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Introduction and Markov properties
Historical remarks

Markov processes

Intensively studied
Major branch in the theory of stochastic processes

A. A. Markov (1856 – 1922)

Extended by A. Kolmogorov by chains of infinitely many
states

’Anfangsgründe der Theorie der Markoffschen Ketten mit
unendlich vielen möglichen Zuständen’ (1936) 1

1
A. Kolmogorov,Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen

Zuständen, 1936.
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Introduction and Markov properties
Historical remarks

Markov Chains

Theory of Markov chains applied to a variety of algorithmic
problems
Standard tool in many probabilistic applications

Intuitive graphical representation

Possible to illustrate properties of stochastic processes
graphically

Popular for their simplicity and easy applicability to huge set
of problems2

2William Feller, An introduction to probability theory and its applications,
Wiley, 1968.
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Introduction and Markov properties
Introcution

Dependent trials of events

Set of possible outcomes of a measurement Ei associated with
occurence probability pi

When occurence of events is not independent

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1) (1)

In general:

P(Ei |E1,E2, . . . ,Ei−1) 6= P(Ei |E2, . . . ,Ei−1) (2)
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Introduction and Markov properties
Independent random variables

Sequence of tials for independent random variable

T : number of trials up to first success of probability p.

Then:
P{T > k} = (1− p)k (3)

Suppose: No success during the first m trials

Waiting time T to first success for m-th trial has same
distribution (1− p)k

Independent of number of preceding failures m
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Introduction and Markov properties
Examples

Independent random variables

Number of coin tosses until ’head’ is observed
Radioactive atoms always have the same probability of
decaying at the next trial

Dependent random variables

The knowledge that no streetcar has passed for five minutes
increases our expectation that it will come soon.
Coin tossing:

Probability that the cumulative numbers of heads and tails
will equalize at the second trial is 1

2

Given that they did not, the probability that they equalize
after two additional trials is only 1

4

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 9/111



Introduction and Markov properties
Lack of memory – Rigorous formulation

Suppose a waiting time T assumes the values 0, 1, 2, . . . with
probabilities p0, p1, p2, . . .

Let T have the following property

Conditional probability that the waiting time terminates at the
k-th trial equals p0

Then:

pk = (1− p0)kp0
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Introduction and Markov properties
Lack of Memory – Rigorous formulation

Proof.

1− pk = pk+1 + pk+2 + · · · = P{T > k}
Conditional probability of T = k : pk/(1− pk−1)

Assumption for all k ≥ 1: pk
1−pk−1

= p0

Since pk = (1− pk−1)− (1− pk )

1− pk

1− pk−1
= 1− p0 (4)

since 1− p0 = p1 + p2 + . . . : 1− pk = (1− p0)k+1

and
pk = 1− pk−1 − (1− pk ) = (1− p0)kp0 (5)
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Introduction and Markov properties
Markov property

Markov property

In the theory of stochasitc processes the described lack of memory
is connected with the Markovian property.
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Markov chains
Dependence and independence of events

Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurence probability pi

Probability to observe sample sequence:

P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi
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Markov chains
Dependence and independence of events

Theory of Markov chains:

Outcome of any trial depends exclusively on the outcome of
the directly preceding trial
Outcome of Ek is no longer associated with fixed probability
pk

Instead: With every pair (Ei , Ej ) a conditional probability pij

Probability that Ej is observed after Ei

Additionally: Probability ai of the event Ei
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Markov chains
Dependence and independence of events

Theory of Markov chains:

P{(Ei ,Ej )} = aipij

P{(Ei ,Ej ,Ek )} = aipijpjk

P{(Ei ,Ej ,Ek ,El )} = aipijpjkpkl

P{(Ei ,Ej , . . . ,Em,En)} = aipij . . . pmn
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Markov chains
Markov chain

Markov chain

A sequence of observations E1,E2, . . . is called a Markov chain if
the probabilities of sample sequences are defined by

P(E1,E2, . . . ,Ei ) = a1 · p12 · p23 · · · · · p(i−1)i . (6)

and fixed conditional probabilities pij that the event Ei is observed
directly in advance of Ej .
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Markov chains
Markov chain

Markov chain described by probability a for initial distribution
and matrix P of transition probabilities.

P =

 p11 p12 p13 · · ·
p21 p22 p23 · · ·

...
...

...
. . .

