Abteilung Algorithmik Summer term 2018
Institut fiir Betriebssysteme und Rechnerverbund
TU Braunschweig

Prof. Dr. Sandor P. Fekete
Phillip Keldenich

Online Algorithms
2"d Homework Assignment, 7" of May 2018

Solutions are due Monday, the 28" of May
2018, until 1:15 PM in the homework cup-

board. You can also hand in your solu-
tion in person before the small tutorial
begins. If you cannot hand in the home-
(Al_rlijztm) al
—:I]I_

work in person, you can also hand it in
Due to the excursion week, you have more time than usual to hand in your solution.

via e-mail to both j.heroldt@tu-bs.de
and keldenich@ibr.cs.tu-bs.de. Please
clearly label your solutions using your name
and matriculation number.

3. Stock
/ Informatikzentrum

— LT

Exercise 1 (The List Update Problem I): In this exercise, we consider the LiST
UPDATE PROBLEM. Suppose that we are storing a set S = {s1,...,s,} of values as
unsorted linked list. Our input sequence consists of queries s; € S that ask us to find a
certain element in our list. In order to find an element, we iterate through the list starting
from the front and return the element once we find it. Because iterating through our list
takes time, we incur a cost of 1 for each element that we touch during the search. For
example, searching for 2 in the list [1, 2, 3] costs two units, and searching for 2 in [2, 1, 3]
costs just one unit.

After each query for an item s;, we are allowed to move the item s; to any point closer to
the front of the list; this exchange does not cost us anything. For example, if we search
for 2 in the list [1,4, 2, 3], we can change the list to [2, 1,4, 3], [1,2,4, 3] or [1,4,2, 3] after
finding 2 for a total cost of three units.

Our goal is to devise an online algorithm for this problem; after each request, the algo-
rithm has to decide where to move the requested item. Intuitively speaking, we want our
algorithm to maintain its list such that frequently requested elements are closer to the
front than less frequently requested elements.

a) After each request, the algorithm TRANSPOSE swaps the requested element with the
preceeding element in the list. For example, after searching 2 in the list [1,4, 2, 3],
the list becomes [1, 2,4, 3|; searching for 2 again results in the list [2, 1,4, 3]. Prove
that TRANSPOSE is not c-competitive for any constant c.

b) The algorithm FREQUENCYCOUNT maintains a frequency count for each element
that is incremented each time the element is requested. After each request, it moves

Page 1/ 2



the requested item such that the list is in nonincreasing order of frequency count.
Prove that FREQUENCYCOUNT is not c-competitive for any constant c.

(545 points)

Exercise 2 (The List Update Problem II: Move to Front): In this exercise,
we consider the MOVETOFRONT algorithm for the LisST UPDATE PROBLEM. After each
request s;, the algorithm moves the requested item s; to the front of the list. For example,
after searching for 2 in [1,4, 2, 3], the list becomes (2, 1,4, 3].

a) Prove that there is no constant ¢ < 2 such that MOVE T0O FRONT is c-competitive.
b) Prove that MOVE TO FRONT is 2-competitive.

Hint: Use the number of inversions in MOVE TO FRONT’s list w.r.t. OPT’s list
after request i as a potential function ¢(7). An inversion is a pair z,y of elements
such that = comes before y in MOVE TO FRONT’s list, but after y in OPT’s list.

In order to prove cyrr(i) + (i) — ¢(i — 1) < 2copr(i) for a request s;, consider the
number of items k that come before s; in both OPT’s and MOVE TO FRONT’s list
and the number of items ¢ that come before s; in MOVE TO FRONT’s list but after
s; in OPT’s list.

(10+17 points)

Exercise 3 (Directed Graph Exploration): In this exercise, we consider the problem
of exploring a strongly connected directed graph. Each vertex is labeled by a natural
number {1,...,n}. We do not know the incoming and outgoing edges of a vertex before
visiting it for the first time; each time we visit a vertex, we learn its outgoing edges. We
start at vertex 1 and initially know the outgoing edges of 1. The goal is to visit each
vertex at least once and return to the start by following the directed edges according to
their direction. Traversing each edge incurs a cost of 1.

a) Prove that no deterministic online algorithm has a competitive ratio better than
+1 1
T

b) Devise a strategy that has competitive ratio "TH — % and prove this upper bound.

(8415 points)

Page 2 / 2



