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Talk of Kurt Mehlhorn:

Classroom Examples
of Robustness Problems

in Geometric Computations
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Recall Motivation

Geometric algorithms are a mix of

I Numerical computation
(Point coordinates, distances, ...)

I Combinatorial techniques
(Convex hull, Delaunay Triangulation, ...)

⇒ Small numerical errors can lead to:
Inconsistencies, infinite loops, crashes ...
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Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:
I Exact evaluation of geometric predicates

- functions computing discrete results from numerical input
- Orientation, Compare xy, ...

I Enforces exactness of geometric constructions
- Intersection, Projection, ...
- If there are any !

[C. Yap, T. Dubé, 1995]
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Michael Hemmer Exact Arithmetic and Filtering



Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:
I Exact evaluation of geometric predicates

- functions computing discrete results from numerical input
- Orientation, Compare xy, ...

I Enforces exactness of geometric constructions
- Intersection, Projection, ...
- If there are any !

[C. Yap, T. Dubé, 1995]
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The Easy Solution

Use exact multi-precision arithmetic
I integers, rational (e.g. GMP, CORE, LEDA)
I even algebraic numbers (e.g. CORE, LEDA)
I exact up to memory limit

Disadvantage: TOO SLOW

No solution for transcendental numbers!
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Find the Balance !

Requirements of the Real RAM model:
I arithmetic operations in constant time
I exact computation over the reals

The naive solutions:
I constant time floating point arithmetic that fails
I exact multi precision arithmetic that is too slow
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The Answer are Filters

General filter scheme:
I try to compute a certified result fast (usually constant time)
I if certification fails may try another filter
I if nothing helps, use exact arithmetic

The hope:
I require only constant time for easy instances
I amortize cost for hard cases that use exact arithmetic
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General Idea

General idea for filtered predicate:
I For expression E compute approximation Ẽ and bound B,

such that |E − Ẽ | 6 B or equivalently:

E ∈ I = [Ẽ − B, Ẽ + B]

I If 0 ∈ I report failure, else return sign(Ẽ).
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Recall: Floating Point Arithmetic

I A double float f uses 64 bits
- 1 bit for the sign s
- 52 bits for the mantissa m = m1 . . .m52
- 11 bits for the exponent e = e1 . . . e11

I f = −1s · (1 +
∑

16i652 mi2−i) · 2e−2013, if 0 < e < 211 − 1
. . .

I for a ∈ R, let fl(a) be the closest float to a
for a ∈ Z: |a− fl(a)| 6 ε|fl(a)|, where ε = 2−53

for o ∈ {+,−,×}: |f1of2 − f1õf2| 6 ε|f1õf2|
I floating point arithmetic is monotone

e.g.: b 6 c ⇒ a⊕ b 6 a⊕ c
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Computing B

For expression E define dE and mesE recursively:

E Ẽ mesE dE

a, float fl(a) |fl(a)| 0
a ∈ Z fl(a) |fl(a)| 1
X + Y X̃ ⊕ Ỹ |X̃ | ⊕ |Ỹ | 1 + max(dX ,dY )

X − Y X̃ 	 Ỹ |X̃ | ⊕ |Ỹ | 1 + max(dX ,dY )

X × Y X̃ ⊗ Ỹ |X̃ | ⊗ |Ỹ | 1 + dX + dY

Then B is defined as follows:

|E − Ẽ | 6 B = ((1 + ε)dE − 1) ·mesE

[K. Mehlhorn, S.Näher; LEDA BOOK]
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Proof

I Monotonicity of floats always guarantees: Ẽ 6 mesE

I First two rows are trivial
I Lets proof invariant for addition

|Ẽ − E | = |(X̃ ⊕ Ỹ )− (X + Y )|

6 |(X̃ ⊕ Ỹ )− (X̃ + Ỹ )|+ |X − X̃ |+ |Y − Ỹ |
6 ε ·mesE + |X − X̃ |+ |Y − Ỹ |
6 ε ·mesE + ((1 + ε)dX − 1)mesX + ((1 + ε)dY − 1)mesY