 (7)

P is a square matrix with non-negative entries that sum to 1
in each row.
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Markov chains
Stochastic matrix

P is called a stochastic matrix.

Any stochastic matrix is suited to describe transition
probabilities of Markov chains.
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Markov chains
Markov chain

Markov chain sometimes modelled as directed graph
G = (V ,E )

Labelled edges in E

states (or vertices) in V .

Transition probabilities pij between Ei ,Ej ∈ V
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Markov chains
Derive state transision probabilities

pk
ij denotes probability that Ej is observed exactly k

observations after Ei was observed.

Calculated as the sum of the probabilities for all possible
paths EiEi1 · · ·Eik−1

Ej of length k

We already know
p1

ij = pij (8)

Consequently:

P2
ij =

∑
ν

piν · pνj (9)
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Markov chains
Derive state transision probabilities

By mathematical induction:

pn+1
ij =

∑
ν

piν · pn
νj (10)

and
pn+m

ij =
∑
ν

pm
iν · pn

νj =
∑
ν

pn
iν · pm

νj (11)
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Markov chains
Derive state transision probabilities

Similar to the matrix P we can create a matrix Pn that
contains all pn

ij

We obtain Pn+1
ij from Pn+1 by multiplying all elements of the

i-th row of P with the correspoinding elements of the j-the
column of Pn and add all products.

Symbolically: Pn+m = PnPm.
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Markov chains
Examples

Markov chains:
Urn models

Every Markov chain is equivalent to an urn model
Each urn represents a state in a markov chain and probabilities
to draw specific balls represent possible events in this state

Branching processes

Instead of saying that the n-th trial results in Ek we say that
the n-th generation is of size k

Random walk on a line

Events are transitions between states
Only two events are possible in each state
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Markov chains
Random walks and ruin problems

Random walk

When there are only two possible states E1 and E2 the matrix
of transition probabilities is of the form

P =

[
1− p p
α 1− α

]
(12)

Can be realised by particle moving along one axis in one or
the other direction.

System is in state E1 when the particle moves into one
direction and in state E2 otherwise.
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Markov chains
Random walks and ruin problems

Possible problems / questions

Expected time to return to origin
Expected time to return to origin given that the starting point
had a specific distance to the origin
· · ·
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Markov chains
Random walks and ruin problems

Random walk with absorbing barriers

P =



1 0 0 0 · · · 0 0 0
1− p 0 p 0 · · · 0 0 0

0 1− p 0 p · · · 0 0 0
...

0 0 0 0 · · · 1− p 0 p
0 0 0 0 · · · 0 0 1


(13)

First and last state are obsorbing

All inner states implement a random walk on the line

Possible application: Game between two players with equal
money balance where the loosing one has to pay one unit to
the winner.
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Markov chains
Random walks and ruin problems

Random walk with reflecting barriers

P =



1− p p 0 0 · · · 0 0 0
1− p 0 p 0 · · · 0 0 0

0 1− p 0 p · · · 0 0 0
...

0 0 0 0 · · · 1− p 0 p
0 0 0 0 · · · 0 1− p p


(14)

First and last state are reflecting

All inner states implement a random walk on the line
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Markov chains
Random walks and ruin problems

Classical ruin problem

Consider a gambler who wins or loses a dollar with
probabilities p and 1− p

Initial capital of gambler and adversary: z , a− z

Game ends when the capital reaches 0 or a.

When one of the players is ruined

We are interested in the probability of the gamblers ruin and
the probability distribution of the game
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Markov chains
Random walks and ruin problems

Gamblers ruin problem

Random walk with absorbing barriers at 0 and a

Examples:

Physicists use this model as crude approximation to
one-dimensional diffusion or Brownian motion (Particle is
exposed to great number of molecular collisions which impart
to it a random motion)
p > 1/2 represents a drift to the right, when shocks from the
left are more probable
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Markov chains
Random walks and ruin problems

Probability of gamblers ruin

qz : Probability of gambler’s ultimate ruin when z is the
starting capital and a is the overal capital
After the first trial the gablers’s fortune is either z − 1 or
z + 1:

qz = pqz+1 + (1 − p)qz−1

We can show:

p 6= 1

2
: qz =

(
1−p

p

)a
−
(

1−p
p

)z

(
1−p

p

)a
− 1

(15)

p =
1

2
: qz = 1− z

a
(16)
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Markov chains
Random walks and ruin problems

Probability of gamblers ruin

The probability pz of the gambler winning the game is equal
to the probability of his adversary loosing the game.
It is therefore obtained in the same way by replacing p with
1− p and z by a− z
Therefore: pz + qz = 1
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Markov chains
Random walks and ruin problems

Some interesting results
Since for p = 1

2 ,we have derived qz = 1− z
a

A player with initial capital z = 999 has a probability of 0.999
to win a dollar before losing his capital.

