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Aspects of prediction algorithms
Prediction accuracy

Context prediction is an optimisation problem

Prediction errors have to be minimised
Low error probability desired
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Aspects of prediction algorithms
High prediction horizon

A prediction algorithm shall provide a high prediction horizon

At the same time: low error probability

Prediction accuracy decreases with increasing prediction
horizon

Low degradation speed desired
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Aspects of prediction algorithms
Adaptability

Learning is essential in Ubiquitous Environments
Environment is subject to changes

typically slow changes

Behaviour patterns of persons might change due to external
influences

Relocation
New Job
Vacancy
New semester and time schedule

Without learning, prediction accuracy will decrease over time
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Aspects of prediction algorithms
Memory and processing load

Devices for ubiquitous computing typically small scale and
mobile

Low processing power
Restricted memory and storage size
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Aspects of prediction algorithms
Multi-dimensional time series

Typically several context sources attached to a device

The time series observed is therefore multi-dimensional

Algorithms that are only applicable to one-dimensional input
unsuited in many scenarios

Solution: Model multi-dimensional TS by several
one-dimensional TS
Problem: Inter-relation between time series not modelled
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Aspects of prediction algorithms
Multi-dimensional time series

Ideallised: Context data sources synchonised

Very unlikely
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Aspects of prediction algorithms
Multi-dimensional time series

Realistic scneario: No synchonisation between context sources

Context sources push information when specific events occur
Duty cycling (time differs between context sources)
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Aspects of prediction algorithms
Multi-dimensional time series

Question: Which context values for a given time interval?

Interpolation of context values?
Last value measured?

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 13/94



Aspects of prediction algorithms
Multi-dimensional time series

Proposal/Idea: Context reasoning by DAG1

Design processing sequence that the algorithm shall
follow/respect?
Designed for context reasoning – Also applicable for context
prediction
Problems: How to design this processing graph on-line and
autonomously?

1
Bernd Niklas Klein, Sian Lun Lau, Andreas Pirali, Tino Löffler, Klaus David. DAGR-DAG based context

reasoning: An architecture for context aware applications. In Proceedings of the eighth international workshop on
applications and services in wireless networks, Kassel, Germany, pp. 20-25, 2008.
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Aspects of prediction algorithms
Iterative prediction

Prediction horizon can be extended by iterative prediction

Utilise predicted contexts as input

Problem: Less accurate

Predicted contexts more error prone than measured values
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Aspects of prediction algorithms
Prediction of context durations

Context durations make a difference

Different duration of contexts might also indicate other
situations/Contexts
It is more difficult to predict a context together with its
occurence time instead of simply a context sequence
Duration can be modelled by repeatedly occurring contexts in
a context sequence
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Aspects of prediction algorithms
Relaxation of typical behaviour patterns

Exact pattern matching not suited in most ubiquitous
scenarios

Behaviour patterns do not reoccur ’exactly’ but approximately
E.g. the route and time to some location will differ slightly for
several times the route is taken.

Approximate matching is more difficult:

Where to draw the line?
When are two time series considered as approximately
matching and when not
Inherently dependent on given scenario
Typically solved by heuristic approach/metric
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Aspects of prediction algorithms
Relaxation of typical behaviour patterns

Exact sequence matching
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Aspects of prediction algorithms
Context data types

Context can have various data types

Nominal
Ordinal
Hierarchical
Numerical

In multi-dimensional time series also multi-type contexts
possible

Most algorithms can only process some of these data types

Not applicable in scenarios where other data types are
measured
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Aspects of prediction algorithms
Context data types

Nominal contexts

=
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Aspects of prediction algorithms
Context data types

Ordinal contexts
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Aspects of prediction algorithms
Context data types

Hierarchical contexts

Sub-contexts and parent contexts
Contexts might be contained in others
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Aspects of prediction algorithms
Context data types

Numerical contexts

Real valued, integer valued contexts
Complex mathematical operations possible
Best suited for context processing
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Aspects of prediction algorithms
Context data types

Algorithm Ordinal
contexts

Nominal
contexts

Hierarchical
contexts

Numerical
contexts

BN + + + +

SVM - - - +

KM - - - +

MM + + + +

NN + + + +

NNS - (+)7 (+) +

SOM - (+)7 (+)7 +

PM + + + +

AP (+)7 (+)7 (+)7 +

ARMA - - - +

Kalman filters - - - +
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Aspects of prediction algorithms
Pre-processing of time series data