6 ε ·mesE + ((1 + ε)max(dX ,dY ) − 1) ·mesE

6 ((1 + ε)1+max(dX ,dY ) − 1) ·mesE = B
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I First two rows are trivial
I Lets proof invariant for addition
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Remark

In practice, one replaces

B = ((1 + ε)dE − 1) ·mesE

with

B = (ε · dE ) ·mesE ,

as

((1 + ε)dE − 1) 6 ε · dE , for dE <
√

1/ε.
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Static and Semi-Static Filter

Static Filter:
I compute B once for all

⇒ very fast
I requires an assumption on the range of the input
I for many calls this assumption may be too large

Almost-static filter:
I initialize B based on optimistic assumption
I adjust B if necessary

Semi-static Filter:
I compute B depending on the input of each call
I still fast, since it essentially only doubles the costs
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Combine Static and Semi-Static Filter

I Compute Ẽ

I try to certify using almost-static B
I otherwise compute semi-static B′ and try to certify

Disadvantage: Still considerable overestimation of error
Idea: Observe concrete error while computing Ẽ
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Interval Arithmetic

For operands x = [x , x ] and y = [y , y ] set:

[x ] + [y ] := [x + y , x + y ]

[x ]− [y ] := [x − y , x − y ]

[x ] · [y ] := [min{xy , xy , xy , xy},max{xy , xy , xy , xy}]
[x ]/[y ] := x · [1/y ,1/y ] if 0 6∈ [y ]

[x ]1/2 := [x1/2, x1/2] if 0 6 [x ]

Round in proper directions for floating point interval arithmetic

⇒ Inclusion Property
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Dynamic Filter

I compute Ẽ = [E ] using floating point interval arithmetic
I result is certified if 0 6∈ [E ]

I disadvantage: a bit slower than semi static filter
I advantage: better control of the error⇒ less filter failures

Remark: It is possible to avoid changes in rounding mode
4,5, e.g.: [x ] + [y ] := [−4 (−x − y),4(x + y)]
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Filter Summary

Three main types:

(almost) static filter B is pre-computed
as fast as floating point arithmetic
very low accuracy

semi-static filter B depends on input of each call
2 times slower than floating point
still low accuracy

dynamic filter compute Ẽ = [E ] with interval arithmetic
3-8 times slower than floating point
high accuracy

Michael Hemmer Exact Arithmetic and Filtering



What about cascaded geometric constructions ?

orientation 3(a,m,b)?
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Delayed / Lazy Constructions

Lazy Number Type
I always compute an interval
I also store history in a DAG∗

I ⇒ can compute exact if needed
∗DAG = Directed Acyclic Graph

+ : adaptive
- : time lost in DAG management
- : high memory consumption
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Lazy Kernel

I DAG nodes for constructions
I DAG nodes for predicates

+ reduce management cost
+ reduce memory consumption
+ reduce rounding mode

changes
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(Simplified) Overview CGAL Kernel

I CGAL::Cartesian<double> : fast but not exact
I CGAL::Cartesian< Q > : exact but slow
I CGAL::Filtered kernel< K >

- uses constructions of kernel K
- dynamic filter for all predicates
- semi-static filter for some predicates
- predicates are exact

Predefined kernels:
I Exact predicates inexact constructions kernel

= Filtered kernel< Cartesian<double>>
I Exact predicates exact constructions kernel
' Lazy exact kernel< Cartesian< Q >>
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Exact Expression Evaluation
using Separation Bounds

LEDA::real and CORE::Expr

Allow:
I addition, substraction, mulitplication
I division
I k-th root
I algebraic numbers
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Recall Lazy Evaluation

Lazy Number Type
I compute double interval first
I also store history in a DAG∗

⇒ can compute exact if needed
∗DAG = Directed Acyclic Graph

+ : adaptive
- : time lost in DAG management
- : high memory consumption
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Possible Variant:

Use multi-precision floating point intervals
I try with doubles first
I otherwise try with more precision if needed
I and so on ...

I .. an expression that is zero leads to an infinite loop !

Simple solution:

I just stop at some high precision
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Can we do better ?

