, . . . , s
′
k)) = dist(c , (s ′1, . . . , s

′
k)) (12)

Optimisation aim Minimisation
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Multiple alignments
Definition and scoring of multiple alignments

Alignment score based on pairwise alignment scores

Bewertung δSP

Let Σ be an alphabet, − /∈ Σ a gap symbol and δ a scoring
function for the alignment of two strings that is also valid for
δ(−,−). The score of a multiple alignment (s ′1, . . . , s

′
k) of length l

is given by

δSP(s ′1, . . . , s
′
k) =

l∑
j=1

k∑
i=1

k∑
r=i+1︸ ︷︷ ︸

Column sum

δ(s ′ij , s
′
rj) (13)
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Multiple alignments
Definition and scoring of multiple alignments

Example

δ(x , y) =

{
0 x = y
1 x 6= y

Alignment calculated in the example above:
s ′1 = AATGCT
s ′2 = A TTC
s ′3 = TCC
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Multiple alignments
Definition and scoring of multiple alignments

Example

δ(x , y) =

{
0 x = y
1 x 6= y

Alignment calculated in the example above:
s ′1 = AATGCT
s ′2 = A TTC
s ′3 = TCC

δSP(s ′1, s
′
2, s
′
3) =

6∑
j=1

3∑
i=1

3∑
r=i+1

δ(s ′ij , s
′
rj)

=
6∑

j=1

(
δ(s ′1j , s

′
2j) + δ(s ′1j , s

′
3j) + δ(s ′2j , s

′
3j)
)

= 11
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Multiple alignments
Definition and scoring of multiple alignments

Mult-SP-Align-Problem

Calculation of a multiple alignment with optimum SP-score

Input A set S = {s1, . . . , sk} of strings over an alphabet Σ

Valid solutions All multiple alignments of S

Costs The cost of a multiple alignment (s ′1, . . . , s
′
k) is

cost((s ′1, . . . , s
′
k)) = δSP(s ′1, . . . , s

′
k) (14)

Optimisation aim Minimisation
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Multiple alignments
Exact calculation of multiple alignments

Exact calculation possible in analogy to alignment of two
strings

For k strings s1, . . . , sk we denote a k dimensional array.
Entry A(i1, . . . , ik) holds the score of an optimal multiple
alignment of the prefixes s11 . . . s1i1 , . . . , sk1 . . . skik

Problem:

Computational complexity and size of the array exponential in
k

This problem is NP-hard when k is also part of the input.6

6
L. Wang and T. Jiang, On the complexity of multiple sequence alignment, Journal of computational biology

1 (4), pp 337-348, 1994.
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Multiple alignments
Merging pairwise alignments

Since exact calculation of multiple alignments not feasible in
practical situations we want to calculate an approximative
multiple alignment

Idea:

Construct multiple alignment from a set of pairwise
alignments of strings
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Multiple alignments
Merging pairwise alignments

Compatibility of multiple alignments

Let S = {s1, . . . , sk} be a set of strings and T = {si1 , . . . , sim} be
a subset of S . Let A′ = (s ′1, . . . , s

′
k) be a multiple alignment of S

and A′′ = (s ′′1 , . . . , s
′′
m) a multiple alignment of T .

The alignment A′ is compatible to A′′ if A′ is identical to A′′ in
i1, . . . , im after removing all gaps.
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Multiple alignments
Merging pairwise alignments

Example

S = {ACGG ,ATG ,ATCGG}
T1 = {ACGG ,ATG}
T2 = {ATG ,ATCGG}
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Multiple alignments
Merging pairwise alignments

The alignment
A CGG
A TG
ATCGG

of S is compatible to the alignment

ACGG
A TG

of T1 since the restriction of S to the first and second row
(and deletion of gap column) leads to

A CGG
A TG

→ ACGG
A TG
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Multiple alignments
Merging pairwise alignments

The alignment
A CGG
A TG
ATCGG

of S is not compatible to the alignment

AT G
ATCGG

of T2 since the restriction of S to the second and third row
leads to

A TG
ATCGG

which is another alignment.
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Multiple alignments
Graph algorithms

