Outline

- Motivate Exact Computing
- Filtered Predicates
- Lazy Constructions
- CGAL Kernels
Talk of Kurt Mehlhorn:

Classroom Examples of Robustness Problems in Geometric Computations
Recall Motivation

Geometric algorithms are a mix of

- Numerical computation
 (Point coordinates, distances, ...)
- Combinatorial techniques
 (Convex hull, Delaunay Triangulation, ...)

⇒ Small numerical errors can lead to:
Inconsistencies, infinite loops, crashes ...
Exact Geometric-Computation Paradigm
Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
 - functions computing discrete results from numerical input
 - Orientation, Compare_xy, ...

[C. Yap, T. Dube, 1995]
Exact Geometric-Computation Paradigm

Ensure correct control flow of algorithm by:

- Exact evaluation of geometric predicates
 - functions computing discrete results from numerical input
 - Orientation, Compare_xy, ...

- Enforces exactness of geometric constructions
 - Intersection, Projection, ...
 - If there are any!

[C. Yap, T. Dubé, 1995]
The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW
The Easy Solution

Use exact multi-precision arithmetic

- integers, rational (e.g. GMP, CORE, LEDA)
- even algebraic numbers (e.g. CORE, LEDA)
- exact up to memory limit

Disadvantage: TOO SLOW

No solution for transcendental numbers!
Find the Balance!

Requirements of the Real RAM model:
- arithmetic operations in constant time
- exact computation over the reals

The naive solutions:
- constant time floating point arithmetic that fails
- exact multi precision arithmetic that is too slow
The Answer are Filters

General filter scheme:
- try to compute a certified result fast (usually constant time)
- if certification fails may try another filter
- if nothing helps, use exact arithmetic

The hope:
- require only constant time for easy instances
- amortize cost for hard cases that use exact arithmetic
General Idea

General idea for filtered predicate:

- For expression E compute approximation \tilde{E} and bound B, such that $|E - \tilde{E}| \leq B$ or equivalently:

$$E \in I = [\tilde{E} - B, \tilde{E} + B]$$

- If $0 \in I$ report failure, else return $\text{sign}(\tilde{E})$.
Recall: Floating Point Arithmetic

- A double float f uses 64 bits
 - 1 bit for the sign s
 - 52 bits for the mantissa $m = m_1 \ldots m_{52}$
 - 11 bits for the exponent $e = e_1 \ldots e_{11}$

$$f = -1^s \cdot (1 + \sum_{1 \leq i \leq 52} m_i 2^{-i}) \cdot 2^{e-2013}, \text{ if } 0 < e < 2^{11} - 1$$

- for $a \in \mathbb{R}$, let $fl(a)$ be the closest float to a
 for $a \in \mathbb{Z}$: $|a - fl(a)| \leq \varepsilon |fl(a)|$, where $\varepsilon = 2^{-53}$
 for $o \in \{+, -, \times\}$: $|f_1 of_2 - f_1 \tilde{of}_2| \leq \varepsilon |f_1 \tilde{of}_2|$

- floating point arithmetic is monotone
 e.g.: $b \leq c \Rightarrow a \oplus b \leq a \oplus c$
Computing B

For expression E define d_E and mes_E recursively:

<table>
<thead>
<tr>
<th>E</th>
<th>\tilde{E}</th>
<th>mes_E</th>
<th>d_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, float</td>
<td>$\text{fl}(a)$</td>
<td>$</td>
<td>\text{fl}(a)</td>
</tr>
<tr>
<td>$a \in \mathbb{Z}$</td>
<td>\tilde{a}</td>
<td>$</td>
<td>\tilde{a}</td>
</tr>
<tr>
<td>$X + Y$</td>
<td>$\tilde{X} \oplus \tilde{Y}$</td>
<td>$</td>
<td>\tilde{X}</td>
</tr>
<tr>
<td>$X - Y$</td>
<td>$\tilde{X} \odot \tilde{Y}$</td>
<td>$</td>
<td>\tilde{X}</td>
</tr>
<tr>
<td>$X \times Y$</td>
<td>$\tilde{X} \otimes \tilde{Y}$</td>
<td>$</td>
<td>\tilde{X}</td>
</tr>
</tbody>
</table>

