Algorithms Group
 Departement of Computer Science - IBR
 TU Braunschweig

Michael Hemmer

Geometric Algorithms
 Exercise 1
 April 23, 2015

This sheet is comprised of several exercise. The solutions should be handed in by Thursday April 30 until 19:00pm. This can be done by placing them in the appropriate box of the exercise locker, see floor plan on the right.
In order to achieve the "Studienleistung", you must achieve 50% of the points over all exercise sheets
 and you must have presented at least two exercises until the end of the term. Please mark those exercises that you would like to present during the tutorial.

Exercise T1 (Doubly Connected Edge List):

a) Consider the picture above and give a call sequence to reach:

- v_{3} from e_{1}
- e_{4} from e_{1}
- f_{1} from e_{4}
- f_{1} from f_{3}
- f_{0} from e_{1}

For instance, we can reach v_{3} from e_{2} by:

$$
v_{3}=e_{2} \cdot n e x t() \cdot \operatorname{source}()
$$

b) Given the DCEL above. How could one easily identify low dimensional features, that is, e_{3} and e_{4} ?
(3 P.)
c) Give an example of a DCEL where e.face() $==$ e.twin().face() for some edge e.

Exercise T2 (DCEL):

a) Give a general function to iterate over all faces starting from the infinite face f_{0}.
b) Give an algorithm that lists all neighbors of a given vertex v.

For an advanced implementation of the interface you may want to have a look at: http://doc.cgal.org/latest/Arrangement_on_surface_2/classCGAL_1_1Arrangement_-2.html

Exercise T3 (Euler's Formula):

Let $G=(V, E)$ be a simple, connected, planar graph and let F be the set of all faces of G.
a) Prove Euler's Formula:

$$
\begin{equation*}
|V|-|E|+|F|=2 \tag{15P.}
\end{equation*}
$$

b) Prove that for $|V| \geq 3$ the following inequality holds:

$$
|E| \leq 3|V|-6
$$

(10 P.)