For context prediction,preprocessing of context data is often
applied

Identify typical context patterns
Derive occurrence probability of contexts
Derive context transition probabilities

Distinguish between on-line and off-line processing

Problem: Increased processing load
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF
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Discrete data

Variable length patterns
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Context durations
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Aspects of prediction algorithms
Summary
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Aspects of prediction algorithms
Summary
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Aspects of prediction algorithms
Summary

EAs NN Sim. Anneal

Numeric Contexts

Non-numeric Contexts

Complexity

Learning ability

Approximate matching

Multi-dim. TS

Discrete data

Variable length patterns
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Outline
Simple prediction approaches: ONISI and IPAM

1 Important aspects of context prediction algorithms

2 Exact sequence matching

3 Algorithm: IPAM

4 Algorithm: ONISI
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Exact sequence matching
Introduction

File a given sequence for the exact occurence of a
sub-sequence

’Pattern Matching’ or ’String Matching’2

Easily extended to context prediction:
Prediction ≡ continuation of matched sequence

2
Richard O. Duda, Peter E. Hard and David G. Stork, Pattern Classification, Wiley-Interscience, 2nd edition,

2001.
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Exact sequence matching
Notation

Strings and patterns

A string is a sequence of letters such as ’AGCTTCGAATC’.
Context patterns can be represented as strings when each context
is assigned a letter.

Substring

Any contiguous string that is part of another string is called a
substring. For example, ’GCT’ is a substring of ’AGCTTC’.
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Exact sequence matching
Notation

String matching

Given two Strings x and y, string matching is the problem to
determine whether x is a substring of y and, if so, where it
appears.

Edit distance

Given two strings x and y, the edit distance describes the
minimum number of basic operations – character insertions,
deletions and exchanges – needed to transform x into y.
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Exact sequence matching
Example

Suppose we have a large text such as Herman Melville’s Moby
Dick and want to classify it as relevant to the topic of fish or to
the topic of hunting.

Keywords for the fish topic

might include ’salman’, ’whale’, fishing’, ’ocean’

Keywords for hunting

might include ’gun’, ’bullet’, ’shoot’.

String matching would determine the number of occurrences
of such keywords in the text.

A simple count of keyword occurrences could then be used to
classify the text according to topic
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Exact sequence matching
String matching

Task

Determine whether a candidate string x is a substring of y.

Typically: x � y

Each character in x and y is taken from an alphabet Σ

DNA bases,
Binary sequences (Σ = {0, 1})
Alphanumeric sequences (Σ = {0, ..., 9, a, ..., z ,A, ...,Z})
Context sequences – Each character represents a context
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Exact sequence matching
String matching

Basic string matching problem

For two strings x and y, determine whether a shift s at which the
string x is perfectly matching with each caracter of y beginning at
position s + 1.
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Exact sequence matching
String matching

Straightforward approach

Subsequently test each possible shift s

Example

1 begin initialise Σ x,y,n=length[y], m=length[x]
2 s ← 0
3 while s ≤ n −m
4 if x[1..m]=y[s + 1 · · · s + m]
5 then print ’pattern occurs at shift’ s
6 s ← s + 1
7 return
8 end
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Exact sequence matching
String matching

The straightforward algorithm is, however, far from optimal

Worst case runtime:

Θ((n −m + 1)m)

Problem: Information known from one candidate shift s is not
exploited for the subsequent candidate shift
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Exact sequence matching
String matching

Boyer-Moore string matching

1 begin initialise Σ x,y,n=length[y], m=length[x]
2 F (x)← last-occurrence function
3 G (x)← good-suffic function
4 s ← 0
5 while s ≤ n −m
6 do j ← m
7 while j > 0 and x[j ] = y[s + j ]
8 do j ← j − 1
9 if j = 0
10 then print ’pattern occurs at shift’ s
11 s ← s + G (0)
12 else s ← s + max [G (j), j − F (y[s + j ])]
13 return
14 end
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Exact sequence matching
Boyer-Moore string matching algorithm

The Boyer-Moore algorithm utilises information known from
recent candidate shifts

Character compositions are done in reverse order

increment to a new shift need not be 1

Benefits from two heuristics:

Good suffix heuristic
Bad character heuristic
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Exact sequence matching
Bad character heuristic and good suffix heuristic
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Exact sequence matching
Bad character heuristic and good suffix heuristic

Bad character heuristic

Since character comparisons proceed from right to left, bad
character is found as efficiently as possible
Since current shift s is invalid, no additional character
comparisons are required
Proposes incrementing the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad
character identified in y.
No valid shifts have been dropped