With p = 0.4 the game is unfavorable, but still the probability
of winning a dollar before losing the capital is about 2

3
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Markov chains
Random walks and ruin problems

Example – anecdote

A certain man used to visit Monte Carlo year after year and was
always successful in recovering the cost of his vacations. He firmly
believed in a magic power over chance.

This experience is not surprising.

Assuming that he started with ten times the ultimate gain,
the chances of success in any year are nearly 0.9.

The probability of an unbroken sequence of ten successes is
about (1− 1

10 )10 ≈ e−1 ≈ 0.37

Therefore, continued success is by no means improbable

However: one failue would result in the gambler’s ruin :-)
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Markov chains
Random walks and ruin problems

Effect of increasing stakes is more pronounced than might be
expected
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Markov chains
Random walks and ruin problems

Expected duration of the game

Dz : Expected duration of the game when z is the starting
capital and a is the overal capital
After the first trial the gablers’s fortune is either z − 1 or
z + 1:

Dz = pDz+1 + (1 − p)Dz−1 + 1

We can show:

p 6= 1

2
: Dz =

z

1− 2p
− a

1− 2p
·

1−
(

1−p
p

)z

1−
(

1−p
p

)a (17)

p =
1

2
: Dz = z(a− z) (18)
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Markov chains
Random walks and ruin problems

Expected duration of the game

p 6= 1

2
: Dz =

z

1− 2p
− a

1− 2p
·

1−
(

1−p
p

)z

1−
(

1−p
p

)a (19)

p =
1

2
: Dz = z(a− z) (20)

Examples – Duration considerably longer as naively expected:

If two players with 500 dollars each toss a fair coin, average
duration of the game is 250000 trials

If a gambler has only one dollar and his adversary 1000, the
average duration is 1000 trials
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Markov chains
Closures and closed sets

Closed set of states

A set C of states is closed if no state outside C can be
reached from any state Ei in C .

For an arbitrary set C of states the smallest closest set
containing C is called the closure of C

A single state Ek forming a closed set is called absorbing
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Markov chains
Closures and closed sets

Closed sets in stochastic matrices

If in a matrix Pn all rows and all columns corresponding to states
outside a closed set C are deleted, the remaining matrices are
again stochastic matrices.
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Markov chains
Closures and closed sets

Irreducible Markov chain

A Markov chain is irreducible if there exists no closed set other
than the set of all states.

Criterion for irreducible chains

A chain is irreducible if, and only if, every state can be reached
from every other state.
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Markov chains
Periodicity

Periodicity of states

The state Ej has period t > 1 if pn
jj = 0 unless n = vt is a

multiple of t and t is the largest integer with this property.

the state Ej is aperiodic if no such t > 1 exists

A state Ej to which no return i possible is considered aperiodic
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Markov chains
Periodicity

To deal with a periodic Ej it suffices to consider the chain at
the trials t, 2t, 3t

In this way we obtain a new Markov chain with transition
probabilities pt

ik

In this new chain Ej is aperiodic

Results concerning aperiodic states can thus be transferred to
periodic states
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Markov chains
Persistent and transient states

Persistent and transient states

The state Ej is persistent if
∑∞

n=1 pn
jj = 1 and transient if∑∞

n=1 pn
jj < 1

A persistent state Ej is called null state if its mean
recurrrence time µj =∞
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Markov chains
Irreducible chains

Two states are of the same type when they are either

both aperiodic
both have the same period
both are transient
both are persistent and each

with infinite recurrence times
or finite recurrence times
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Markov chains
Irreducible chains

Type of states in irreducible chains

All states of an irreducible chain are of the same type
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Markov chains
Applications – Card shuffling

A deck of N cards can be arranged in N! different orders.

