Geometric Algorithms

Exact Arithmetic, Filtering and Delayed
Constructions

Michael Hemmer

TU Braunschweig

2014, Braunschweig

Michael Hemmer Exact Arithmetic and Filtering

Outline

P4
» Motivate Exact Computing
» Filtered Predicates 0P
» Lazy Constructions '
» CGAL Kernels T - B

Michael Hemmer Exact Arithmetic and Filtering

Talk of Kurt Mehlhorn:

Classroom Examples
of Robustness Problems
in Geometric Computations

Michael Hemmer Exact Arithmetic and Filtering

Recall Motivation

Geometric algorithms are a mix of

» Numerical computation
(Point coordinates, distances, ...)
» Combinatorial techniques
(Convex hull, Delaunay Triangulation, ...)

= Small numerical errors can lead to:
Inconsistencies, infinite loops, crashes ...

Michael Hemmer Exact Arithmetic and Filtering

Exact Geometric-Computation Paradigm

Michael Hemmer Exact Arithmetic and Filtering

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

» Exact evaluation of geometric predicates
- functions computing discrete results from numerical input
- Orientation, Compare_xy, ...

Michael Hemmer Exact Arithmetic and Filtering

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

» Exact evaluation of geometric predicates
- functions computing discrete results from numerical input

- Orientation, Compare_xy, ...

» Enforces exactness of geometric constructions
- Intersection, Projection, ...
- If there are any !

Michael Hemmer Exact Arithmetic and Filtering

The Easy Solution

Use exact multi-precision arithmetic
» integers, rational (e.g. GMP, CORE, LEDA)
» even algebraic numbers (e.g. CORE, LEDA)
» exact up to memory limit

Disadvantage: TOO SLOW

Michael Hemmer Exact Arithmetic and Filtering

The Easy Solution

Use exact multi-precision arithmetic
» integers, rational (e.g. GMP, CORE, LEDA)
» even algebraic numbers (e.g. CORE, LEDA)
» exact up to memory limit

Disadvantage: TOO SLOW

No solution for transcendental numbers!

Michael Hemmer Exact Arithmetic and Filtering

Find the Balance !

Requirements of the Real RAM model:
» arithmetic operations in constant time
» exact computation over the reals

The naive solutions:

» constant time floating point arithmetic that fails
» exact multi precision arithmetic that is too slow

Michael Hemmer Exact Arithmetic and Filtering

The Answer are Filters

General filter scheme:
» try to compute a certified result fast (usually constant time)
» if certification fails may try another filter
» if nothing helps, use exact arithmetic

The hope:

» require only constant time for easy instances
» amortize cost for hard cases that use exact arithmetic

Michael Hemmer Exact Arithmetic and Filtering

General Idea

General idea for filtered predicate:

» For expression E compute approximation E and bound B,
such that |E — E| < B or equivalently:

Ecl=[E—-BE+B]

» If 0 e I report failure, else return sign(E).

Michael Hemmer Exact Arithmetic and Filtering

Recall: Floating Point Arithmetic

» A double float f uses 64 bits
- 1 bit for the sign s
- 52 bits for the mantissa m=my ... mgo
- 11 bits for the exponent e = ey ... e4

» for a € R, let fl(a) be the closest float to a
for ac Z: |a— fi(a)| < ¢|fl(a)|, where ¢ = 273
for o € {—l-, -, X}Z |f1 of, — fy 5f2| < €|f1 5f2|

» floating point arithmetic is monotone
eg.b<c = asb<asc

Michael Hemmer Exact Arithmetic and Filtering

Computing B

For expression E define dg and mesg recursively:

| E | E [mese | de H
a, float | fl(a) |fl(a)] 0

acZ | fi(a) \fl(a)| 1

X+Y | XaeV||Xe|Y|1+max(dy,dy)
X-Y | XcV||Xl®|Y|1+max(dy,dy)
XxY | XeoV||X|®|Y]| 1+dx+dy

Then B is defined as follows:

[E—E|<B=((1+¢)% —1)-mesg

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition

IE—El = [(Xa®Y)—(X+Y)

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition

Y)—(X+Y)
V)= (X+ V)| +X=X|+|Y-Y|

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition

E—El = |(XeVY)—(X+Y)

< | Xa V)= X+ V)| +IX=X|+|Y-Y
< e-mesg+ | X—X|+|Y-Y|

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition
|E — E (XaV)—(X+Y)
(XeV)-(X+YV)|+ X=X +|Y-Y|
e-mesg+ X —X|+|Y-Y|
e-mesg + ((14¢)% —1)mesy + (1 +&)¥ — 1)mesy

