
Abteilung Algorithmik Summer term 2016
Institut für Betriebssysteme und Rechnerverbund
TU Braunschweig

Prof. Dr. Sándor P. Fekete
Phillip Keldenich

Online Algorithms

1st Homework Assignment, 27th of April, 2016

Solutions are due on Wednesday, the 11th of
May, 2016, until 11:30 in the homework cup-
board. You can also hand in your solution in
person before the small tutorial begins. Ex-
ternal students can hand in the homework
via e-mail to c.rieck@tu-bs.de.

Please make sure your homework sub-
missions are clearly labeled using your
name and/or matriculation number.

Luft
(Atrium)

3. Stock
Informatikzentrum

Exercise 1 (The Bahncard Problem I): In the big tutorial, we presented the Bahn-
card Problem and proved that no online algorithm can perform better than 2− β times
the cost of an optimal offline algorithm. Construct an optimal offline algorithm that, for
a given sequence σ consisting of n chronologically ordered ticket requests, produces an
optimal solution in O(n) time.

You may make use of the following two facts:

• The optimal offline algorithm never has to buy a Bahncard while it still owns one.

• The optimal offline algorithm never has to buy a Bahncard at a time point that is
not the time point of some ticket request.

(20 points)

Exercise 2 (The Bahncard Problem II): For the Bahncard problem, we presented
the online algorithm SUM and presented a theorem by which SUM is (2−β)-competitive.
Recall that a request is called a reduced request if SUM posseses a Bahncard for that
request and regular otherwise, and the break-even price c∗ is C

1−β . For every triple 0 <
β < 1, T > 0, C > 0 of positive real parameters construct a worst-case input sequence σ
of constant size that makes the ratio cSUM

copt
come arbitratily close to (2−β). (20 points)

Page 1 / 2



Input: Sequence σ =
(
(ti, ci)

)
1≤i≤n of travel requests, T , β, C

Output: γ =
(
γi
)
1≤i≤n ∈ {0, 1}

n, where γi = 1 means buying a BC at request i
if We already own a BC at request i then

Output γi = 0
else

if The cost of all regular requests in (ti − T, ti] is at least c∗ then
Output γi = 1

else
Output γi = 0

end if
end if

Algorithm 1: Online algorithm SUM for the Bahncard problem

Exercise 3 (Paging): In the paging problem, one has a cache that can contain up to
k pages, and a total of n ≥ k different pages. The input sequence σ consists of requests
for certain pages. In order to satisfy a request, the requested page must be brought into
the cache if it is not already present; this is called a fault and incurs a cost of 1. In this
case, a page that is currently in the cache must be evicted, i.e. removed from the cache to
make room for the requested page. An online algorithm for the paging problem is fully
defined by the strategy by which it chooses the page to be evicted.

Consider the following online algorithms on a paging problem with n = 5 pages and cache
size k = 4:

Least Recently Used (LRU) The algorithm LRU always evicts the cached page for
which the last request lies farthest in the past.

First In First Out (FIFO) The algorithm FIFO always evicts the oldest cached page,
i.e. the page that has been in the cache for the longest time.

Furthest in the future (OPT) The optimum offline algorithm OPT always evicts the
page for which the next request lies farthest in the future.

Perform the actions of each of the three algorithms, given an initial cache content (1, 2, 3, 4)
and request sequence (5, 1, 2, 3, 5, 4, 5, 2). If the page to be evicted is not unique according
to the strategy, always evict the page with the lowest page number. How many faults does
each of the strategies produce? For each step, indicate which pages are currently in the
cache. (20 points)

Page 2 / 2