Each order represent a possible state of the system

We conceive each particular shuffling operation as a
transformation Ei → Ej

Result:

The permutation is not cyclic
Therefore, repeated application of a single operation will never
visit all possible states
This means that the original state is again observed before all
states are visited

This is a Markov chain:

We assume that a player applies several shuffling operation
with a random probability and that the current order of the
cards is not known.
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Markov chains
Markov processes

Markov process

A sequence of discrete-valued random variables is a markov process
if the joint distribution of (X 1, . . . ,X n) is defined in such a way
that the conditional probability of the relation X n = x on the
hypothesis X n1 = x1, . . . ,X

nr = xr is identical with the conditional
probability of X n = x on the single hypothesis X nr = xr .
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Markov chains
Higher order Markov processes

Order k Markov processes

Typically

Occurence of event dependent on k events that were observed
directly beforehand
Constrained lack of memory
Dependence between the last k events observed

Useful for context prediction / time series forecasting, when
typical patterns or trends are to be considered
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Markov chains
Higher order Markov processes

Probability that E1,E2, . . . ,Ei observed is then

P(E1,E2, . . . ,Ei ) = p1 · p12 · p23 · · · · · p(i−1)i . (21)

Required: pi > 0∀i and
∑

pi
= 1.
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Hidden Markov Models
Introduction

Make a sequence of decisions for a process that is not directly
observable3

Current states of the process might be impacted by prior
states

HMM often utilised in speach recognition or gesture
recognition

3
Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley interscience, 2001.
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Hidden Markov Models
Applications

Computational biology

Align biological sequences
Find sequences homologous to a known evolutionary family
Analyse RNA secondary structure 4

Computational linguistics5

Topic segmentation of text
Information extraction

4
R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological sequence analysis: Probabilistic models of

proteins and nucleic acids, Cambridge University Press, 1998.
5

C.D. Manning and H. Schütze, Foundations of statistical natural language processing, MIT Press, 1999.
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Hidden Markov Models
First order Markov models
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Hidden Markov Models
First order hidden Markov models

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 54/111



Hidden Markov Models
First order hidden Markov models

At every time step t the system is in an internal state ω(t)

Additionally, we assume that it emits a (visible) symbol v(t)

Only access to visible symbols and not to intenal states
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Hidden Markov Models
First order hidden Markov models

V T = {v(1), v(2), . . . , v(T )}
In any state ω(t) we have a probability of emitting a
particular visible symbol vk (t)

Probability to be in state ωj (t) and emit symbol vk (t):

P(vk (t)|ωj (t)) = bjk

Transmission probabilities: pij = P(ωj (t + 1)|ωi (t))

Emission probability: bjk = P(vk (t)|ωj (t))
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Hidden Markov Models
First order hidden Markov models

Normalisation conditions∑
j

pij = 1for all i (22)

∑
k

bjk = 1for all j (23)
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Hidden Markov Models
First order hidden Markov models

Central issues in hidden Markov models:
Evaluation problem

Determine the probability that a particular sequence of visible
symbols V T was generated by a given hidden Markov model

Decoding problem

Determine the most likely sequence of hidden states ωT that
led to a specific sequence of observations V T

Learning problem

Given a set of training observations of visible symbols,
determine the parameters pij and bjk for a given HMM
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Hidden Markov Models
First order hidden Markov models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

P(V T |ωT )P(ωT ) (24)

Also:

P(ωT ) =
T∏

t=1

P(jω(t)|ω(t − 1)) (25)

P(V T |ωT ) =
T∏

t=1

P(v(t)|ω(t)) (26)

Together:

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) (27)
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Hidden Markov Models
First order hidden Markov models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) (28)

Formally complex but straightforward

Naive computational complexity

O(cT T )
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Hidden Markov Models
First order hidden Markov models – Evaluation problem

Probability that model produces a sequence V T :

P(V T ) =
∑
ωT

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) (29)

Computationally less complex algorithm:

Calculate P(V T ) recursively
P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and
ω(t − 1)

αj (t) =

 0 t = 0 and j 6= initial state
1 t = 0 and j = initial state
[
∑

i αi (t − 1)pij ] bjkv(t) otherwise
(30)
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Hidden Markov Models
First order hidden Markov models – Evaluation problem

Forward Algorithm

Computational complexity: O(c2T )

Forward algorithm

1 initialise t ← 0, pij , bjk ,V
T , αj (o)

2 for t ← t + 1
3 αj (t)← bjkv(t)

∑c
i=1 αi (t − 1)pij

4 until t = T
5 return P(V T )← α0(T ) for the final state
6 end
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Hidden Markov Models
First order hidden Markov models – Decoding problem

Given a sequence V T , find the most probable sequence of
hidden states.

