Geometric Algorithms

Exact Arithmetic, Filtering and Delayed Constructions

Michael Hemmer

TU Braunschweig

2014, Braunschweig

Outline

- Motivate Exact Computing
- Filtered Predicates
- Lazy Constructions
- CGAL Kernels

Classroom Examples ESA'04

Talk of Kurt Mehlhorn:

Classroom Examples
 of Robustness Problems in Geometric Computations

Recall Motivation

Geometric algorithms are a mix of

- Numerical computation (Point coordinates, distances, ...)
- Combinatorial techniques (Convex hull, Delaunay Triangulation, ...)
\Rightarrow Small numerical errors can lead to:
Inconsistencies, infinite loops, crashes ...

Exact Geometric-Computation Paradigm

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
- functions computing discrete results from numerical input
- Orientation, Compare_xy, ...

Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
- functions computing discrete results from numerical input
- Orientation, Compare_xy, ...
- Enforces exactness of geometric constructions
- Intersection, Projection, ...
- If there are any !
[C. Yap, T. Dubé, 1995]

The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW

The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW

No solution for transcendental numbers!

Find the Balance!

Requirements of the Real RAM model:

- arithmetic operations in constant time
- exact computation over the reals

The naive solutions:

- constant time floating point arithmetic that fails
- exact multi precision arithmetic that is too slow

The Answer are Filters

General filter scheme:

- try to compute a certified result fast (usually constant time)
- if certification fails may try another filter
- if nothing helps, use exact arithmetic

The hope:

- require only constant time for easy instances
- amortize cost for hard cases that use exact arithmetic

General Idea

General idea for filtered predicate:

- For expression E compute approximation \tilde{E} and bound B, such that $|E-\tilde{E}| \leqslant B$ or equivalently:

$$
E \in I=[\tilde{E}-B, \tilde{E}+B]
$$

- If $0 \in I$ report failure, else return $\operatorname{sign}(\tilde{E})$.

Recall: Floating Point Arithmetic

- A double float f uses 64 bits
-1 bit for the sign s
- 52 bits for the mantissa $m=m_{1} \ldots m_{52}$
- 11 bits for the exponent $e=e_{1} \ldots e_{11}$
- $f=-1^{s} \cdot\left(1+\sum_{1 \leqslant i \leqslant 52} m_{i} 2^{-i}\right) \cdot 2^{e-2013}$, if $0<e<2^{11}-1$
...
- for $a \in \mathbb{R}$, let $f l(a)$ be the closest float to a for $a \in \mathbb{Z}:|a-f|(a)|\leqslant \varepsilon| f|(a)|$, where $\varepsilon=2^{-53}$ for $o \in\{+,-, \times\}:\left|f_{1} o f_{2}-f_{1} \tilde{o} f_{2}\right| \leqslant \varepsilon\left|f_{1} \tilde{o} f_{2}\right|$
- floating point arithmetic is monotone

$$
\text { e.g.: } b \leqslant c \Rightarrow a \oplus b \leqslant a \oplus c
$$

Computing B

For expression E define d_{E} and $m e s_{E}$ recursively:

E	\tilde{E}	mes_{E}	d_{E}
a, float	$f \mid(a)$	$\|f\|(a) \mid$	0
$a \in \mathbb{Z}$	$f l(a)$	$\|f\|(a) \mid$	1
$X+Y$	$\tilde{X} \oplus \tilde{Y}$	$\|\tilde{X}\| \oplus\|\tilde{Y}\|$	$1+\max \left(d_{X}, d_{Y}\right)$
$X-Y$	$\tilde{X} \ominus \tilde{Y}$	$\tilde{X}\|\oplus\| \tilde{Y} \mid$	$1+\max \left(d_{X}, d_{Y}\right)$
$X \times Y$	$\tilde{X} \otimes \tilde{Y}$	$\|\tilde{X}\| \otimes\|\tilde{Y}\|$	$1+d_{X}+d_{Y}$

Then B is defined as follows:

$$
|E-\tilde{E}| \leqslant B=\left((1+\varepsilon)^{d_{E}}-1\right) \cdot \operatorname{mes}_{E}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
|\tilde{E}-E|=|(\tilde{X} \oplus \tilde{Y})-(X+Y)|
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}|
\end{aligned}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+|X-\tilde{X}|+|Y-\tilde{Y}|
\end{aligned}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{d_{X}}-1\right) \operatorname{mes}_{X}+\left((1+\varepsilon)^{d_{Y}}-1\right) \operatorname{mes}_{Y}
\end{aligned}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{d_{X}}-1\right) \operatorname{mes}_{X}+\left((1+\varepsilon)^{d_{Y}}-1\right) m e s_{Y} \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{\max \left(d_{X}, d_{Y}\right)}-1\right) \cdot \operatorname{mes}_{E}
\end{aligned}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{d_{X}}-1\right) \operatorname{mes}_{X}+\left((1+\varepsilon)^{d_{Y}}-1\right) m e s_{Y} \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{\max \left(d_{X}, d_{Y}\right)}-1\right) \cdot \operatorname{mes}_{E} \\
& \leqslant\left((1+\varepsilon)^{1+\max \left(d_{X}, d_{Y}\right)}-1\right) \cdot \operatorname{mes}_{E}=B
\end{aligned}
$$

Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leqslant$ mes $_{E}$
- First two rows are trivial
- Lets proof invariant for addition

$$
\begin{aligned}
|\tilde{E}-E| & =|(\tilde{X} \oplus \tilde{Y})-(X+Y)| \\
& \leqslant|(\tilde{X} \oplus \tilde{Y})-(\tilde{X}+\tilde{Y})|+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+|X-\tilde{X}|+|Y-\tilde{Y}| \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{d_{X}}-1\right) \operatorname{mes}_{X}+\left((1+\varepsilon)^{d_{Y}}-1\right) m e s_{Y} \\
& \leqslant \varepsilon \cdot \operatorname{mes}_{E}+\left((1+\varepsilon)^{\max \left(d_{X}, d_{Y}\right)}-1\right) \cdot \operatorname{mes}_{E} \\
& \leqslant\left((1+\varepsilon)^{1+\max \left(d_{X}, d_{Y}\right)}-1\right) \cdot \operatorname{mes}_{E}=B
\end{aligned}
$$

Remark

In practice, one replaces

$$
B=\left((1+\varepsilon)^{d_{E}}-1\right) \cdot \operatorname{mes}_{E}
$$

with

$$
B=\left(\varepsilon \cdot d_{E}\right) \cdot \operatorname{mes}_{E},
$$

as

$$
\left((1+\varepsilon)^{d_{E}}-1\right) \leqslant \varepsilon \cdot d_{E}, \text { for } d_{E}<\sqrt{1 / \varepsilon}
$$

Static and Semi-Static Filter

Static Filter:

- compute B once for all

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- initialize B based on optimistic assumption
- adjust B if necessary

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

- compute B depending on the input of each call

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs

Static and Semi-Static Filter

Static Filter:

- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:

- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:

- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs

Combine Static and Semi-Static Filter

- Compute \tilde{E}

Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B

Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B^{\prime} and try to certify

Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B^{\prime} and try to certify

Disadvantage: Still considerable overestimation of error

Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B^{\prime} and try to certify

Disadvantage: Still considerable overestimation of error Idea: Observe concrete error while computing \tilde{E}

Interval Arithmetic

For operands $x=[\underline{x}, \bar{x}]$ and $y=[\underline{y}, \bar{y}]$ set:

$$
\begin{aligned}
{[x]+[y] } & :=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
{[x]-[y] } & :=[\underline{x}-\bar{y}, \bar{x}-y] \\
{[x] \cdot[y] } & :=[\min \{\underline{x y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}, \max \{\underline{x} \underline{y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}] \\
{[x] /[y] } & :=x \cdot[1 / \bar{y}, 1 / \underline{y}] \text { if } 0 \notin[y] \\
{[x]^{1 / 2} } & :=\left[\underline{x}^{1 / 2}, \bar{x}^{1 / 2}\right] \text { if } 0 \leqslant[x]
\end{aligned}
$$

Interval Arithmetic

For operands $x=[\underline{x}, \bar{x}]$ and $y=[\underline{y}, \bar{y}]$ set:

$$
\begin{aligned}
{[x]+[y] } & :=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
{[x]-[y] } & :=[\underline{x}-\bar{y}, \bar{x}-\underline{y}] \\
{[x] \cdot[y] } & :=[\min \{\underline{x} \underline{y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}, \max \{\underline{x} \underline{y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}] \\
{[x] /[y] } & :=x \cdot[1 / \bar{y}, 1 / \underline{y}] \text { if } 0 \notin[y] \\
{[x]^{1 / 2} } & :=\left[\underline{x}^{1 / 2}, \bar{x}^{1 / 2}\right] \text { if } 0 \leqslant[x]
\end{aligned}
$$

