Geometric Algorithms

Exact Arithmetic, Filtering and Delayed Constructions

Michael Hemmer

TU Braunschweig

2014, Braunschweig

Michael Hemmer Exact Arithmetic and Filtering

(B) < (B)</p>

Outline

- Motivate Exact Computing
- Filtered Predicates
- Lazy Constructions
- CGAL Kernels

Classroom Examples ESA'04

→ ∃ →

크

Talk of Kurt Mehlhorn:

Classroom Examples of Robustness Problems in Geometric Computations

3 1 4 3 1

Recall Motivation

Geometric algorithms are a mix of

- Numerical computation (Point coordinates, distances, ...)
- Combinatorial techniques (Convex hull, Delaunay Triangulation, ...)
- \Rightarrow Small numerical errors can lead to: Inconsistencies, infinite loops, crashes ...

크

Exact Geometric-Computation Paradigm

Michael Hemmer Exact Arithmetic and Filtering

★ E ► ★ E ► E

- 170

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
 - functions computing discrete results from numerical input
 - Orientation, Compare_xy, ...

A B + A B +

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
 - functions computing discrete results from numerical input
 - Orientation, Compare_xy, ...
- Enforces exactness of geometric constructions
 - Intersection, Projection, ...
 - If there are any !

[C. Yap, T. Dubé, 1995]

< □→ < □→ < □→ = □

The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW

個 とく ヨ とく ヨ とう

르

The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW

No solution for transcendental numbers!

Find the Balance !

Requirements of the Real RAM model:

- arithmetic operations in constant time
- exact computation over the reals

The naive solutions:

- constant time floating point arithmetic that fails
- exact multi precision arithmetic that is too slow

크

The Answer are Filters

General filter scheme:

- try to compute a certified result fast (usually constant time)
- if certification fails may try another filter
- if nothing helps, use exact arithmetic

The hope:

- require only constant time for easy instances
- amortize cost for hard cases that use exact arithmetic

□ ▶ ★ □ ▶ ★ □ ▶ ● □

General Idea

General idea for filtered predicate:

For expression E compute approximation Ẽ and bound B, such that |E − Ẽ| ≤ B or equivalently:

$$E \in I = [\tilde{E} - B, \tilde{E} + B]$$

▶ If $0 \in I$ report *failure*, else return $sign(\tilde{E})$.

★ □ + ★ □ + □ □

Recall: Floating Point Arithmetic

- A double float f uses 64 bits
 - 1 bit for the sign s
 - 52 bits for the mantissa $m = m_1 \dots m_{52}$
 - 11 bits for the exponent $e = e_1 \dots e_{11}$

►
$$f = -1^s \cdot (1 + \sum_{1 \leq i \leq 52} m_i 2^{-i}) \cdot 2^{e-2013}$$
, if $0 < e < 2^{11} - 1$...

- ▶ for $a \in \mathbb{R}$, let fl(a) be the closest float to afor $a \in \mathbb{Z}$: $|a - fl(a)| \leq \varepsilon |fl(a)|$, where $\varepsilon = 2^{-53}$ for $o \in \{+, -, \times\}$: $|f_1 o f_2 - f_1 \tilde{o} f_2| \leq \varepsilon |f_1 \tilde{o} f_2|$
- floating point arithmetic is monotone
 e.g.: b ≤ c ⇒ a ⊕ b ≤ a ⊕ c

Computing B

For expression *E* define d_E and mes_E recursively:

E	Ĩ	mes _E	d _E
a, float	fl(a)	fl(a)	0
$a \in \mathbb{Z}$	fl(a)	<i>fl</i> (<i>a</i>)	1
X + Y	$ ilde{X} \oplus ilde{Y}$	$ ilde{X} \oplus ilde{Y} $	$1 + \max(d_X, d_Y)$
X - Y	$ ilde{X} \ominus ilde{Y}$	$ ilde{X} \oplus ilde{Y} $	$1 + \max(d_X, d_Y)$
$X \times Y$	$ ilde{X}\otimes ilde{Y}$	$ ilde{X} \otimes ilde{Y} $	$1 + d_X + d_Y$

Then B is defined as follows:

$$|E - \tilde{E}| \leqslant B = ((1 + \varepsilon)^{d_E} - 1) \cdot mes_E$$

[K. Mehlhorn, S.Näher; LEDA BOOK]

