Fibonacci Heaps

Lecture slides adapted from:

- Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.
- Chapter 9 of The Design and Analysis of Algorithms by Dexter Kozen.

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	n	log n	log n	log n	log n
decrease-key	n	log n	log n	1	1
delete	n	log n	log n	log n	log n
union	1	n	log n	1	1
find-min	n	1	log n	1	1

n = number of elements in priority queue

† amortized

Theorem. Starting from empty Fibonacci heap, any sequence of a_1 insert, a_2 delete-min, and a_3 decrease-key operations takes $O(a_1 + a_2 \log n + a_3)$ time.

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	n	log n	log n	log n	log n
decrease-key	n	log n	log n	1	1
delete	n	log n	log n	log n	log n
union	1	n	log n	1	1
find-min	n	1	log n	1	1

n = number of elements in priority queue

† amortized

Hopeless challenge. O(1) insert, delete-min and decrease-key. Why?

Fibonacci Heaps

History. [Fredman and Tarjan, 1986]

- Ingenious data structure and analysis.
- Original motivation: improve Dijkstra's shortest path algorithm from $O(E \log V)$ to $O(E + V \log V)$.

 Vinsert, V delete-min, E decrease-key

Basic idea.

- Similar to binomial heaps, but less rigid structure.
- Binomial heap: eagerly consolidate trees after each insert.

• Fibonacci heap: lazily defer consolidation until next delete-min.

Fibonacci Heaps: Structure

Fibonacci heap.

each parent larger than its children

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.
 find-min takes O(1) time

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

use to keep heaps flat (stay tuned)

Fibonacci Heaps: Notation

Notation.

- n = number of nodes in heap.
- rank(x) = number of children of node x.
- rank(H) = max rank of any node in heap H.
- trees(H) = number of trees in heap H.
- marks(H) = number of marked nodes in heap H.

Fibonacci Heaps: Potential Function

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential of heap H

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

insert 21

Fibonacci Heaps: Insert Analysis

Actual cost. O(1)

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

Change in potential. +1

potential of heap H

Amortized cost. O(1)

Delete Min

Linking Operation

Linking operation. Make larger root be a child of smaller root.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 23 into 17

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 17 into 7

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 24 into 7

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min Analysis

Delete min.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Actual cost. O(rank(H)) + O(trees(H))

- O(rank(H)) to meld min's children into root list.
- O(rank(H)) + O(trees(H)) to update min.
- O(rank(H)) + O(trees(H)) to consolidate trees.

Change in potential. O(rank(H)) - trees(H)

- trees(H') ≤ rank(H) + 1 since no two trees have same rank.
- $\Delta\Phi(H) \leq rank(H) + 1 trees(H)$.

Amortized cost. O(rank(H))

Fibonacci Heaps: Delete Min Analysis

- Q. Is amortized cost of O(rank(H)) good?
- A. Yes, if only insert and delete-min operations.
 - In this case, all trees are binomial trees.
 - This implies $rank(H) \le \lg n$.

A. Yes, we'll implement decrease-key so that $rank(H) = O(\log n)$.

Decrease Key

Fibonacci Heaps: Decrease Key

Intuition for deceasing the key of node x.

- If heap-order is not violated, just decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- To keep trees flat: as soon as a node has its second child cut, cut it off and meld into root list (and unmark it).

Fibonacci Heaps: Decrease Key

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key Analysis

Decrease-key.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Actual cost. O(c)

- O(1) time for changing the key.
- O(1) time for each of c cuts, plus melding into root list.

Change in potential. O(1) - c

- trees(H') = trees(H) + c.
- $marks(H') \leq marks(H) c + 2$.
- $\Delta\Phi \leq c + 2 \cdot (-c+2) = 4 c.$

Amortized cost. O(1)

Analysis

Analysis Summary

```
Insert. O(1)
```

Delete-min. O(rank(H)) †

Decrease-key. O(1) †

† amortized

Key lemma. $rank(H) = O(\log n)$.

number of nodes is exponential in rank

Lemma. Fix a point in time. Let x be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to x. Then:

$$rank (y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i \ge 1 \end{cases}$$

Pf.

- When y_i was linked into x, x had at least i-1 children y_1 , ..., y_{i-1} .
- Since only trees of equal rank are linked, at that time $rank(y_i) = rank(x_i) \ge i 1$.
- Since then, y_i has lost at most one child.
- Thus, right now $rank(y_i) \ge i 2$. $rank(y_i) \ge i 2$. $rank(y_i) \ge i 2$.

Lemma. Fix a point in time. Let x be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to x. Then:

$$rank (y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i \ge 1 \end{cases}$$

Def. Let F_k be smallest possible tree of rank k satisfying property.

Lemma. Fix a point in time. Let x be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to x. Then:

$$rank (y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i \ge 1 \end{cases}$$

Def. Let F_k be smallest possible tree of rank k satisfying property.

Lemma. Fix a point in time. Let x be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to x. Then:

$$rank (y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i \ge 1 \end{cases}$$

Def. Let F_k be smallest possible tree of rank k satisfying property.

Fibonacci fact.
$$F_k \ge \phi^k$$
, where $\phi = (1 + \sqrt{5}) / 2 \approx 1.618$.

Corollary.
$$rank(H) \leq \log_{\phi} n$$
. golden ratio

Fibonacci Numbers

Fibonacci Numbers: Exponential Growth

Def. The Fibonacci sequence is: 1, 2, 3, 5, 8, 13, 21, ...

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \geq 2 \end{cases}$$
 slightly non-standard definition

Lemma. $F_k \ge \phi^k$, where $\phi = (1 + \sqrt{5}) / 2 \approx 1.618$.

Pf. [by induction on k]

- Base cases: $F_0 = 1 \ge 1$, $F_1 = 2 \ge \phi$.
- Inductive hypotheses: $F_k \ge \phi^k$ and $F_{k+1} \ge \phi^{k+1}$

$$F_{k+2}$$
 = F_k + F_{k+1} (definition)
 $\geq \phi^k + \phi^{k+1}$ (inductive hypothesis)
= $\phi^k (1 + \phi)$ (algebra)
= $\phi^k (\phi^2)$ ($\phi^2 = \phi + 1$)
= ϕ^{k+2} (algebra)

Fibonacci Numbers and Nature

pinecone

cauliflower

Union

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Actual cost. O(1)

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

Change in potential. 0

potential function

Amortized cost. O(1)

Delete

Fibonacci Heaps: Delete

Delete node x.

- decrease-key of x to $-\infty$.
- delete-min element in heap.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Amortized cost. O(rank(H))

- O(1) amortized for decrease-key.
- O(rank(H)) amortized for delete-min.

On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated algorithms, they usually run extremely fast. The computer doesn't need to understand the algorithm, its task is only to run the programs."

R. E. Tarjan