Enumeration of every possible path will cost O(cT T )

Not feasible
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Hidden Markov Models
First order hidden Markov models – Decoding problem

Given a sequence V T , find the most probable sequence of
hidden states.

Decoding algorithm

1 initialise path ← {}, t ← 0
2 for t ← t + 1
3 j ← j + 1
4 for j ← j + 1
5 αj (t)← bjkv(t)

∑c
i=1 αi (t − 1)pij

6 until j = c
7 j ′ ← arg maxj αj (t)
8 append ωj ′ to path
9 until t = T
10 return path
11 end
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Hidden Markov Models
First order hidden Markov models – Decoding problem

Computational time of the decoding algorithm
O(c2T )

However, computed path might be invalid
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Hidden Markov Models
First order hidden Markov models – Learning problem

Determine the model parameters pij and bjk

Given: Training sample of observed values V T

No method known to obtain the optimal or most likely set of
parameters from the data

However, we can nearly always determine a good solution by
the forward-backward algorithm
General expectation maximisation algorithm
Iteratively update weights in order to better explain the
observed training sequences
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Hidden Markov Models
First order hidden Markov models – Learning problem

Probability that the model is in state ωi (t) and will generate
the remainder of the given target sequence:

βi (t) =


0 t = T and ωi (t) 6= ω0

1 t = T and ωi (t) = ω0∑
j βj (t + 1)pijbjkv(t + 1) otherwise

(31)
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Hidden Markov Models
First order hidden Markov models – Learning problem

αi (t) and βi (t) only estimates of their true values since
transition probabilities pij , bjk unknown

Probability of transition between ωi (t − 1) and ωj (t) can be
estimated

Provided that the model generated the entire training
sequence V T by any path

γij (t) =
α(t − 1)pijbjkβj (t)

P(V T |Θ)
(32)

Probability that model generated sequence V T :

P(V T |Θ) (33)
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Hidden Markov Models
First order hidden Markov models – Learning problem

Calculate improved estimate for pij and bjk

pij =

∑T
t=1 γij (t)∑T

t=1

∑
k γik (t)

(34)

bjk =

∑T
t=1,v(t)=vk

∑
l γjl (t)∑T

t=1

∑
l γjl (t)

(35)

Start with rough estimates of pij and bjk

Calculate improved estimates

Repeat until some conversion is reached
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Hidden Markov Models
First order hidden Markov models – Lerning problem

Forward-Backward algorithm

1 initialise pij , bjk ,V
T , convergence criterion Θ, z ← 0

2 do z ← z + 1
3 compute pij (z)

4 compute bjk (z)

5 pij (z)← pij (z)

6 bjk (z)← bjk (z)
7 until maxi ,j ,k [pij (z)− pij (z − 1), bjk (z)− bjk(z − 1)] < Θ

(convergence achieved)
8 return pij ← pij (z), bjk ← bjk (z)
9 end
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Hidden Markov Models
First order hidden Markov models

Context prediction with hidden Markov models:
1 Given the transition model, estimate all pij and bjk

2 Given a sequence V T , decode the most probable sequence of
hidden states

3 Extrapolate the sequence of expected hidden states
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Context prediction with Markov approaches

Given: Sequence of contexts ξ0−k+1, . . . , ξ0

Generate Markov chain representing the transition
probabilities for each pair of observations

Now possible: Provide probability distribution on the next
outcome

Can also be generalised to higher order Markov processes

Several iterations of this process provide higher prediction
horizons

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 73/111



Properties of Markov prediction approaches
Memory and processing load

Runtime dependent on size of probability graph G

C : Set of different context values

The number of states of the Markov chain: C .

Time to find most probable next state is O(|C |) in the worst
case.

Every arc to possible following context to be considered.
|C | − 1 arcs existent in the worst case.

