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Introduction
Historical remarks

State predictor: Developed 2003-2005

University of Augsburg: Jan Petzold1

Origin: Branch prediction in microprocessors

1
Jan Petzold, Zustandsprädiktoren zur Kontextvorhersage in ubiquitären Systemen, PhD-thesis, 2005.
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Introduction
Scenario

Smart Doorplates
Display current work situation

Telephone interview
Meeting
Working at desk

Display relevant invormation when person is absent

Current location
Receive/forward messages
Prediction of return time
Prediction of next location
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Introduction
Scenario

Smart Doorplates
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Introduction
Scenario

Smart Doorplates

Generation of measurements
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Introduction
Historical remarks

Branch prediction

Loops in program code constitute branches
In a pipelined architecture, program execution cycles are
interleaved
Branch target is only known after ALU.
At this time, other (possibly wrong) instructions are already
loaded into the pipeline
Pipeline flush expensive
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Introduction
Speedup due to pipelining

Calculate the speedup achieved due to pipelining. Assume:
Clock Cycle of 10 ns

Taktzyklen
(No pipelining)

Taktzyklen
(Pipelining)

Occurence probability

Clock cycle 10ns 10ns
ALU operations 4 4 40%
Branches 4 4 20%
Memory operations 5 5 40%
Pipelining overhead 0ns 1ns
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Introduction
Speedup due to pipelining

Average instruction execution time = Clock cycle · Average CPI (1)

= 10ns · ((40% + 20%) · 4 + 40% · 5)

= 10ns · 4.4
= 44ns

Pipelined implementation: Clock must be largest time for any stage in
the pipeline (10ns) plus overhead: 10 + 1 = 11ns. This is the average
instruction execution time. Speedup from pipelining:

Speedup from pipelining =
Average instr. time unpipelined

Average instr. time pipelined
(2)

=
44ns

11ns
= 4 times
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Introduction
Historical remarks

Branch prediction important to reduce program execution
time

Pipeline flush/stall expensive

Important therefore: Accuracte prediction
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Introduction
Historical remarks

Simple but effective branch prediction schemes:

Always branch
Sustain last decision
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Basic techniques
Branch prediction – dynamic branch prediction

Dynamic branch prediction schemes

Branch decision based on recent behaviour
Behaviour stored in branching-tables
Tables updated in case of erroneous predictions

Various implementations

Two-bit predictor
Two stage adaptive predictor
Hybrid predictor
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Basic techniques
Branch prediction – One- and Two bit predictors

One-bit predictor

Most simple dynamic branch prediction technique
Repeat last branching command
Every branch inside an iterated loop is correctly predicted
In nested loops: First and last branch incorrectly predicted

Two bit predictors more accurate in this case
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Basic techniques
Branch prediction – One- and Two bit predictors

Two-bit predictor
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Basic techniques
Branch prediction – One- and Two bit predictors

Two-bit predictor

Two wrong predictions in turn required to change prediction
behaviour
In nested loops, only one wrong prediction: After the last
iteration

Two implementations of Two-bit predictors:

Saturation counter
Hysteresis counter

Extension to n-bit predictors possible but nearly no
improvement in predictoin accuracy
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Basic techniques
Branch prediction – Correlation predictors

Two bit predictors only consider the branch itself

Intercorrelation between distinct branches are not considered

However, intercorrelations do matter 2

2
Shien-Tai Pan, Kimming so and Joseph T. Rahmeh, Improving the acuracy of dynamic branch prediction

using branch correlation, In: Proceedings of the fifth international conference on Architectural support for
programming languages and operating systems (ASPLOS V), pp 76-84, 1992.
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Basic techniques
Branch prediction – Two-stage adaptive predictors

Two dimensional prediction tables3

First table selects prediction bits of second table
First table: Branch history (Shift register)
Second table: Pattern history

3
Tse-Yu Yeh and Yale N. Patt, Alternative implementation of two-level adaptive branch prediction, In:

Proceedings of the 19th annual symposium on computer architecture (ISCA-19), pp 124-134, 1992.
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Basic techniques
Branch prediction – Two-stage adaptive predictors

Classes of two-stage adaptive predictors4

First letter: [G,P,S] – Mechanism in first table
Last letter: [g,p,s] – Mechanism in second table

BHR = Branch Histroy Register of k Bits length

PHT = Pattern History Table

global PHT per-set PHTs per-address PHTs
global BHR GAg GAs GAp
per-address BHT PAg PAs PAp

4
Tse-Yu Yeh and Yale N. Patt, A Comparison of Dynamic Branch predictors that use two levels of branch

hostory, In: Proceedings of the 20th annual symposium on computer architecture (ISCA-20), pp 257-266, 1993.
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Basic techniques
Branch prediction – Two-stage adaptive predictors

Example: GAg(k) predictor
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Basic techniques
Branch prediction – Two-stage adaptive predictors

Example: GAg(4) predictor
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Basic techniques
Branch prediction – Two-stage adaptive predictors