A multiple alignment of strings can be calculated by a graph
algorithm7

7
D. Feng and R. Doolitle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees,

Journal of moledular evolution 25, pp 351-360, 1987.
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Multiple alignments
Graph algorithms

Alignment Tree

Let S = {s1, . . . , sk} be a set of Strings over Σ. A Tree
T = (V ,E ) with V = {s1, . . . , sk} and edges {si , sj} ∈ E that are
labelled with an optimal alignment (s ′i , s

′
j ) is called alignment tree

for S
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Multiple alignments
Graph algorithms

Multiple alignmnets from alignment trees

Given an alignment tree T = (V ,E ) for a set of strings S , a
multiple alignment (s ′′1 , . . . , s

′′
k ) that is compatible to the optimal

pairwise alignment (s ′1, . . . , s
′
k) can be derived efficiently.

This assertion was proven by D. Feng and R. Doolittle8

We will introduce an algorithm that calculates multiple
alignments from graphs with a star topology.

8
D. Feng and R. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees.

Journal of Molecular Evolution, 25, pp 351-360, 1987.
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Multiple alignments
Graph algorithms

Star alignment

Let T be an alignment tree T = (V ,E ) for a set of strings
S = (s1, . . . , sk). T is a star, when it is composed of a center c
and k − 1 leaves that are separated from the center with one edge
each. This special case is often referred to as star alignment

The algorithms for the star alignment will first choose one
string from the set S to be the center.

Afterwards, a compatible multiple alignment is created from
the optimal pairwise alignments of the remaining strings with
the center string.
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Multiple alignments
Graph algorithms

Example: Iteratively compose a compatible alignment

The algorithm follows the principle to minimise the count of
gap symbols included.
c ′ = ATG CATT
s ′1 = A GTCAAT
s ′2 = TCTCA
and
c ′′ = A TGCAAT
s ′′3 = ACTGTAAT
The insertion of gap symbols of both strings yields

c ′′′ = A TG C ATT
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Multiple alignments
Graph algorithms

Example: Iteratively compose a compatible alignment

The aligment of all four strings is therfore
c ′′′ = A TG C ATT
s ′′′1 = A GTC AAT
s ′′′2 = TCTC A
s ′′′3 = ACTG TAAT

However, this method does not always yield the optimum
alignment since s ′′′3 = ACTGT AAT would have been a
better solution.
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Multiple alignments
Graph algorithms

Algorithm star alignment

Input: A set of strings S = {s1, . . . , sk}
Output: A compatible alignment of S on T
1 for i = 1 to k do Calculate star center

2 for j = i to k do
3 Align(si , sj) Calculate optimum pairwise alignment

4 c = argmin
∑

s∈S sim(t, s) Find center of star

5 for i = 2 to k do Determine compatible multiple alignment

6 Calculate compatible multiple alignment
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Outline
Alignment prediction approaches

1 Introduction to alignment methods
Alignment of two strings
Heuristical approaches for database search
Multiple alignments

2 Prediction with alignment methods
Application scenarios

3 Properties of the alignment prediction approach
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Prediction with alignment methods
Prediction procedure

Utilise alignment methods for context prediction purposes

Compare the end of the observed sequence with typical
context patterns
Semiglobal alignment between observed and typical patterns
Method stores and computes a set of typical context patterns

Idea

When observed pattern is very similar to sub-string in a typical
context pattern, we deduce that the continuation of both
patterns is also very similar
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Prediction with alignment methods
Prediction procedure
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Prediction with alignment methods
Prediction procedure
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Prediction with alignment methods
Example
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Prediction with alignment methods
Example
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Prediction with alignment methods
Example
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Prediction with alignment methods
Example

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 103/129



Prediction with alignment methods
Example
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Prediction with alignment methods
Example
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Prediction with alignment methods
Example