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$| ilde{E} - E| = |(ilde{X} \oplus ilde{Y}) - (X + Y)|$$

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$egin{array}{rcl} | ilde{E}-E|&=&|(ilde{X}\oplus ilde{Y})-(X+Y)|\ &\leqslant&|(ilde{X}\oplus ilde{Y})-(ilde{X}+ ilde{Y})|+|X- ilde{X}|+|Y- ilde{Y}| \end{array}$$

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$\begin{aligned} |\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\ &\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \end{aligned}$$

- ► Monotonicity of floats always guarantees: *E* ≤ mes_E
- First two rows are trivial
- Lets proof invariant for addition

$$\begin{split} |\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\ &\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{d_X} - 1)mes_X + ((1 + \varepsilon)^{d_Y} - 1)mes_Y \end{split}$$

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$\begin{split} |\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\ &\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{d_X} - 1)mes_X + ((1 + \varepsilon)^{d_Y} - 1)mes_Y \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{max(d_X, d_Y)} - 1) \cdot mes_E \end{split}$$

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$\begin{split} |\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\ &\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{d_X} - 1)mes_X + ((1 + \varepsilon)^{d_Y} - 1)mes_Y \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{max(d_X, d_Y)} - 1) \cdot mes_E \\ &\leq ((1 + \varepsilon)^{1 + max(d_X, d_Y)} - 1) \cdot mes_E = B \end{split}$$

- ► Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Lets proof invariant for addition

$$\begin{split} |\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\ &\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{d_X} - 1)mes_X + ((1 + \varepsilon)^{d_Y} - 1)mes_Y \\ &\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{max(d_X, d_Y)} - 1) \cdot mes_E \\ &\leq ((1 + \varepsilon)^{1 + max(d_X, d_Y)} - 1) \cdot mes_E = B \end{split}$$

Remark

In practice, one replaces

$$B = ((1 + \varepsilon)^{d_E} - 1) \cdot mes_E$$

with

$$B = (\varepsilon \cdot d_E) \cdot mes_E,$$

as

$$((1 + \varepsilon)^{d_E} - 1) \leqslant \varepsilon \cdot d_E$$
, for $d_E < \sqrt{1/\varepsilon}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Static Filter:

compute B once for all

▲□→ ▲ 回→ ▲ 回→ ……

3

Static Filter:

• compute *B* once for all \Rightarrow very fast

▲帰▶ ▲ 国▶ ▲ 国▶

2

Static Filter:

- compute *B* once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

白 ト イヨ ト イヨ トー

크

Static Filter:

- compute *B* once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- initialize B based on optimistic assumption
- adjust B if necessary

回 とうほとう モン・

Static Filter:

- compute *B* once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- ▶ initialize *B* based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

compute B depending on the input of each call

伺 ト イ ヨ ト イ ヨ ト

Static Filter:

- compute *B* once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- ▶ initialize *B* based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs

Static Filter:

- compute *B* once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- ▶ initialize *B* based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs

Compute *E*

Michael Hemmer Exact Arithmetic and Filtering

< 🗇 🕨

★ E ► ★ E ► E

Compute *E*

try to certify using almost-static B

Michael Hemmer Exact Arithmetic and Filtering

B > 4 B > 1

크

- Compute *E*
- try to certify using almost-static B
- otherwise compute semi-static B' and try to certify

크

- Compute *Ẽ*
- try to certify using almost-static B
- otherwise compute semi-static B' and try to certify

Disadvantage: Still considerable overestimation of error

- Compute *E*
- try to certify using almost-static B
- ▶ otherwise compute semi-static B' and try to certify

Disadvantage: Still considerable overestimation of error Idea: Observe concrete error while computing \tilde{E}

B + 4 B +

Interval Arithmetic

For operands $x = [\underline{x}, \overline{x}]$ and $y = [y, \overline{y}]$ set:

<□> < 三> < 三> < 三> < 三 > ○ < ○

Interval Arithmetic

For operands $x = [\underline{x}, \overline{x}]$ and $y = [y, \overline{y}]$ set:

Round in proper directions for floating point interval arithmetic

Interval Arithmetic

For operands $x = [\underline{x}, \overline{x}]$ and $y = [y, \overline{y}]$ set:

Round in proper directions for floating point interval arithmetic

⇒ Inclusion Property

□ > < 三 > < 三 > < 三 > < □

Dynamic Filter

- compute $\tilde{E} = [E]$ using floating point interval arithmetic
- result is certified if $0 \notin [E]$
- disadvantage: a bit slower than semi static filter
- ► advantage: better control of the error ⇒ less filter failures

Remark: It is possible to avoid changes in rounding mode $\triangle, \bigtriangledown, e.g.: [x] + [y] := [-\triangle (-\underline{x} - \underline{y}), \triangle (\overline{x} + \overline{y})]$

□→★□→★□→ □

Filter Summary

Three main types:

(almost) static filter	B is pre-computed
	as fast as floating point arithmetic
	very low accuracy
semi-static filter	B depends on input of each call
	2 times slower than floating point
	still low accuracy
dynamic filter	compute $\tilde{E} = [E]$ with interval arithmetic
	3-8 times slower than floating point
	high accuracy

・ロト ・四ト ・ヨト ・ヨト

æ

What about cascaded geometric constructions ?

Michael Hemmer Exact Arithmetic and Filtering

< E → E

What about cascaded geometric constructions ?

< ∃→

크

What about cascaded geometric constructions ?

orientation_3(a, m, b)?

Michael Hemmer Exact Arithmetic and Filtering

< E > E

Delayed / Lazy Constructions

Lazy Number Type

- always compute an interval
- also store history in a DAG*
- ► ⇒ can compute exact if needed

*DAG = Directed Acyclic Graph

- + : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

A (B) > A (B) > A (B) >

Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates

< 注 → < 注 → ...

æ

Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates
- + reduce management cost
- + reduce memory consumption
- reduce rounding mode changes

★ E ► < E ►</p>

크

(Simplified) Overview CGAL Kernel

- CGAL::Cartesian<double> : fast but not exact
- ► CGAL::Cartesian< Q > : exact but slow
- CGAL::Filtered_kernel< K >
 - uses constructions of kernel K
 - dynamic filter for all predicates
 - semi-static filter for some predicates
 - predicates are exact

Predefined kernels:

- Exact_predicates_inexact_constructions_kernel
 Filtered_kernel< Cartesian<double>>
- ► Exact_predicates_exact_constructions_kernel
 - \simeq Lazy_exact_kernel< Cartesian< $\mathbb{Q}>>$

▲ 車 ▶ ▲ 重 ▶ ● 重 ● の Q @

Exact Expression Evaluation using Separation Bounds

LEDA::real and CORE::Expr

Allow:

- addition, substraction, mulitplication
- division
- k-th root
- algebraic numbers

★ E ► ★ E ► ...

크

Recall Lazy Evaluation

Lazy Number Type

- compute double interval first
- ► also store history in a DAG* ⇒ can compute exact if needed

*DAG = Directed Acyclic Graph

- + : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

A (B) > A (B) > A (B) >

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...

□→★□→★□→ □

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...
- ... an expression that is zero leads to an infinite loop !

□→★□→★□→ □

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...
- .. an expression that is zero leads to an infinite loop !
 Simple solution:
 - just stop at some high precision

□ ▶ ★ □ ▶ ★ □ ▶ □ □

Can we do better ?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: {+, -, *}
- ► Example: *E* = 23 · 60 · 234 + 634 · 234 · 12 87633 · 24

伺 ト イ ヨ ト イ ヨ ト

르

Can we do better ?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: {+, -, *}
- ► Example: *E* = 23 · 60 · 234 + 634 · 234 · 12 87633 · 24

Yes we can !

- The value of *E* must be an integer ($val(E) \in \mathbb{Z}$)
- \Rightarrow Compute interval I with increasing precision until:
 - 0 ∉ *I*: return *sign*(*I*);
 - $I \cap \mathbb{Z} = \{0\}$: return 0;

▲□→ ▲ □→ ▲ □→ □ □

Can we do better ?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: {+, -, *}
- ► Example: *E* = 23 · 60 · 234 + 634 · 234 · 12 87633 · 24

Or in other words:

- ► 0 is separated from all other possible values by 1, the separation bound of E, sep(E) = 1
- The process stops once the width of *I* is less than 1, $\Delta(I) < 1 = sep(E)$

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

Extend set of operations by $\sqrt[k]{\cdot}$

Definition

An algebraic integer is a root of a polynomial with integer coefficients and leading coefficient one.