Problems of two-stage adaptive predictors

The same bit pattern in BHR can be referenced to different
parts of a program
This leads to possible PHT-interferences

Unrelated branching commands impact the prediction of each
other
However, solutions to this problem exist
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Basic techniques
Prediction by partial matching

PPM-Algorithm of order n is composed of n + 1 Markov
Predictors of oder 0 to n

Algorithm tries to find a pattern that matches last n states
with Markov predictor of order n
If this is not successful, Markov predictor with decreased order
is instantiated.
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Basic techniques
Prediction by partial matching

Prediction by partial matching

Input: z1, . . . , zt−1 (Sequence of States)

Output: zt (next state)

1 REPEAT 2 Choose Markov predictor of order n
3 If (pattern zt−n, . . . , zt−1 is found)
4 Calculate prediction
5 BREAK
6 Else
7 n = n − 1
8 UNTIL n = 0
9 If (n = 0)
10 Calculate prediction with predictor of order 0
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Basic techniques
Prediction by partial matching
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State predictors
Introduction

The state predictor method

Utilise branch prediction techniques implemented on
microprocessors
Distinction between local and global prediction

Example sequence: ACBCACBCABCAB
Global sub-sequence: BCAB
Local sequence with respect to A: CCBB

Local sequence: Context observes only neighbouring contexts
that succeed its own occurrence
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State predictors
Introduction

Various state classes of state prediction methods
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State predictors
One-stage state predictors

One-state predictor
For every context a prediction graph of succeeding contexts is
maintained
Prediction is always adapted to the observed succeeding
context.
When prediction is incorrect, predicted context is adapted to
the observed context
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State predictors
One-stage state predictors

Example: Location prediction
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State predictors
One-stage state predictors

Benefits

Small memory requirements
Fast ’adaptation’ (lerning)

Drawbacks

Learned behaviour is rapidly lost/forgotten
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State predictors
One-stage state predictors

Two-state predictor

For every context a prediction graph of succeeding contexts is
maintained
Two possible states for every possible succeding context

Weak state
Secure state
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State predictors
One-stage state predictors
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State predictors
One-stage state predictors

Benefits

Small memory requirements
Fast ’adaptation’ (lerning)

Drawbacks

Learned behaviour is easily lost/forgotten
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State predictors
One-stage state predictors

k-state predictor

For every context a prediction graph of succeeding contexts is
maintained
k possible states are associated with every possible succeeding
context

k − 1 weak states
One secure state
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State predictors
One-stage state predictors
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State predictors
One-stage state predictors

k-state predictor – Aspects
Benefits

Small memory requirements

Drawbacks

Learning of behaviour only restricted to local context view

Further aspects

Dimension k can also be learned
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State predictors
Two-stage state predictors

Global two-state predictors

Prediction on observed global sequence
Prediction stated by Two-state predictor
Also: Prediction by arbitrary k-State predictor possible
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State predictors
Two-stage state predictors

Example

Observed context pattern: ABCACBABACBACB
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State predictors
Two-stage state predictors

Local two-state predictors

Prediction of local context sequences
Otherwise identical to global two-state predictors
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State predictor methods
Prediction by partial matching

Extension of two-stage state predictor method by PPM

Instead of fixed order of the prediction method: Variable order
dependent on the maximum matching pattern length found in
the obseved context sequence.
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State predictor methods
Prediction by partial matching – PPM and simple PPM
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Evaluation
Augsburg benchmarks

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 48/95



Evaluation
Augsburg benchmarks
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Evaluation
Nokia context data
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Estimation of Reliability
Methods for reliability estimation

Prediction is naturally error prone

Sometimes, no prediction might be better than an erroneous
prediction
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Estimation of Reliability
Methods for reliability estimation

Static reliability
Assumption:

For some patterns or contexts a prediction is not taken
Patterns are not classified as typical
Patterns frequently change – Low prediction accuracy

Contexts divided into reliable and non-reliable contexts
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Estimation of Reliability
Methods for reliability estimation

Consideration of secure states

Only applicable to two-state predictors
Two state predictor has for every context two states

Weak state
Secure state

When context is observed often, it becomes secure

Predictions are provided exclusively in secure states
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Estimation of Reliability
Methods for reliability estimation

Consideration of secure states
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Estimation of Reliability
Methods for reliability estimation

Threshold method
Compare recent prediction accuracy with predefined threshold.

Secure state: Accuracy above threshold
Insecure state: Accuracy below threshold

Correct predictions: c
Incorrect prediction: i

c

c + i
≥ α : Secure state (3)

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 59/95



Estimation of Reliability
Methods for reliability estimation

Reliability counter

Accuracy of predictions ’counted’ by reliability counter
Initial position of counter arbitrary
When prediction is correct, counter is increased
When prediction is incorrect, counter is decreased
When counter exeeds threshold, prediction is provided
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Estimation of Reliability
Evaluation

Static reliability – Augsburg Benchmarks
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Estimation of Reliability
Evaluation

Secure states – Augsburg Benchmarks

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 62/95



Estimation of Reliability
Evaluation

Secure state – Nokia context data
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Estimation of Reliability
Evaluation
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Estimation of Reliability
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Estimation of Reliability
Evaluation
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Estimation of Reliability
Evaluation

Reliability counter – Nokia context data
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Estimation of Reliability
Conclusion

Is the state prediction method a Markov prediction class
algorithm?
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Estimation of Reliability
Conclusion

Is the state prediction method a Markov prediction class
algorithm?