NN N

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition
|E - E| (X®Y)—(X+Y)
(XeV)-(X+YV)|+ X=X +|Y-Y|
e-mesg+ X —X|+|Y-Y|
e-mesg + ((14¢)% —1)mesy + (1 +&)¥ — 1)mesy
e - mesg + ((1 4)™ (%) _ 1) . mesg

NN NN

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition
|E — E (XaV)—(X+Y)
(XeV)-(X+YV)|+ X=X +|Y-Y|
e-mesg+ X —X|+|Y-Y|
e-mesg + ((14¢)% —1)mesy + (1 +&)¥ — 1)mesy
e - mesg + ((1 4)™ (%) _ 1) . mesg
(14 8)1—f—max(dx,dy) —1)-mesg =B

NN NN IN

Michael Hemmer Exact Arithmetic and Filtering

Proof

» Monotonicity of floats always guarantees: £ < mesg
» First two rows are trivial
» Lets proof invariant for addition
|E — E (XaV)—(X+Y)
(XeV)-(X+YV)|+ X=X +|Y-Y|
e-mesg+ X —X|+|Y-Y|
e-mesg + ((14¢)% —1)mesy + (1 +&)¥ — 1)mesy
e - mesg + ((1 4)™ (%) _ 1) . mesg
(14 8)1—f—max(dx,dy) —1)-mesg =B

NN NN IN

Michael Hemmer Exact Arithmetic and Filtering

Remark

In practice, one replaces

B=((1+¢)% —1)- mesg
with

B = (¢-dg) - mesg,

as

(14)% —1) < e-dg, for dg < \/1/e.

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast
» requires an assumption on the range of the input
» for many calls this assumption may be too large

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast
» requires an assumption on the range of the input
» for many calls this assumption may be too large
Almost-static filter:
» initialize B based on optimistic assumption
» adjust B if necessary

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast
» requires an assumption on the range of the input
» for many calls this assumption may be too large
Almost-static filter:
» initialize B based on optimistic assumption
» adjust B if necessary
Semi-static Filter:
» compute B depending on the input of each call

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast
» requires an assumption on the range of the input
» for many calls this assumption may be too large
Almost-static filter:
» initialize B based on optimistic assumption
» adjust B if necessary
Semi-static Filter:
» compute B depending on the input of each call
» still fast, since it essentially only doubles the costs

Michael Hemmer Exact Arithmetic and Filtering

Static and Semi-Static Filter

Static Filter:
» compute B once for all = very fast
» requires an assumption on the range of the input
» for many calls this assumption may be too large
Almost-static filter:
» initialize B based on optimistic assumption
» adjust B if necessary
Semi-static Filter:
» compute B depending on the input of each call
» still fast, since it essentially only doubles the costs

Michael Hemmer Exact Arithmetic and Filtering

Combine Static and Semi-Static Filter

» Compute E

Michael Hemmer Exact Arithmetic and Filtering

Combine Static and Semi-Static Filter

» Compute E
» try to certify using almost-static B

Michael Hemmer Exact Arithmetic and Filtering

Combine Static and Semi-Static Filter

» Compute E
» try to certify using almost-static B
» otherwise compute semi-static B and try to certify

Michael Hemmer Exact Arithmetic and Filtering

Combine Static and Semi-Static Filter

» Compute E
» try to certify using almost-static B
» otherwise compute semi-static B and try to certify

Disadvantage: Still considerable overestimation of error

Michael Hemmer Exact Arithmetic and Filtering

Combine Static and Semi-Static Filter

» Compute E
» try to certify using almost-static B
» otherwise compute semi-static B and try to certify

Disadvantage: Still considerable overestimation of error
ldea: Observe concrete error while computing E

Michael Hemmer Exact Arithmetic and Filtering

Interval Arithmetic

For operands x = [x,X] and y = [y, y] set:

X]+[y] = [x+y,x+Y]
X -] = [x-y.x-yl
[x]-[y] = [min{xy,Xy,xy,xy}, max{xy,Xy,Xy,xy}]

[x1/1¥] x-[1/y,1/ylit0 ¢ [y]
[x]'/2 = [x'/2,%"3]if0 < [x]

Michael Hemmer Exact Arithmetic and Filtering

Interval Arithmetic

For operands x = [x,X] and y = [y, y] set:

X]+[y] = [x+y,x+Y]
X -] = [x-y.x-yl
[x]-[y] = [min{xy,Xy,xy,xy}, max{xy,Xy,Xy,xy}]

[XI/lyl = x-[1/y.1/y]lif0 ¢ [y]
[x]'/2 = [x'/2,%"3]if0 < [x]

Round in proper directions for floating point interval arithmetic

Michael Hemmer Exact Arithmetic and Filtering

Interval Arithmetic

For operands x = [x,X] and y = [y, y] set:

X]+[y] = [x+y,x+Y]
X -] = [x-y.x-yl
[x]-[y] = [min{xy,Xy,xy,xy}, max{xy,Xy,Xy,xy}]

[XI/lyl = x-[1/y.1/y]lif0 ¢ [y]
[x]'/2 = [x'/2,%"3]if0 < [x]

Round in proper directions for floating point interval arithmetic

= Inclusion Property

Michael Hemmer Exact Arithmetic and Filtering

Dynamic Filter

v

compute E = [E] using floating point interval arithmetic
result is certified if 0 & [E]

disadvantage: a bit slower than semi static filter
advantage: better control of the error = less filter failures

v

v

v

Remark: It is possible to avoid changes in rounding mode
A, egl X+ == A(=x—y), AKX +Y)]

Michael Hemmer Exact Arithmetic and Filtering

Filter Summary

Three main types:

(almost) static filter B is pre-computed
as fast as floating point arithmetic
very low accuracy
semi-static filter B depends on input of each call
2 times slower than floating point
still low accuracy
dynamic filter compute E = [E] with interval arithmetic
3-8 times slower than floating point
high accuracy

Michael Hemmer Exact Arithmetic and Filtering

What about cascaded geometric constructions ?

Michael Hemmer Exact Arithmetic and Filtering

What about cascaded geometric constructions ?

Michael Hemmer Exact Arithmetic and Filtering

What about cascaded geometric constructions ?

orientation_3(a, m, b)?

Michael Hemmer Exact Arithmetic and Filtering

Delayed / Lazy Constructions

Lazy Number Type
» always compute an interval
» also store history in a DAG*
» = can compute exact if needed

+ : adaptive
- : time lost in DAG management
- 1 high memory consumption

Fig. 3. Example Dac: /o + \/j — /o +y + 2/7y.

Michael Hemmer Exact Arithmetic and Filtering

Lazy Kernel

sl b*.
1 . y
» DAG nodes for constructions m P
. 1
» DAG nodes for predicates s2 a
m @Ildpm\
@te rsect p P&) ;é:t\
/ A /
\ / \
sl s2 b 1

Michael Hemmer Exact Arithmetic and Filtering

v

+ + o+

Lazy Kernel

sl b*.
1 . y
DAG nodes for constructions m P
. 1
DAG nodes for predicates s2 a
reduce management cost
m @Ildpm

reduce memory consumption

/

reduce rounding mode @tersect . Pro e,(,:t\
changes : /

/ \ / \

sl s2 b 1

Michael Hemmer Exact Arithmetic and Filtering

(Simplified) Overview CGAL Kernel

» CGAL::Cartesian<double> : fast but not exact
» CGAL::Cartesian< Q > : exact but slow

» CGAL::Filtered kernel< K >
- uses constructions of kernel K
- dynamic filter for all predicates
- semi-static filter for some predicates
- predicates are exact

Predefined kernels:

» Exact_predicates_inexact_constructions_kernel
= Filtered_kernel< Cartesian<double>>

» Exact_predicates_exact_constructions_kernel
~ Lazy_exact kernel< Cartesian< Q >>

Michael Hemmer Exact Arithmetic and Filtering

Exact Expression Evaluation
using Separation Bounds

LEDA: :real and CORE: :Expr

Allow:

addition, substraction, mulitplication
division

k-th root

algebraic numbers

v

v

v

v

Michael Hemmer Exact Arithmetic and Filtering

Recall Lazy Evaluation

Lazy Number Type
» compute double interval first

» also store history in a DAG*
= can compute exact if needed

+ : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: r+ \/y — /o +y + 2\/xy.

Michael Hemmer Exact Arithmetic and Filtering

Possible Variant:

Use multi-precision floating point intervals
» try with doubles first
» otherwise try with more precision if needed
» andsoon ...

Michael Hemmer Exact Arithmetic and Filtering

Possible Variant:

Use multi-precision floating point intervals
» try with doubles first
» otherwise try with more precision if needed
» andsoon ...

» .. an expression that is zero leads to an infinite loop !

Michael Hemmer Exact Arithmetic and Filtering

Possible Variant:

Use multi-precision floating point intervals
» try with doubles first
» otherwise try with more precision if needed
» andsoon ...

» .. an expression that is zero leads to an infinite loop !
Simple solution:

» just stop at some high precision

Michael Hemmer Exact Arithmetic and Filtering

Can we do better ?

Suppose the expression is just made of:
» integers (in the leaves of the DAG)
» operations: {+, -, x}
» Example: E =23-60-234 + 634 -234-12 — 87633 - 24

Michael Hemmer Exact Arithmetic and Filtering

Can we do better ?

