Algorithms for context prediction in Ubiquitous Systems

Introduction to probability theory

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

November 11, 2008

Stephan Sigg

Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- Algorithms
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approahces
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing

Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- Algorithms
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approahces
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing

Outline **Basics of probability theory**

Calculation with probabilities

Stephan Sigg

We are confronted with Probability constantly:

- Weather forecasts
- Quiz shows
- . . .

• What shall the candidate do?

- Alter his decision?
- Retain his decision?
- Does it make a difference?

- What shall the candidate do?
 - Alter his decision?
 - Retain his decision?
 - Does it make a difference?
- We will consider the solution to this Problem in some minutes

Outline

Calculation with probabilities

Stephan Sigg

Notation Experiments, Events and sample points

- The results of experiments or observations are called events.
- Events are sets of sample points.
- The sample space is the set of all posible events.

Stephan Sigg

Example Sample spaces

• Three distinct balls (a,b,c) are to be placed in three distinct bins.

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	abc			ab	ab	с		с		ac	ас	b	
2		abc		с		ab	ab		с	b		ac	ac
3			abc		с		с	ab	ab		b		b
14	15	16	17	18	19	20	21	22	23	24	25	26	27
b		bc	bc	а		а		а	а	b	b	с	с
	b	а		bc	bc		а	b	с	а	с	а	b
ac	ac		а		а	bc	bc	с	b	с	а	b	а

Example Sample spaces

• Suppose that the three balles are not distinguishable.

	Event	1	2	3	4	5	6	7	8	9	10
Bin											
1		***			**	**	*		*		*
2			***		*		**	**		*	*
3				***		*		*	**	**	*

Example Sample spaces

• Indistinguishable sample spaces and indistinguishable bins

Event	1	2	3
	***	**	*
		*	*
			*
	Event	Event 1 ***	Event 1 2

Impossible events

Impossible event

With $\chi = \{\}$ we denote the fact that event χ contains no sample points. It is impossible to observe event χ as an outcome of the experiment.

Stephan Sigg

Probability of events

Probability of events

Given a sample space Π and an event $\chi \in \Pi$, the occurence probability $P(\chi)$ of event χ is the sum probability of all sample points from χ :

$$P(\chi) = \sum_{x \in \chi} P(x).$$
(1)

Statistical independence

Independence

A collection of events χ_i that form the sample space Π is independent if for all subsets $S \subseteq \Pi$

$$P\left(\bigcap_{\chi_i\in S}\chi_i\right) = \prod_{\chi_i\in S}P(\chi_i).$$
 (2)

- Statistical independence is required for many useful results in probability theory.
- Be careful to apply such results not in cases where independence between sample points is not provided.

Outline

Calculation with probabilities

Stephan Sigg

Negation of events

For every event χ there is an event $\neg\chi$ that is defined as ' χ does not occur'.

Negation of events

The event consisting of all sample points x with $x \notin \chi$ is the complementary event (or negation) of χ and is denoted by $\neg \chi$.

Subsumming events

$$\chi_1 \cap \chi_2 = \{ x | x \in \chi_1 \land x \in \chi_2 \}$$
(3)

$$\chi_1 \cup \chi_2 = \{ x | x \in \chi_1 \lor x \in \chi_2 \}$$

$$(4)$$

Stephan Sigg

Algorithms for context prediction in Ubiquitous Systems

20/34

Mutual exclusive events

Mutual exclusive events

When the events χ_1 and χ_2 have no sample point x in common, the event $\chi_1 \cap \chi_2$ is impossible: $\chi_1 \cap \chi_2 = \{\}$. The events χ_1 and χ_2 are mutually exclusive.

Stephan Sigg

Combining probabilities

 To compute the probability P(χ₁ ∪ χ₂) that either χ₁ or χ₂ or both occur we add the occurence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

Combining probabilities

 To compute the probability P(χ₁ ∪ χ₂) that either χ₁ or χ₂ or both occur we add the occurence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

 The '≤'-relation is correct since sample points might be contained in both events:

$$P(\chi_1 \cup \chi_2) = P(\chi_1) + P(\chi_2) - P(\chi_1 \cap \chi_2).$$
 (6)

Stephan Sigg

Example Coin tosses

Question

What is the probability that in two toin cosses either head occurs first or tail occurs second ?

Stephan Sigg

Example Coin tosses

Events	coin tosses	probability		
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
head - tail	23	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - tail		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		

Example Coin tosses

Events	coin tosses	probability	sum probability	
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
head - tail		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - tail		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$	

Conditional probability

Conditional probability

The conditional probability of two events χ_1 and χ_2 with $P(\chi_2) > 0$ is denoted by $P(\chi_1|\chi_2)$ and is calculated by

$$\frac{P(\chi_1 \cap \chi_2)}{P(\chi_2)}$$

(7)

 $P(\chi_1|\chi_2)$ describes the probability that event χ_2 occurs in the presence of event χ_2 .

Example Conditional probability

With rewriting and some simple algebra we obtain the bayes rule:

Bayes Rule

$$P(\chi_1|\chi_2) = \frac{P(\chi_2|\chi_1) \cdot P(\chi_1)}{\sum_i P(\chi_2|\chi_i) \cdot P(\chi_i)}.$$
(8)

- This equation is useful in many statistical applications.
- With Bayes rule we can calculate P(χ₁|χ₂) provided that we know P(χ₂|χ₁) and P(χ₁).

Expectation

Expectation The expectation of an event χ is defined as $E[\chi] = \sum_{x \in \mathbb{R}} x \cdot P(\chi = x)$ (9)

Example Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

Example Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

• The expectation of this event is

$$E[\chi] = \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = 3.5$$
 (10)

Calculation with expectations

Linearity of expectation
For any two random variables
$$\chi_1$$
 and χ_2 ,
 $E[\chi_1 + \chi_2] = E[\chi_1] + E[\chi_2].$ (11)

Multiplying expectations For an independent random variables χ_1 and χ_2 ,

$$E[\chi_1 \cdot \chi_2] = E[\chi_1] \cdot E[\chi_2]. \tag{12}$$

Variance

Variance The variance of a random variable χ is defined as $var[\chi] = E[(\chi - E[\chi])^2].$ (13)

Calculation with variance

Add variances

For any independent random variables χ_1 and χ_2

$$var[\chi_1 + \chi_2] = var[\chi_1] + var[\chi_2].$$
 (14)

Multiplying variances

For any random variable χ and any $c \in \mathbb{R}$,

$$var[c\chi] = c^2 var[\chi].$$
(15)