Most probable n future context time series elements

Naive computation time: O(|C |n)
When transition probabilities stored to a matrix, one matrix
multiplication for every future context
Computation time: O(n · |C |2).
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Properties of Markov prediction approaches
Memory and processing load

Memory requirements

Dependent on the number of contexts observed – size of the
transition matrix
Order 1: O(|C |2)
Order k: O(|C |k+1)
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Properties of Markov prediction approaches
Prediction horizon

Prediction horizon can be extended by iterative prediction

Utilise predicted contexts as input

Problem: Less accurate

Predicted contexts more error prone than measured values
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Properties of Markov prediction approaches
Adaptability

The Markov prediction approach is well able to adapt to
changing environments

Adapt context transition probabilities
Consideration of new events possible

Rebuild of transition matrix required
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Properties of Markov prediction approaches
Multi-dimensional time series

The Markov prediction algorithm is not suited for
multi-dimensional time series

Designed for one-dimensional Input
Possible: Aggregation of multi-dimensional time series to
one-dimensional time series.
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Properties of Markov prediction approaches
Iterative prediction

Iterative Prediction possible

Steep decrease in prediction accuracy expected since
prediction horizon is only 1
Increase of prediction horizon possible by Aggregation of
context sequence of fixed length in one Markov state

Prediction horizon fixed
Increase in Memory consumption and processing time
When l contexts are aggregated: lC states
Runtime:

O(n · lC 2

).
Memory consumption:

O(lC 2

) (order one)

O(lC k+1

) (order k)
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Properties of Markov prediction approaches
Prediction of context durations

Prediction of context duration not possible

Only simple sequence of occurring contexts possible
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Properties of Markov prediction approaches
Approximate matching of patterns

Exact pattern matching

The Markov prediction algorithm utilises exact pattern
matching
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Properties of Markov prediction approaches
Context data types

All context data types supported

Every distinct context type one state
Probably drastic increase in runtime and memory consumption
for numeric context types
Possible: Assign intervals to states

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 82/111



Properties of Markov prediction approaches
Pre-processing

Pre-processing required to construct context transition
probabilities

On-line approach feasible – learning

Runtime: O(k)

Count frequency of specific context transitions in training time
series of length k
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes no yes

Non-numeric Contexts yes yes yes

Complexity O(k) ( ) O(C 2)

Learning ability (no) yes yes

Approximate matching no no no

Multi-dim. TS (no) (no) (no)

Discrete data yes yes yes

Variable length patterns no yes no

Multi-type TS yes no (no)

Continuous data no no no

Pre-processing O(k) – O(k)

Context durations no no no

Continuous time no no yes
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Properties of Markov prediction approaches
Conclusion

Markov processes are straightforward and easily applied to
context prediction tasks.

Model can be applied to numerical and non-numerical data
alike.

Prediction that reaches farther into future implicitly utilises
already predicted data which might consequently decrease the
prediction accuracy.
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Conditional random fields
Introduction

Undirected graphical model 6 7

Similar to HMM

HMM specific CRF
Relax assumptions about input and output sequence
Instead of constant transition probability: Arbitrary functions
that vary across positions in sequence of hidden states

Vertices represent random variables

Edges represent dependency between two random variables

6
John Lafferty, Andrew McCallum and Fernando Pereira, Conditional random fields: Probabilistic models for

segmenting and labeling sequence data, In Proceedings of the 18th international conference on machine learning,
pp 282-289, 2001.

7
Douglas L. Vail, Manuela M. Veloso and John D. Lafferty, Conditional random fields for activity recognition,

In Proceedings of the AAMAS, 2007.

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 87/111



Conditional random fields
Introduction

Layout of inner-graph (hidden states) arbitrary

Input sequence: X

Inner states: Y

Conditional dependency of each Yi on X defined through set
of feature functions

f (i ,Yi−1,Yi ,X ) (36)

Each feature assigned numerical weight
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Conditional random fields
Training

Various learning approaches to train CRF

Gradient based
Quasi-Newton-approach

Sequences provided of which also desired output is known

CRF parameters are adapted to match a maximum number of
training sequences
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Conditional random fields
Applications

Applications similar to HMM

Labeling or parsing of sequential data

Natural language text
Biological sequences

Classification of proteins
Prediction of the secondary structure of DNS and proteine

Image recognition and image resauration
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Conditional random fields
Discussion

Generative models

HMMs, stochastic grammars, ...
Assign joint probability to paired observations

Discriminative models

Maximum entropy Markov models, Conditional random fields,
...
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Conditional random fields
Discussion

Problem of generative models

To define joint probability over observation sequences (e.g.
words or nucleotides), all possible observation sequences are
enumerated
Not practical

Multiple interacting features
Long range dependencies

Conditional probability depends on fixed, dependent features

Instead of arbitrary independent features

Very strict independence assumptions on observations

e.g. conditional independence
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Conditional random fields
The label bias problem