Round in proper directions for floating point interval arithmetic

Interval Arithmetic

For operands $x=[\underline{x}, \bar{x}]$ and $y=[\underline{y}, \bar{y}]$ set:

$$
\begin{aligned}
{[x]+[y] } & :=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] \\
{[x]-[y] } & :=[\underline{x}-\bar{y}, \bar{x}-y] \\
{[x] \cdot[y] } & :=[\min \{\underline{x y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}, \max \{\underline{x} \underline{y}, \bar{x} \underline{y}, \underline{x} \bar{y}, \overline{x y}\}] \\
{[x] /[y] } & :=x \cdot[1 / \bar{y}, 1 / \underline{y}] \text { if } 0 \notin[y] \\
{[x]^{1 / 2} } & :=\left[\underline{x}^{1 / 2}, \bar{x}^{1 / 2}\right] \text { if } 0 \leqslant[x]
\end{aligned}
$$

Round in proper directions for floating point interval arithmetic

$$
\Rightarrow \text { Inclusion Property }
$$

Dynamic Filter

- compute $\tilde{E}=[E]$ using floating point interval arithmetic
- result is certified if $0 \notin[E]$
- disadvantage: a bit slower than semi static filter
- advantage: better control of the error \Rightarrow less filter failures

Remark: It is possible to avoid changes in rounding mode
\triangle, ∇, e.g.: $[x]+[y]:=[-\triangle(-\underline{x}-\underline{y}), \triangle(\bar{x}+\bar{y})]$

Filter Summary

Three main types:
(almost) static filter B is pre-computed as fast as floating point arithmetic very low accuracy
semi-static filter
dynamic filter

2 times slower than floating point still low accuracy compute $\tilde{E}=[E]$ with interval arithmetic 3-8 times slower than floating point high accuracy

What about cascaded geometric constructions ?

What about cascaded geometric constructions ?

What about cascaded geometric constructions ?

orientation_3(a, $m, b)$?

Delayed / Lazy Constructions

Lazy Number Type

- always compute an interval
- also store history in a DAG*
- \Rightarrow can compute exact if needed
*DAG = Directed Acyclic Graph
+ : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x}+\sqrt{y}-\sqrt{x+y+2 \sqrt{x y}}$.

Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates

Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates

+ reduce management cost
+ reduce memory consumption
+ reduce rounding mode changes

(Simplified) Overview CGAL Kernel

- CGAL::Cartesian<double> : fast but not exact
- CGAL::Cartesian $<\mathbb{Q}>$: exact but slow
- CGAL::Filtered_kernel<K>
- uses constructions of kernel K
- dynamic filter for all predicates
- semi-static filter for some predicates
- predicates are exact

Predefined kernels:

- Exact_predicates_inexact_constructions_kernel
= Filtered_kernel $<$ Cartesian $<$ double \gg
- Exact_predicates_exact_constructions_kernel
\simeq Lazy_exact_kernel $<$ Cartesian $<\mathbb{Q} \gg$

Exact Expression Evaluation using Separation Bounds

LEDA: :real and CORE: :Expr

Allow:

- addition, substraction, mulitplication
- division
- k-th root
- algebraic numbers

Recall Lazy Evaluation

Lazy Number Type

- compute double interval first
- also store history in a DAG* \Rightarrow can compute exact if needed
*DAG = Directed Acyclic Graph
+ : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x}+\sqrt{y}-\sqrt{x+y+2 \sqrt{x y}}$.

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...
- .. an expression that is zero leads to an infinite loop!

Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...
- .. an expression that is zero leads to an infinite loop!

Simple solution:

- just stop at some high precision

Can we do better ?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: $\{+,-, *\}$
- Example: $E=23 \cdot 60 \cdot 234+634 \cdot 234 \cdot 12-87633 \cdot 24$

Can we do better ?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: $\{+,-$, * $\}$
- Example: $E=23 \cdot 60 \cdot 234+634 \cdot 234 \cdot 12-87633 \cdot 24$

Yes we can!

- The value of E must be an integer $(\operatorname{val}(E) \in \mathbb{Z})$
\Rightarrow Compute interval / with increasing precision until:
- $0 \notin I$: return $\operatorname{sign}(I)$;
- $I \cap \mathbb{Z}=\{0\}$: return 0 ;

Can we do better?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: $\{+,-, *\}$
- Example: $E=23 \cdot 60 \cdot 234+634 \cdot 234 \cdot 12-87633 \cdot 24$

Or in other words:

- 0 is separated from all other possible values by 1 , the separation bound of $E, \operatorname{sep}(E)=1$
- The process stops once the width of I is less than 1 , $\Delta(I)<1=\operatorname{sep}(E)$

Extend set of operations by $\sqrt[k]{ }$.

Definition

An algebraic integer is a root of a polynomial with integer coefficients and leading coefficient one.

It follows that this is also the case for its minimal polynomial.
Example: $X^{2}-2=(X-\sqrt{2})(X+\sqrt{2})$ or $X^{k}-a$
Remark I: An integer is an algebraic integer.

