Fibonacci Heaps

Lecture slides adapted from:
* Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.

* Chapter 9 of The Design and Analysis of Algorithms by Dexter Kozen.

Priority Queues Performance Cost Summary

Operation Linked Binary Binomial Fibonacci Relaxed
P List Heap Heap Heap t Heap

make-heap

is-empty 1 1 I I
insert 1 log n log n 1
delete-min log n log n log n

delete log n log n log n
union 1 n log n I
find-min n] log n I
n = number of elements in priority queue t amortized

Theorem. Starting from empty Fibonacci heap, any sequence of
a, insert, a, delete-min, and a, decrease-key operations takes
O(a, + a, log n + a,) time.

Priority Queues Performance Cost Summary

Llnked Binary Binomial | Fibonacci | Relaxed

make-heap
is-empty 1
insert 1
delete-min n
decrease-key n
delete n
union |
find-min n

log n
log n
log n
log n
n

1

n = number of elements in priority queue

log n
log n
log n
log n
log n

log n

log n log n

log n log n
1]
]]

+ amortized

Hopeless challenge. O(1) insert, delete-min and decrease-key. Why?

Fibonacci Heaps

History. [Fredman and Tarjan, 1986]

. Ingenious data structure and analysis.

. Original motivation: improve Dijkstra's shortest path algorithm
from O(E log V) to O(E + Vlog V). AN

Vinsert, V delete-min, E decrease-key

Basic idea.
. Similar to binomial heaps, but less rigid structure.
. Binomial heap: eagerly consolidate trees after each insert.

T

. Fibonacci heap: lazily defer consolidation until next delete-min.

Fibonacci Heaps: Structure

. . each parent larger than its children
Fibonacci heap. _—

. Set of heap-ordered trees.
« Maintain pointer to minimum element.

« Set of marked nodes.

roots heap-ordered tree

Heap H

Fibonacci Heaps: Structure

Fibonacci heap.

. Maintain pointer to minimum element.

N

find-min takes O(1) time

Heap H

Fibonacci Heaps: Structure

Fibonacci heap.

. Set of marked nodes.

\

use to keep heaps flat (stay tuned)

Heap H

Fibonacci Heaps: Notation

Notation.

. N = number of nodes in heap.

. rank(x) = number of children of node x.

. rank(H) = max rank of any node in heap H.

. trees(H) = number of trees in heap H.

. marks(H) = number of marked nodes in heap H.

trees(H) =5 marks(H) = 3 n=14 rank = 3 min

Heap H

Fibonacci Heaps: Potential Function

®(H) = trees(H) + 2 - marks(H)

potential of heap H

trees(H) =5 marks(H) = 3 O®(H)=5+23=11 min

marked

Heap H

Insert

Fibonacci Heaps: Insert

Insert.
. Create a new singleton tree.

insert 21

Heap H

11

Fibonacci Heaps: Insert

Insert.

. Add to root list; update min pointer (if necessary).

insert 21

Heap H

12

Fibonacci Heaps: Insert Analysis

Actual cost. O(1) ®(H) = trees(H) + 2 - marks(H)

potential of heap H

Change in potential. +1

Amortized cost. O(1)

Heap H

13

Delete Min

14

Linking Operation

Linking operation. Make larger root be a child of smaller root.

larger root smaller root still heap-ordered

tree T, tree T,

(18 (4
© (49

tree T

15

Fibonacci Heaps: Delete Min

Delete min.
. Delete min; meld its children into root list; update min.

16

Fibonacci Heaps: Delete Min

Delete min.
. Delete min; meld its children into root list; update min.

(49

17

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

18

min

Delete min.

Fibonacci Heaps: Delete Min

. Consolidate trees so that no two roots have same rank.

N\

rank

0|1

2

current

i

(24

) (a6
35

@ |

40
49

19

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

O|1[2]3

min

current
AN N

G2)

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

O|1]2]3

min

@ 26 @ current

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

O[1]2]|3

current

link 23 into 17

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

O|1]2]|3

© O & (2 (@
/
Go) @ (s current (23 (44)

&

min

N\

link 17 into 7

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

0|1

2

current

link 24 into 7

24

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

current

25

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank
0|12
® °

current

26

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

current

27

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

current

\
O
@

link 41 into 18

28

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

current

29

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same rank.

rank

O|1]12]3

current

Fibonacci Heaps: Delete Min

Delete min.

« Consolidate trees so that no two roots have same rank.

stop

31

Fibonacci Heaps: Delete Min Analysis

Delete min. ®(H) = trees(H) + 2 - marks(H)

potential function

Actual cost. O(rank(H)) + O(trees(H))
« O(rank(H)) to meld min's children into root list.

« O(rank(H)) + O(trees(H)) to update min.
« O(rank(H)) + O(trees(H)) to consolidate trees.

Change in potential. O(rank(H)) - trees(H)
. trees(H') = rank(H) + 1 since no two trees have same rank.

« AD(H) < rank(H) + 1 - trees(H).

Amortized cost. O(rank(H))

32

Fibonacci Heaps: Delete Min Analysis

Q. Is amortized cost of O(rank(H)) good?

A. Yes, if only insert and delete-min operations.
. In this case, all trees are binomial trees.
. This implies rank(H) < Ig n.

we only link trees of equal rank

A. Yes, we'll implement decrease-key so that rank(H) = O(log n).

33

Decrease Key

34

Fibonacci Heaps: Decrease Key

Intuition for deceasing the key of node x.