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 106/129



Prediction with alignment methods
Example
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Prediction with alignment methods
Example
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Prediction with alignment methods
Example

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 109/129



Prediction with alignment methods
Example
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Prediction with alignment methods
Example
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Prediction with alignment methods
Application scenarios

Wind power prediction

Wind power samples from wind farms in Germany
February 2004 to April 2005
taken in an hourly fashion
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Prediction with alignment methods
Application scenarios

Wind power prediction
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Prediction with alignment methods
Application scenarios

GPS location prediction

GPS locations of a mobile user
21 days
Sampling interval 2 minutes
Contexts: GPS measurements
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Prediction with alignment methods
Application scenarios

GPS location prediction

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 115/129



Outline
Prediction with alignment approaches

1 Introduction to alignment methods
Alignment of two strings
Heuristical approaches for database search
Multiple alignments

2 Prediction with alignment methods
Application scenarios

3 Properties of the alignment prediction approach
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Properties of the alignment prediction approach
Processing load

Runtime for computing a prediction: (O(l · k2))

Exact alignment calculation: O(k2)
For each of l typical sequences
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Properties of the alignment prediction approach
Memory requirements

Memory requirements

O(k · l)
Length of typical sequences: k
Number of typical sequences stored: l
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Properties of the alignment prediction approach
Prediction horizon

Prediction horizon dependent on typical sequence length
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Properties of the alignment prediction approach
Adaptability

The alignment prediction approach is able to adapt to
changing environments

When typical behaviour patterns change, new typical patterns
are observed and stored
Possible: Weighting of typical patterns according to relevance
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Properties of the alignment prediction approach
Multi-dimensional time series

The alignment prediction algorithm is well suited for
multi-dimensional time series

Distance between observed contexts at a time dependent on
alignment metric (scoring function)
Example: Eucledian distance in vector space
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Properties of the alignment prediction approach
Iterative prediction

Iterative Prediction (technically) possible

Utilise end of typical context sequence as input of the
prediction approach
However, an extension of a typical context sequence is no
longer a typical sequence
Otherwise the typical sequence had been longer

Not feasible for context prediction
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Properties of the alignment prediction approach
Prediction of context durations

Prediction of context duration possible

Sampling interval of context sequences defines time interval
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Properties of the alignment prediction approach
Approximate matching of patterns

Approximate matching

Dependent on scoring function
Cost of gap symbols and mismatches guides the approximate
matching
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Properties of the alignment prediction approach
Context data types

All context data types supported

Context sequences interpreted as points in coordinate systems
Vector spaces defined by context types
Multi-type context sequences feasible

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 125/129



Properties of the alignment prediction approach
Pre-processing

Pre-processing required to identify typical context sequences

On-line approach feasible

Runtime: O(k2)

Find local alignments in the input sequence
Align input sequence to itself
Occurrence or the alignment determines its relevance
Also possible: Multiple alignments
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes no no no

Non-numeric Contexts yes yes yes yes

Complexity O(k) O(k2) O(C 2) O(C 2)

Learning ability (no) yes yes yes

Approximate matching no no no no

Multi-dim. TS (no) (no) (no) (no)

Discrete data yes yes yes yes

Variable length patterns no yes no (yes)

Multi-type TS yes no (no) (no)

Continuous data no no no no

Pre-processing O(k) – O(k) O(k)

Context durations no no no no

Continuous time no no yes yes
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Aspects of prediction algorithms
Summary

SPM Align SOM PCA

Numeric Contexts yes yes

Non-numeric Contexts yes yes

Complexity O(1) O(l · k2)

Learning ability (yes) yes

Approximate matching no yes

Multi-dim. TS (no) yes

Discrete data yes yes

Variable length patterns yes yes

Multi-type TS no yes

Continuous data no no

Pre-processing O(k) O(k2)

Context durations no yes

Continuous time no no
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Properties of the alignment prediction approach
Conclusion

The alignment prediction approach is a flexible prediction
method

All context types supported

Multi-dimensional and multi-type time series feasible

High computational complexity
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