Then B is defined as follows:

$$|E - \tilde{E}| \leq B = ((1 + \varepsilon)^{d_E} - 1) \cdot \text{mes}_E$$
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Let's prove invariant for addition

\[|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \]
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq \text{mes}_E$
- First two rows are trivial
- Lets proof invariant for addition

\[
|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}|
\]
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Let's proof invariant for addition

\[
|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}|
\]
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq \text{mes}_E$
- First two rows are trivial
- Lets proof invariant for addition

\[
|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot \text{mes}_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot \text{mes}_E + ((1 + \varepsilon)^{d_X} - 1)\text{mes}_X + ((1 + \varepsilon)^{d_Y} - 1)\text{mes}_Y
\]
Proof

- Monotonicity of floats always guarantees: \(\tilde{E} \leq \text{mes}_E \)
- First two rows are trivial
- Let's proof invariant for addition

\[
\begin{align*}
|\tilde{E} - E| &= |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
&\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\
&\leq \varepsilon \cdot \text{mes}_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\
&\leq \varepsilon \cdot \text{mes}_E + ((1 + \varepsilon)^{d_x} - 1) \text{mes}_X + ((1 + \varepsilon)^{d_y} - 1) \text{mes}_Y \\
&\leq \varepsilon \cdot \text{mes}_E + ((1 + \varepsilon)^{\max(d_x, d_y)} - 1) \cdot \text{mes}_E
\end{align*}
\]
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq \text{mes}_E$
- First two rows are trivial
- Let's proof invariant for addition

\[
|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot \text{mes}_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot \text{mes}_E + ((1 + \varepsilon)^{d_X} - 1) \text{mes}_X + ((1 + \varepsilon)^{d_Y} - 1) \text{mes}_Y \\
\leq \varepsilon \cdot \text{mes}_E + ((1 + \varepsilon)^{\max(d_X,d_Y)} - 1) \cdot \text{mes}_E \\
\leq ((1 + \varepsilon)^{1+\max(d_X,d_Y)} - 1) \cdot \text{mes}_E = B
\]
Proof

- Monotonicity of floats always guarantees: $\tilde{E} \leq mes_E$
- First two rows are trivial
- Let's proof invariant for addition

\[
|\tilde{E} - E| = |(\tilde{X} \oplus \tilde{Y}) - (X + Y)| \\
\leq |(\tilde{X} \oplus \tilde{Y}) - (\tilde{X} + \tilde{Y})| + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot mes_E + |X - \tilde{X}| + |Y - \tilde{Y}| \\
\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{d_x} - 1)mes_X + ((1 + \varepsilon)^{d_y} - 1)mes_Y \\
\leq \varepsilon \cdot mes_E + ((1 + \varepsilon)^{\max(d_x,d_y)} - 1) \cdot mes_E \\
\leq ((1 + \varepsilon)^{1+\max(d_x,d_y)} - 1) \cdot mes_E = B
\]
Remark

In practice, one replaces

\[B = ((1 + \varepsilon)^{d_E} - 1) \cdot mes_E \]

with

\[B = (\varepsilon \cdot d_E) \cdot mes_E, \]

as

\[((1 + \varepsilon)^{d_E} - 1) \leq \varepsilon \cdot d_E, \text{ for } d_E < \sqrt{1/\varepsilon}. \]
Static and Semi-Static Filter

Static Filter:
- compute B once for all

Almost-static filter:
- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:
- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs
Static and Semi-Static Filter

Static Filter:
▶ compute B once for all \Rightarrow very fast

Almost-static filter:
▶ initialize B based on optimistic assumption
▶ adjust B if necessary

Semi-static Filter:
▶ compute B depending on the input of each call
▶ still fast, since it essentially only doubles the costs
Static and Semi-Static Filter

Static Filter:
- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large
Static and Semi-Static Filter

Static Filter:
- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:
- initialize B based on optimistic assumption
- adjust B if necessary
Static and Semi-Static Filter

Static Filter:
- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:
- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:
- compute B depending on the input of each call
Static and Semi-Static Filter

Static Filter:
- compute B once for all \Rightarrow very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:
- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:
- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs
Static and Semi-Static Filter

Static Filter:
- compute B once for all \implies very fast
- requires an assumption on the range of the input
- for many calls this assumption may be too large

Almost-static filter:
- initialize B based on optimistic assumption
- adjust B if necessary

Semi-static Filter:
- compute B depending on the input of each call
- still fast, since it essentially only doubles the costs
Combine Static and Semi-Static Filter