The state prediction approach defines the mechanism to adapt
transition probabilities
Only transition probabilities 1 and 0 possible
Markov prediction more powerful
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Hybrid predictors
Introduction

Can the combination of multiple prediction approaches
improve the prediction accuracy?

Warm-up predictor
Majority predictor
Reliability predictor
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Hybrid predictors
Warm-up-predictor

Prediction approaches with low-order often provide quick
szenario adaptation

Complex patterns not possible with low-order models
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Hybrid predictors
Majority prediction

Compute prediction by various prediction approaches

Majority of prediction results determines actual prediction
Relative majority

Prediction that was stated most often by all approaches

Bare majority

More than half of the stated predictions are identical

Absolute majority

More than half of the possible predictions identical
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Hybrid predictors
Majority prediction

Relative majority
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Hybrid predictors
Majority prediction

Bare majority
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Hybrid predictors
Majority prediction

Absolute majority
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Hybrid predictors
Reliability predictor

Choose the prediction with highest prediction accuracy
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Hybrid predictors
Reliability predictor

Choose the prediction with highest prediction accuracy
Several selection criteria possible

Primary selection criterium
Secondary selection criterium
Tertiary selection criterium
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Hybrid predictors
Reliability predictor

Selection criteria
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Hybrid predictors
Conclusion

It was shown, that the warm-up predictors achieve low
accuracy

With Majority predictors and reliability predictors the
prediction accuracy can be improved
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Properties of the state predictor approach
Processing load

Runtime for computing a prediction: (O(1))

Current state directly prediction
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Properties of the state predictor approach
Memory requirements

Memory requirements

Dependent on the number of contexts observed – size of the
transition matrix
Order 1: O(|C |2)
Order k: O(|C |k+1)
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Properties of the state predictor approach
Prediction horizon

Prediction horizon can be extended by iterative prediction

Utilise predicted contexts as input

Problem: Less accurate

Predicted contexts more error prone than measured values
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Properties of the state predictor approach
Adaptability

The state prediction approach is able to adapt to changing
environments

Adaptation only to simple patterns

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 86/95



Properties of the state predictor approach
Multi-dimensional time series

The state prediction algorithm is not suited for
multi-dimensional time series

Designed for one-dimensional Input
Possible: Aggregation of multi-dimensional time series to
one-dimensional time series.
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Properties of the state predictor approach
Iterative prediction

Iterative Prediction possible

Steep decrease in prediction accuracy expected since
prediction horizon is only 1
Increase of prediction horizon possible by Aggregation of
context sequence of fixed length in one state

Prediction horizon fixed
Increase in Memory consumption and processing time
When l contexts are aggregated: lC states
Runtime:

O(n · lC
2

).
Memory consumption:

O(lC
2

) (order one)

O(lC
k+1

) (order k)
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Properties of the state predictor approach
Prediction of context durations

Prediction of context duration not possible

Only simple sequence of occurring contexts possible
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Properties of the state predictor approach
Approximate matching of patterns

Exact pattern matching

The state prediction algorithm utilises exact pattern matching
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Properties of the state predictor approach
Context data types

All context data types supported

Every distinct context type one state
Probably drastic increase in runtime and memory consumption
for numeric context types
Possible: Assign intervals to states
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Properties of the state predictor approach
Pre-processing

Pre-processing required to construct context transition
probabilities

On-line approach feasible – learning

Runtime: O(k)

Count frequency of specific context transitions in training time
series of length k

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 92/95



Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes no yes

Non-numeric Contexts yes yes yes

Complexity O(k) ( ) O(C 2)

Learning ability (no) yes yes

Approximate matching no no no

Multi-dim. TS (no) (no) (no)

Discrete data yes yes yes

Variable length patterns no yes no

Multi-type TS yes no (no)

Continuous data no no no

Pre-processing O(k) – O(k)

Context durations no no no

Continuous time no no yes
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Aspects of prediction algorithms
Summary

SPM Align SOM PCA

Numeric Contexts yes

Non-numeric Contexts yes

Complexity O(1)

Learning ability (yes)

Approximate matching no

Multi-dim. TS (no)

Discrete data yes

Variable length patterns yes

Multi-type TS no

Continuous data no

Pre-processing O(k)

Context durations no

Continuous time no
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Properties of the state predictor approach
Conclusion

Simple, straightforward prediction approach

Model can be applied to numerical and non-numerical data
alike.

Special case of a Markov predictor

Less powerful than Markov prediction

Not suited for complex prediction scenarios

Prediction that reaches farther into future implicitly utilises
already predicted data which might consequently decrease the
prediction accuracy.
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