Good suffix heuristic

A suffix of x is a substring of x that contains the final
character in x
At shift s the rightmost contiguous characters in y that match
those in x are called the good suffix
Character comparisons are made from right to left and are
therefore optimal
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Exact sequence matching
Last occurrence function

Table containing every letter in the alphabet

Plus position of its rightmost occurrence in x

Example:

A, 4
B, 5
C, 3

Computation only once

Does not significantly impact the runtime
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Exact sequence matching
Good suffix function

Creates table that for each suffix gives location of second
right-most occurrence in x
Example:

B, 2
AB, 1
CAB, -
BCAB, -
ABCAB, -

Computation only once
Does not significantly impact the runtime
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Exact sequence matching
Boyer-Moore algorithm

Computational complexity

Homework / Exercise ;-)

Asymptotic computation time

O(k) 7−→ computation time not larger than c · k for a suitable
constant c and k large.
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Exact sequence matching
Problems

Problems with exact string matching approaches in Ubiquitous
Computing

Data might be distorted by noise

In Ubicomp scenarios we even expect noisy input data
Exact pattern matching not feasible then
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Exact sequence matching
Approximate matching approaches

Edit distance

Nearest neighbour approaches
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Exact sequence matching
Approximate matching approaches

Nearest neighbour approaches

Strings are identified as vectors in a coordinate system
Since these vectors are numerical, distance/similarity between
vectors can be computed by common metrics

We will consider these approaches later in the lecture
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Exact sequence matching
Approximate matching approaches

Edit distance

Task: Compute the difference
Problem: What is the similarity/distance between string
sequences?
Example: is ’abbccc’ closer to ’aabbcc’ or to ’abbcccb’?

We will consider these approaches later in the lecture

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 49/94



Outline
Simple prediction approaches: ONISI and IPAM
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Algorithm: IPAM
Introduction and scenario

Scenario

Predict the next command in a
series of command line inputs
to a UNIX shell

Prediction of next command
on a UNIX shella

a
B.D. Davison and H. Hirsh, Predicting

sequences of user actions. In: AAAI/ICML Workshop
on predicting the future: AI approaches to
time-series analysis. 1998
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Algorithm: IPAM
Introduction and scenario

It was observed that recently issued commands had the
greatest impact on the follow-up command

Idea: Standard learning algorithms ignore rare but possibly
important events in a time series

IPAM was designed to improve this

Example

Predict hardware failures in routing networks. Typically every
packet is routed as expected and no error occurs. In some, very
rare cases, a hardware router might collapse. Likely result: packet
losses, congestion, re-calculation of routing tables or a
disconnected part of the network.
The event is rare but serious.
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Algorithm: IPAM
Introduction and scenario

Requirements of an optimal on-line learning algorithm

Have predictive accuracy at least as good as the bset known
resource-unlimited methods
Operate incrementally (Modifying existing model rather than
building a new one as new data is optained)
Be affected by all events (remembering uncommmon, but
useful, events regardless of how much time has passed)
Do not necessarily retain a copy of all events observed
Output a list of predictions sorted by confidence
Adapt to changes to the target concept
Be fast enough for interactive use
Learn by passive observation
Apply even by absence of domain knowledge
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Algorithm: IPAM
Algorithmic approach

IPAM (Incremental Probabilistic Action Modeling)

on-line learning algorithm
Utilises last few events issued in order to predict the next
event in a sequence of events
Prediction horizon: 1
Interative prediction possible
Impact of empiric factor: α
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Algorithm: IPAM
Algorithmic approach

Algorithmic operation

While observing sequence: matrix of prediction probabilities is
maintained.
Colums: all possible events,
Rows: added and modified as events occur.
First event ci : New row is added

Each column in this row holds probability that event observed
after ci was observed.

Row initialised with uniform probabilities 1
n

Next event ci+1: New row added and initialised with uniform
probabilities.
Preceding row, every column multiplied with 0 ≤ α ≤ 1 and
column ci increased by (1− α).
Probability to predict event sequences that have not been
observed for some time diminishes
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Algorithm: IPAM
Algorithmic approach - operation principle

Step 1:
· · · ci · · · ci+1 · · ·

Step 2:
· · · ci · · · ci+1 · · ·

ci
1
n

1
n

1
n

Step 3:
· · · ci · · · ci+1 · · ·

ci
1
n · α + (1− α) 1

n · α
1
n · α

ci+1
1
n

1
n

1
n
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Algorithm: IPAM
Results and figures