Suppose the expression is just made of:
» integers (in the leaves of the DAG)
» operations: {+, -, x}
» Example: E =23-60-234 + 634 -234-12 — 87633 - 24

Yes we can !

» The value of E must be an integer (val(E) € Z)
= Compute interval / with increasing precision until:
» 0 ¢ I: return sign(/);
» INZ = {0}: return O;

Michael Hemmer Exact Arithmetic and Filtering

Can we do better ?

Suppose the expression is just made of:
» integers (in the leaves of the DAG)
» operations: {+, -, x}
» Example: E =23 -60-234 + 634 -234-12 — 87633 - 24

Or in other words:

» 0 is separated from all other possible values by 1,
the separation bound of E, sep(E) = 1

» The process stops once the width of /is less than 1,
A(l) <1 =sep(E)

Michael Hemmer Exact Arithmetic and Filtering

Extend set of operations by /-

Definition
An algebraic integer is a root of a polynomial with integer
coefficients and leading coefficient one.

It follows that this is also the case for its minimal polynomial.
Example: X2 -2 = (X —v2)(X +v2) or X¥ — a
Remark I: An integer is an algebraic integer.

Michael Hemmer Exact Arithmetic and Filtering

Remark II: Algebraic integers are closed under op € {+, —, *}
For algebraic integers « and 3 consider the minimal
polynomials:

> Pa(X) = X"+]I oa/ =T (X = o) € Z[X]

> Pg(X) = X"+ [bX = [I724(X — 8) € Z[X],
where « is a root of PA(X) and 5 is a root of Pg(X).
The result of a op 3, with op € {+, —, «} is the root of

n m

Paop 8(X) = [T TT(X - (as 0p 8)) € ZIX],

i=1j=1
which is a monic polynomial of degree n- m.

(*) The «; are the algebraic conjugates of a.
(**) The degree of P4(X) is the algebraic degree of a.

Michael Hemmer Exact Arithmetic and Filtering

Lemma

Let o be an algebraic integer and let deg(«) be its algebraic
degree. If U > 0 is an upper bound on the absolute values of all
algebraic conjugates of o, then

laf > 1/y%g(@)=1,

Proof.

Consider the minimal polynomial P, = []/_{(X — ;) € Z[X].
The constant coefficient is [, a; which is at least one, since it
isin Z.

= |af - Udeg(@)=1 > 1 0

Michael Hemmer Exact Arithmetic and Filtering

We obtain algebraic integers by expressions that are made of:
» integers (in the leaves of the DAG)
» operations: {+, -, », ¥/-}

An upper bound on the
» algebraic degree D(E) is the product of all occurring k.

» the bound U(E) on absolute value of the algebraic
conjugates is given by the following recursive table:

L E [uE [DbE |
nez |n| 1
X+Y | UX)+UY) | DX)-D(Y)
X-Y | UX)-UY) | DIX)-D(Y)
VX & UX) k - D(x)

fE<1/UE)PBE-TE=0

Michael Hemmer Exact Arithmetic and Filtering

Introducing devisions

Devision destroys algebraic integer property !
= Treat numerator and denominator separately

A, B, ApnBy=+ BAy ([An {/ARALT
—""”/Ad A

Ag = By - AdBy Aqg

we obtain the following table:

| E | Un(E) \ Uq(E) \
nez |n| 1
X+ Y | Up(X)Ua(Y) + Un(Y)Uqg(X) | Ua(X)Uq(Y)
X-Y Un(X) - Un(Y) Ua(X) - Ua(Y)
XY Un(X) - Ug(Y) Uy(X) - Un(Y)
VX ¢/ Un(X)US Uy(X)

If |E| - Uy(E) < 1/Un(E)PE-1 = E=0

Michael Hemmer Exact Arithmetic and Filtering

Final Remarks

» leda::real and CORE: :Expr are essentially the same
» both also allow to define a value as the root of a polynomial

Michael Hemmer Exact Arithmetic and Filtering

Final Remarks

» leda::real and CORE: :Expr are essentially the same
» both also allow to define a value as the root of a polynomial

Advantages & Disadvantages
+ : Allow cascaded constructions
+ : Lazy evaluation
- : time lost in DAG management
- = high memory consumption

Michael Hemmer Exact Arithmetic and Filtering

Final Remarks

» leda::real and CORE: :Expr are essentially the same
» both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

+ : Allow cascaded constructions

+ : Lazy evaluation

- : time lost in DAG management

- = high memory consumption
General guidelines:
never use them as your main type
try to produce balanced expressions
try to simplify expressions
do you really need to use /- ?
avoid unnecessary test against zero

Michael Hemmer Exact Arithmetic and Filtering

v

v

v

v

v