It follows that this is also the case for its minimal polynomial. Example: $X^2 - 2 = (X - \sqrt{2})(X + \sqrt{2})$ or $X^k - a$ Remark I: An integer is an algebraic integer.

□→★□→★□→ □

Remark II: Algebraic integers are closed under $\textit{op} \in \{+, -, *\}$

For algebraic integers α and β consider the minimal polynomials:

$$\blacktriangleright P_A(X) = X^n + \prod_{i=0}^{n-1} a_i X^i = \prod_{i=1}^n (X - \alpha_i) \in \mathbb{Z}[X]$$

•
$$P_B(X) = X^m + \prod_{j=0}^{m-1} b_j X^i = \prod_{j=1}^m (X - \beta_j) \in \mathbb{Z}[X]$$

where α is a root of $P_A(X)$ and β is a root of $P_B(X)$.

The result of α op β , with $op \in \{+, -, *\}$ is the root of

$$P_{A \text{ op } B}(X) = \prod_{i=1}^{n} \prod_{j=1}^{m} (X - (\alpha_i \text{ op } \beta_j)) \in \mathbb{Z}[X],$$

which is a monic polynomial of degree $n \cdot m$.

(*) The α_i are the algebraic conjugates of α .

(**) The degree of $P_A(X)$ is the algebraic degree of α .

通 ト イヨ ト イヨ ト 「ヨ」 つくで

Lemma

Let α be an algebraic integer and let deg (α) be its algebraic degree. If U > 0 is an upper bound on the absolute values of all algebraic conjugates of α , then

 $|\alpha| \ge 1/U^{\deg(\alpha)-1}.$

Proof.

Consider the minimal polynomial $P_{\alpha} = \prod_{i=1}^{n} (X - \alpha_i) \in \mathbb{Z}[X]$. The constant coefficient is $\prod_{i=1}^{n} \alpha_i$ which is at least one, since it is in \mathbb{Z} .

$$\Rightarrow |lpha| \cdot U^{deg(lpha)-1} \geqslant 1$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

We obtain algebraic integers by expressions that are made of:

- integers (in the leaves of the DAG)
- ▶ operations: {+, -, *, ^k√·}

An upper bound on the

- algebraic degree D(E) is the product of all occurring k.
- the bound U(E) on absolute value of the algebraic conjugates is given by the following recursive table:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline E & U(E) & D(E) \\ \hline n \in \mathbb{Z} & |n| & 1 \\ X \pm Y & U(X) + U(Y) & D(X) \cdot D(Y) \\ X \cdot Y & U(X) \cdot U(Y) & D(X) \cdot D(Y) \\ \frac{k}{\sqrt{X}} & \frac{k}{\sqrt{U(X)}} & k \cdot D(x) \\ \hline \end{array}$$

If $\tilde{E} < 1/U(E)^{D(E)-1} \Rightarrow E = 0$

Introducing devisions

Devision destroys algebraic integer property ! \Rightarrow Treat numerator and denominator separately

$$\frac{A_n}{A_d} \pm \frac{B_n}{B_d} \Rightarrow \frac{A_n B_d \pm B_n A_d}{A_d B_d}, \dots, \sqrt[k]{\frac{A_n}{A_d}} \Rightarrow \frac{\sqrt[k]{A_n A_d^{k-1}}}{A_d}$$

we obtain the following table:

If
$$|\tilde{E}| \cdot U_d(E) < 1/U_n(E)^{D(E)-1} \Rightarrow E = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

2

Final Remarks

- > leda::real and CORE::Expr are essentially the same
- both also allow to define a value as the root of a polynomial

□→★□→★□→ □

Final Remarks

- > leda::real and CORE::Expr are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

- + : Allow cascaded constructions
- + : Lazy evaluation
- : time lost in DAG management
- : high memory consumption

回 とくほとくほとう

크

Final Remarks

- > leda::real and CORE::Expr are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

- + : Allow cascaded constructions
- + : Lazy evaluation
- : time lost in DAG management
- : high memory consumption

General guidelines:

- never use them as your main type
- try to produce balanced expressions
- try to simplify expressions
- do you really need to use $\sqrt{\cdot}$?
- avoid unnecessary test against zero

4 3 3