Collected command histories of 77 users (mostly
undergraduate students)

Over 168,000 commands executed

During a period of 2-6 months

Average user over 2000 command instances

77 distinct commands per user on average

8.4% of the commands were new and had not been logged
previously

Users repeated the last command 20% of the time
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Algorithm: IPAM
Results and figures
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Algorithm: IPAM
Results and figures
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Algorithm: IPAM
Prediction accuracy
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Algorithm: IPAM
Adaptability

The IPAM algorithm has only restricted ability to adapt to
changing environments

It can learn new context sequences
The importance of the occurrence of context sequences can
change
No support for newly observed contexts
When new contexts occur in an environment, the algorithm
can not make use of this
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Algorithm: IPAM
Memory and processing load

Memory load

IPAM keeps a table in memory of size O(k2)
k = number of distinct commands

Processing load

Predictions performed in constant time
Updates require time O(k)
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Algorithm: IPAM
Multi-dimensional time series

The IPAM algorithm is not well suited for multi-dimensional
time series

It was designed for one-dimensional command-line input
In scenarios with more than one context source the approach
is not feasible
Possible: Aggregation of multi-dimensional time series to
one-dimensional time series.
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Algorithm: IPAM
Iterative prediction

Iterative Prediction possible

Steep decrease in prediction accuracy expected since
prediction horizon is only 1
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Algorithm: IPAM
Prediction of context durations

Prediction of context duration not possible

Algorithm was designed to predict the occurrence of the next
event.
Event durations are not considered by the algorithm
Only simple sequence of occurring events possible
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Algorithm: IPAM
Approximate matching of patterns

Exact pattern matching

The IPAM algorithm utilises exact pattern matching
Approximate matching was not implemented
Theoretically it is possible to implement approximate matching
for the IPAM algorithm.
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Algorithm: IPAM
Context data types

All data types supported by IPAM

Cathegorical data utilised for prediction
IPAM considers typical context patterns for prediction
Numerical, fluctuating data will, however blow up the memory
requirement and decrease the prediction accuracy as exact
pattern matching is applied.
Trends are not considered
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Algorithm: IPAM
Pre-processing

Pre-processing required but low computational complexity

Algorithm designer has to specify all possible events/contexts

Computational complexity to initialise the prediction matrix:
O(k)
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Algorithm: IPAM
Conclusion

Low computational complexity

Low memory requirements

Cathegorical time series prediction

Prediction of typical patterns – no trends considered

Prediction history only of length 2 – Complex command
sequences can thus not be distinguished

All events known in advance: No adaptive operation when
also occuring contexts might change.

Not well suited for flexible, changing ubiquitous environments
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes

Non-numeric Contexts yes

Complexity O(k)

Learning ability (no)

Approximate matching no

Multi-dim. TS (no)

Discrete data yes

Variable length patterns no

Multi-type TS yes

Continuous data no

Pre-processing O(k)

Context durations no

Continuous time no
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Outline
Simple prediction approaches: ONISI and IPAM

1 Important aspects of context prediction algorithms

2 Exact sequence matching

3 Algorithm: IPAM

4 Algorithm: ONISI
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Algorithm: ONISI
Introduction and scenario

Scenario

The use of an unmodified application by a user shall be observed
in order to build application and usage-models

Observe user-interactions with the application interface3

From these observations a state-space is build which the user
navigates

Stochastic properties of state transitions are also modelled

Task: Observe a user and model its decision process

3
Peter Gorniak and David Poole, Predicting future user actions by observing unmodified applications. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence, pp. 217-222, 2000.
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Algorithm: ONISI
Introduction and scenario

Challenges when recent results are to be applied to new
application

Results often do not transfer easily
Implementation used in research uses modified application

Non-trivial to repeat modification
Time-consuming to repeat modification
increases application complexity.

Hand-crafted application models required

time consuming
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Algorithm: ONISI
Introduction and scenario

Approach

Extract knowledge from a user’s interaction with the application

No prior knowledge of the application

Purpose
Structure

No modification to the application

Predict future actions building on the usage-model extracted
from an application
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Algorithm: ONISI
Algorithmic approach

ONISI (ON-line Implicit State Identification)

Assign probabilities to all possible actions in the currently
observed interface state
Employs k nearest neighbours scheme

Metric: sequence match length

Java implementation

Wrapper to existing java applications
Able to record interfaces of java applications
No modification of application required
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Algorithm: ONISI
Algorithmic approach

State of a user

A state of a user consists of a combination of the user’s internal
state and the application’s interface state.