Remark II: Algebraic integers are closed under $o p \in\{+,-, *\}$
For algebraic integers α and β consider the minimal polynomials:

$$
\begin{aligned}
& \text { - } P_{A}(X)=X^{n}+\prod_{i=0}^{n-1} a_{i} X^{i}=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X] \\
& \text { - } P_{B}(X)=X^{m}+\prod_{j=0}^{m-1} b_{j} X^{i}=\prod_{j=1}^{m}\left(X-\beta_{j}\right) \in \mathbb{Z}[X] \text {, }
\end{aligned}
$$

where α is a root of $P_{A}(X)$ and β is a root of $P_{B}(X)$.
The result of α op β, with $o p \in\{+,-, *\}$ is the root of

$$
P_{A \text { op } B}(X)=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(X-\left(\alpha_{i} \text { op } \beta_{j}\right)\right) \in \mathbb{Z}[X],
$$

which is a monic polynomial of degree $n \cdot m$.
(*) The α_{i} are the algebraic conjugates of α.
$\left.{ }^{(* *}\right)$ The degree of $P_{A}(X)$ is the algebraic degree of α.

Lemma

Let α be an algebraic integer and let deg(α) be its algebraic degree. If $U>0$ is an upper bound on the absolute values of all algebraic conjugates of α, then

$$
|\alpha| \geqslant 1 / U^{\operatorname{deg}(\alpha)-1} .
$$

Proof.

Consider the minimal polynomial $P_{\alpha}=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$.
The constant coefficient is $\prod_{i=1}^{n} \alpha_{i}$ which is at least one, since it is in \mathbb{Z}.
$\Rightarrow|\alpha| \cdot U^{d e g(\alpha)-1} \geqslant 1$

We obtain algebraic integers by expressions that are made of:

- integers (in the leaves of the DAG)
- operations: $\{+,-, *, \sqrt[k]{ }\}$

An upper bound on the

- algebraic degree $D(E)$ is the product of all occurring k.
- the bound $U(E)$ on absolute value of the algebraic conjugates is given by the following recursive table:

E	$U(E)$	$D(E)$
$n \in \mathbb{Z}$	$\|n\|$	1
$X \pm Y$	$U(X)+U(Y)$	$D(X) \cdot D(Y)$
$X \cdot Y$	$U(X) \cdot U(Y)$	$D(X) \cdot D(Y)$
$\sqrt[k]{X}$	$\sqrt[k]{U(X)}$	$k \cdot D(X)$

If $\tilde{E}<1 / U(E)^{D(E)-1} \Rightarrow E=0$

Introducing devisions

Devision destroys algebraic integer property !
\Rightarrow Treat numerator and denominator separately

$$
\frac{A_{n}}{A_{d}} \pm \frac{B_{n}}{B_{d}} \Rightarrow \frac{A_{n} B_{d} \pm B_{n} A_{d}}{A_{d} B_{d}}, \ldots, \sqrt[k]{\frac{A_{n}}{A_{d}}} \Rightarrow \frac{\sqrt[k]{A_{n} A_{d}^{k-1}}}{A_{d}}
$$

we obtain the following table:

E	$U_{n}(E)$	$U_{d}(E)$
$n \in \mathbb{Z}$	$\|n\|$	1
$X \pm Y$	$U_{n}(X) U_{d}(Y)+U_{n}(Y) U_{d}(X)$	$U_{d}(X) U_{d}(Y)$
$X \cdot Y$	$U_{n}(X) \cdot U_{n}(Y)$	$U_{d}(X) \cdot U_{d}(Y)$
X / Y	$U_{n}(X) \cdot U_{d}(Y)$	$U_{d}(X) \cdot U_{n}(Y)$
$\sqrt[k]{X}$	$\sqrt[k]{U_{n}(X) U_{d}^{k-1}}$	$U_{d}(X)$

If $|\tilde{E}| \cdot U_{d}(E)<1 / U_{n}(E)^{D(E)-1} \Rightarrow E=0$

Final Remarks

- leda: : real and CORE: : Expr are essentially the same
- both also allow to define a value as the root of a polynomial

Final Remarks

- leda: :real and CORE: : Expr are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages \& Disadvantages

+ : Allow cascaded constructions
+ : Lazy evaluation
- : time lost in DAG management
- : high memory consumption

Final Remarks

- leda: : real and CORE: : Expr are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages \& Disadvantages

+ : Allow cascaded constructions
+ : Lazy evaluation
- : time lost in DAG management
- : high memory consumption

General guidelines:

- never use them as your main type
- try to produce balanced expressions
- try to simplify expressions
- do you really need to use $\sqrt{ } \cdot$?
- avoid unnecessary test against zero