Suppose the expression is just made of:
I integers (in the leaves of the DAG)
I operations: {+,-,*}
I Example: E = 23 · 60 · 234 + 634 · 234 · 12− 87633 · 24

Yes we can !
I The value of E must be an integer (val(E) ∈ Z)
⇒ Compute interval I with increasing precision until:

I 0 6∈ I: return sign(I);
I I ∩ Z = {0}: return 0;
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Can we do better ?

Suppose the expression is just made of:
I integers (in the leaves of the DAG)
I operations: {+,-,*}
I Example: E = 23 · 60 · 234 + 634 · 234 · 12− 87633 · 24

Or in other words:
I 0 is separated from all other possible values by 1,

the separation bound of E, sep(E) = 1
I The process stops once the width of I is less than 1,

∆(I) < 1 = sep(E)
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Extend set of operations by k
√
·

Definition
An algebraic integer is a root of a polynomial with integer
coefficients and leading coefficient one.

It follows that this is also the case for its minimal polynomial.
Example: X 2 − 2 = (X −

√
2)(X +

√
2) or X k − a

Remark I: An integer is an algebraic integer.
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Remark II: Algebraic integers are closed under op ∈ {+,−, ∗}

For algebraic integers α and β consider the minimal
polynomials:

I PA(X ) = X n +
∏n−1

i=0 aiX i =
∏n

i=1(X − αi) ∈ Z[X ]

I PB(X ) = X m +
∏m−1

j=0 bjX i =
∏m

j=1(X − βj) ∈ Z[X ],

where α is a root of PA(X ) and β is a root of PB(X ).
The result of α op β, with op ∈ {+,−, ∗} is the root of

PA op B(X ) =
n∏

i=1

m∏
j=1

(X − (αi op βj)) ∈ Z[X ],

which is a monic polynomial of degree n ·m.

(*) The αi are the algebraic conjugates of α.
(**) The degree of PA(X ) is the algebraic degree of α.
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Lemma
Let α be an algebraic integer and let deg(α) be its algebraic
degree. If U > 0 is an upper bound on the absolute values of all
algebraic conjugates of α, then

|α| > 1/Udeg(α)−1.

Proof.
Consider the minimal polynomial Pα =

∏n
i=1(X − αi) ∈ Z[X ].

The constant coefficient is
∏n

i=1 αi which is at least one, since it
is in Z.
⇒ |α| · Udeg(α)−1 > 1
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We obtain algebraic integers by expressions that are made of:
I integers (in the leaves of the DAG)
I operations: {+,-,*, k

√
·}

An upper bound on the
I algebraic degree D(E) is the product of all occurring k .
I the bound U(E) on absolute value of the algebraic

conjugates is given by the following recursive table:

E U(E) D(E)
n ∈ Z |n| 1
X ± Y U(X ) + U(Y ) D(X ) · D(Y )
X · Y U(X ) · U(Y ) D(X ) · D(Y )

k
√

X k
√

U(X ) k · D(x)

If Ẽ < 1/U(E)D(E)−1 ⇒ E = 0
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Introducing devisions

Devision destroys algebraic integer property !
⇒ Treat numerator and denominator separately

An

Ad
± Bn

Bd
⇒ AnBd ± BnAd

AdBd
, . . . , k

√
An

Ad
⇒

k
√

AnAk−1
d

Ad

we obtain the following table:

E Un(E) Ud (E)

n ∈ Z |n| 1
X ± Y Un(X )Ud (Y ) + Un(Y )Ud (X ) Ud (X )Ud (Y )
X · Y Un(X ) · Un(Y ) Ud (X ) · Ud (Y )
X/Y Un(X ) · Ud (Y ) Ud (X ) · Un(Y )

k
√

X k
√

Un(X )Uk−1
d Ud (X )

If |Ẽ | · Ud (E) < 1/Un(E)D(E)−1 ⇒ E = 0
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Final Remarks

I leda::real and CORE::Expr are essentially the same
I both also allow to define a value as the root of a polynomial

Advantages & Disadvantages
+ : Allow cascaded constructions
+ : Lazy evaluation
- : time lost in DAG management
- : high memory consumption

General guidelines:
I never use them as your main type
I try to produce balanced expressions
I try to simplify expressions
I do you really need to use

√
· ?

I avoid unnecessary test against zero
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