Attempt: Try to determine the policy the user is employing
from our observation of the user’s interaction history.
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Algorithm: ONISI
Algorithmic approach

Prediction: Search interaction history for behavioural patterns
similar to current pattern

Required:

Observed pattern to extract from the interaction history
Method to determine occurrence of pattern in history
Function that ranks possible actions
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Algorithm: ONISI
Algorithmic approach – Extraction of observed pattern

Length of patterns automatically varied

Longer patterns are deemed more important
Patterns are chosen to be longest sequences in histroy that
match immediate history

Measure 1: Length

Sequences that prediction action a are computed by lt(s, a)

Average of lenghts of k longest sequences that end with action a
in state s and match history sequence immediately prior to time t

Possible actions are ranked according to lt(s, a)
lt (s,a)P
i lt (s,ai )

Stephan Sigg Algorithms for context prediction in Ubiquitous Systems 78/94



Algorithm: ONISI
Algorithmic approach – Extraction of observed pattern

Length of patterns automatically varied

More frequent patterns are deemed more important

Measure 2: Frequency

Sequences that prediction action a are computed by ft(s, a)

Frequency at which a sequence is observed in history

Possible actions are ranked according to ft(s, a)
lt (s,a)P
i lt (s,ai )
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Algorithm: ONISI
Algorithmic operation

Compare immediate history with state-action pair (s, a)

Running backwards through recorded history
Find k longest sequences that match immediate history

Average length of sequences: lt(s, a)

Count number of times a has occurred: ft(s, a)

Return ranking

Rt(s, a) = α
lt(s, a)∑
i lt(s, ai )

+ (1− α)
f (s, a)∑
i f (s, ai )

(1)
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Algorithm: ONISI
Algorithmic operation

Assume:
α = 0.9
All actions provide a sum

∑
i lt(s, a) = 5

a3 has occured 50 times, s3 has been visited 100 times

Set of maximum length sequences: {2,1,0}

lt(s3, a3) =
0 + 1 + 2

3
= 1 (2)

Rt(s3, a3) = 0.9
1

5
+ 0.1

50

100
= 0.18 + 0.05 = 0.23 (3)
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Algorithm: ONISI
Results and figures – Performance at various parameter settings
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Algorithm: ONISI
Prediction accuracy – Performance
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Algorithm: ONISI
Prediction horizon

Prediction horizon can be extended by iterative prediction

Utilise predicted contexts as input

Problem: Less accurate

Predicted contexts more error prone than measured values
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Algorithm: ONISI
Adaptability

The ONISI is well adaptable to arbitrary java applications

It can learn new context sequences
Also, new events can be observed
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Algorithm: ONISI
Memory and processing load

Exercise ;-)
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Algorithm: ONISI
Multi-dimensional time series

The ONISI algorithm is not suited for multi-dimensional time
series

It was designed for one-dimensional nput
In scenarios with more than one context source the approach
is not feasible
Possible: Aggregation of multi-dimensional time series to
one-dimensional time series.
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Algorithm: ONISI
Iterative prediction

Iterative Prediction possible

Steep decrease in prediction accuracy expected since
prediction horizon is only 1
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Algorithm: ONISI
Prediction of context durations

Prediction of context duration not possible

Algorithm was designed to predict the occurrence of the next
event.
Event durations are not considered by the algorithm
Only simple sequence of occurring events possible
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Algorithm: ONISI
Approximate matching of patterns

Exact pattern matching

The ONISI algorithm utilises exact pattern matching
Approximate matching was not implemented
Theoretically it is possible to implement approximate matching
for the algorithm.
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Algorithm: ONISI
Context data types

Only cathegorical time series data supported by ONISI

ONISI considers typical context patterns for prediction
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Algorithm: ONISI
Pre-processing

No Pre-processing required

On-line approach
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Algorithm: ONISI
Conclusion

Low computational complexity (?)

Cathegorical time series prediction

Prediction of typical patterns

Prediction history or arbitrary length

Frequency and length of patterns considered

Not well suited for flexible, changing ubiquitous environments
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Aspects of prediction algorithms
Summary

IPAM ONISI Markov CRF

Numeric Contexts yes no

Non-numeric Contexts yes yes

Complexity O(k) ( )

Learning ability (no) yes

Approximate matching no no

Multi-dim. TS (no) (no)

Discrete data yes yes

Variable length patterns no yes

Multi-type TS yes no

Continuous data no no

Pre-processing O(k) –

Context durations no no

Continuous time no no
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