. If heap-order is not violated, just decrease the key of x.

. Otherwise, cut tree rooted at x and meld into root list.

. T0 keep trees flat: as soon as a node has its second child cut,
cut it off and meld into root list (and unmark it).

marked node:
one child already cut

35

Fibonacci Heaps: Decrease Key

Case 1. [heap order not violated]
. Decrease key of x.

decrease-key of x from 46 to 29

36

Fibonacci Heaps: Decrease Key

Case 1. [heap order not violated]

. Change heap min pointer (if necessary).

38)
24 (7 @) @ &)

decrease-key of x from 46 to 29

37

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]
. Decrease key of x.

decrease-key of x from 29 to 15

38

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

. Cut tree rooted at x, meld into root list, and unmark.

E—®

decrease-key of x from 29 to 15

39

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

. Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 29 to 15

40

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

. If parent p of xis unmarked (hasn't yet lost a child), mark it;

decrease-key of x from 29 to 15

4]

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]
. Decrease key of x.

OaNt)

decrease-key of x from 35to 5

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

. Cut tree rooted at x, meld into root list, and unmark.

Ot

decrease-key of x from 35to 5

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

. Cut tree rooted at x, meld into root list, and unmark.

O

decrease-key of x from 35to 5

44

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

decrease-key of x from 35to 5

45

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

mi”\ x p
5 5 G 38)
72 88 @

decrease-key of x from 35 to 5

46

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

min
\ X P

B G @

5 ®-

second child cut

decrease-key of x from 35to 5

47

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

x p pl pll

@ don't mark
parent if

it's a root

decrease-key of x from 35to 5

48

Fibonacci Heaps: Decrease Key Analysis

Decrease-key. ®(H) = trees(H) + 2 - marks(H)

potential function

Actual cost. O(¢)
. O(1) time for changing the key.
. O(1) time for each of ¢ cuts, plus melding into root list.

Change in potential. O(1) - ¢
. trees(H') = trees(H) + c.
« marks(H') = marks(H) - ¢ + 2.
« AD sc + 2-(c+2) = 4-c

Amortized cost. O(1)

49

Analysis

50

Analysis Summary

Insert. O(1)
Delete-min. O(rank(H)) t
Decrease-key. O(1)1

1+ amortized

Key lemma. rank(H) = O(log n).
AN

number of nodes is exponential in rank

51

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y,, ..., ¥, denote
its children in the order in which they were linked to x. Then:

0 if i=1
rank &) = {i-Z if i=1
Pf.
. When y; was linked into x, x had at least i-1 children y,, ..., y.,.

. Since only trees of equal rank are linked, at that time
rank(y) = rank(x;)) = i- 1.

. Since then, y; has lost at most one child.

. Thus, right now rank(y) = i-2. =« \

or y; would have been cut

52

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y,, ..., y, denote
its children in the order in which they were linked to x. Then:

0 if i=1

i-2 ifi=1 >/ \(

Def. Let F, be smallest possible tree of rank k satisfying property.

rank (y;) = {

Fo Fy F,

by A

| 2 3 5 8

53

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y,, ..., y, denote
its children in the order in which they were linked to x. Then:

(0
&

Def. Let F, be smallest possible tree of rank k satisfying property.

8 13 8+ 13=21

0 if i=1

kO,
o (y‘)z{i-z if iz1

54

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y,, ..., y, denote
its children in the order in which they were linked to x. Then:

0 if i=1

nk (,
" (y')z{i-z if i1

Def. Let F, be smallest possible tree of rank k satisfying property.

Fibonacci fact. F, = ¢k, where¢p = (1 +V5)/2 = 1.618.

\

Corollary. rank(H) = Iog¢ n. golden ratio

55

Fibonacci Numbers

56

Fibonacci Numbers: Exponential Growth

Def. The Fibonacci sequenceis: 1, 2, 3,5, 8, 13, 21, ...

1 if k=0
Fk =42 if k=1 slightly non-standard definition
| F,+F,, if k=2

Lemma. F, = ¢k wherep = (1 +V5)/2~1.618.

Pf. [by induction on k]
. Basecases: Fp=1=1, F,=2 = ¢.
. Inductive hypotheses: F, = ¢k and F,, = ¢k+!

F.,, = F, +F, (definition)
= ¢k - ¢k+l (inductive hypothesis)
= ¢k 1+9) (algebra)
= 9" ©@") @*=0+1)

k+2
= ¢ " (algebra)

57

pinecone

Fibonacci Numbers and Nature

cauliflower

58

Union

59

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Heap H' @ Heap H"

60

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

& o @
0 @ (s
35)

min

&

61

Actual cost. O(1)

Change in potential. 0

Amortized cost. O(1)

Fibonacci Heaps: Union

®(H) = trees(H) + 2 - marks(H)

potential function

Heap H

62

Delete

63

Fibonacci Heaps:

Delete node x.
. decrease-key of x to -c.

. delete-min element in heap.

Amortized cost. O(rank(H))
« O(1) amortized for decrease-key.
« O(rank(H)) amortized for delete-min.

Delete

®(H) = trees(H) + 2 - marks(H)

potential function

64

On Complicated Algorithms

"Once you succeed in writing the programs for [thesel complicated
algorithms, they usually run extremely fast. The computer doesn’t
need to understand the algorithm, its task is only to run the

programs.”

R. E. Tarjan