Problem of (classical) discriminative models (e.g. MEMM)
Label bias problem8

Conservation of score mass
States with fewer outgoing transitions are tendentially biased
States with low-entropy next state distributions will take little
notice of observations

8
L. Bottou, Une approche theorique de l’apprentissage connexionniste: Applications a la reconnaissance de la

parole, PhD-thesis, 1991.
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Conditional random fields
The label bias problem

Solutions proposed to solve the label bias problem
Change state transition structure of the model

Collapse states (here: 1 and 4)
Delay branching until discriminating observation

Start with fully connected model

Let training figure out good structure
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Conditional random fields
The label bias problem

Problems with the solutions proposed
Change state transition structure of the model

Not always possible
May lead to combinatorical explosion

Start with fully connected model

Preludes use of valuable prior structural knowledge
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Conditional random fields
The label bias problem

Requirement for proper solutions
Model that accounts for whole state sequences at once

Let transitions ’vote’ more strongly than others
Score mass will not be conserved
Transitions can amplify or dampen received mass
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Conditional random fields
Discussion

Conditional random fields

Solve label bias problem
Single exponential model for joint probability of sequences
Less impacted by higher-order dependencies between states
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Conditional random fields
Algorithmic model

Definition: Conditional random field

Let G = (V ,E ) be a graph such that Y = (Yv )v∈V . Then (X ,Y )
is a conditional random field when the random variables Yv obey
the Markov property with respect to the graph:
p(Yv |X ,Yw ,w 6= v) = p(Yv |X ,Yw ,w ∼ v)

w ∼ v means that w and v are neighbours in G

A CRF is a random field conditioned on the observation X

In general, the graphical structures of X and Y are not the
same.
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Conditional random fields
Random field

Random field

Generalization of a stochastic process
Underlying parameter need no longer be a simple real
Can instead be multidimensional vector space
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Conditional random fields
Random field

Random field

Let S = X1, ...,Xn, with the Xi in {0, 1, ...,G − 1} being a set of
random variables on the sample space Ω = {0, 1, ...,G − 1}n. A
probability measure π is a random field if, for all ω in Ω, π(ω) > 0.
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Conditional random fields
Example: HMM-like CRF

fy ′,y (< u, v >, y |<u,v>, x) = δ(yu, y
′)δ(yv , y) (37)

gy ,x (v , y |v , x) = δ(yv , y)δ(xv , x) (38)

Feature for each state pair (y , y ′) and each state-observation
pair (y , x)
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Conditional random fields
Example: HMM-like CRF

CRF more expressive: Can model more cases than HMM

Features do not need to specify completely a state or
observation.

Therefore, model can be estimated from less training data

CRFs share all convexity properties of general maximum
entropy models
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Conditional random fields
Example: HMM-like CRF

Graphical structures of HMMs and CRFs

Circle indicates that variable is not generated by the model
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Conditional random fields
Example: HMM-like CRF

CRF: Entire observation sequence combined
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Conditional random fields
Experiments
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Conditional random fields
Experiments

Seeker robot (black) tries to tag on of the other players

Simplified variant: Non-seeker robots follow hourclass pattern
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Conditional random fields
Experiments

CRF and HMM accuracy for identifying the seeker
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Context prediction with CRF
Prediction procedure

Context prediction with CRF:
1 Given the transition model, estimate all probabilites between

states and state action probabilites
2 Given a sequence V T , decode the most probable sequence of

hidden states
3 Extrapolate the sequence of expected hidden states
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes no no no

Non-numeric Contexts yes yes yes yes

Complexity O(k) ( ) O(C 2) O(C 2)

Learning ability (no) yes yes yes

Approximate matching no no no no

Multi-dim. TS (no) (no) (no) (no)

Discrete data yes yes yes yes

Variable length patterns no yes no (yes)

Multi-type TS yes no (no) (no)

Continuous data no no no no

Pre-processing O(k) – O(k) O(k)

Context durations no no no no

Continuous time no no yes yes

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 109/111



Properties of CRF prediction approaches
Conclusion

CRF processes are straightforward and easily applied to
context prediction tasks.

Model can be applied to numerical and non-numerical data
alike.

Prediction that reaches farther into future implicitly utilises
already predicted data which might consequently decrease the
prediction accuracy.
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Conclusion
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