- Compute \tilde{E}

Disadvantage: Still considerable overestimation of error

Idea: Observe concrete error while computing \tilde{E}
Combine Static and Semi-Static Filter

- Compute \(\tilde{E} \)
- try to certify using almost-static \(B \)

Disadvantage: Still considerable overestimation of error

Idea: Observe concrete error while computing \(\tilde{E} \)
Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B' and try to certify

Disadvantage: Still considerable overestimation of error

Idea: Observe concrete error while computing \tilde{E}
Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B' and try to certify

Disadvantage: Still considerable overestimation of error
Combine Static and Semi-Static Filter

- Compute \tilde{E}
- try to certify using almost-static B
- otherwise compute semi-static B' and try to certify

Disadvantage: Still considerable overestimation of error
Idea: Observe concrete error while computing \tilde{E}
Interval Arithmetic

For operands \(x = [x, \bar{x}] \) and \(y = [y, \bar{y}] \) set:

\[
\begin{align*}
[x] + [y] & := [x + y, \bar{x} + \bar{y}] \\
[x] - [y] & := [x - \bar{y}, \bar{x} - \bar{y}] \\
[x] \cdot [y] & := [\min\{xy, \bar{x}\bar{y}, x\bar{y}, \bar{x}y\}, \max\{xy, \bar{x}\bar{y}, x\bar{y}, \bar{x}y\}] \\
[x]/[y] & := x \cdot [1/\bar{y}, 1/\bar{y}] \text{ if } 0 \not\in [y] \\
[x]^{1/2} & := [x^{1/2}, \bar{x}^{1/2}] \text{ if } 0 \leq [x]
\end{align*}
\]
Interval Arithmetic

For operands $x = [x, \bar{x}]$ and $y = [y, \bar{y}]$ set:

\[
[x] + [y] := [x + y, \bar{x} + \bar{y}]
\]
\[
[x] - [y] := [x - \bar{y}, \bar{x} - \bar{y}]
\]
\[
[x] \cdot [y] := [\min\{xy, \bar{x}y, x\bar{y}, \bar{x}\bar{y}\}, \max\{xy, \bar{x}y, x\bar{y}, \bar{x}\bar{y}\}]
\]
\[
[x]/[y] := x \cdot [1/\bar{y}, 1/y] \text{ if } 0 \not\in [y]
\]
\[
[x]^{1/2} := [x^{1/2}, \bar{x}^{1/2}] \text{ if } 0 \leq [x]
\]

Round in proper directions for floating point interval arithmetic
Interval Arithmetic

For operands $x = [\underline{x}, \overline{x}]$ and $y = [\underline{y}, \overline{y}]$ set:

$[x] + [y] := [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$

$[x] - [y] := [\underline{x} - \overline{y}, \overline{x} - \underline{y}]$

$[x] \cdot [y] := [\min\{xy, \underline{x}\underline{y}, x\overline{y}, \overline{x}y\}, \max\{xy, \underline{x}\underline{y}, x\overline{y}, \overline{x}y\}]$

$[x]/[y] := x \cdot [1/\overline{y}, 1/\underline{y}]$ if $0 \not\in [y]$

$[x]^{1/2} := [\underline{x}^{1/2}, \overline{x}^{1/2}]$ if $0 \leq [x]$

Round in proper directions for floating point interval arithmetic

\Rightarrow Inclusion Property
Dynamic Filter

- compute $\tilde{E} = [E]$ using floating point interval arithmetic
- result is certified if $0 \not\in [E]$
- disadvantage: a bit slower than semi static filter
- advantage: better control of the error \Rightarrow less filter failures

Remark: It is possible to avoid changes in rounding mode \triangle, ∇, e.g.: $[x] + [y] := [-\triangle (-x - y), \triangle (\overline{x} + \overline{y})]$
Filter Summary

Three main types:

(almost) static filter \(B \) is pre-computed as fast as floating point arithmetic very low accuracy

semi-static filter \(B \) depends on input of each call 2 times slower than floating point still low accuracy

dynamic filter compute \(\tilde{E} = [E] \) with interval arithmetic 3-8 times slower than floating point high accuracy
What about cascaded geometric constructions?
What about cascaded geometric constructions?
What about cascaded geometric constructions?

\[\text{orientation}_3(a, m, b)? \]
Delayed / Lazy Constructions

Lazy Number Type

- always compute an interval
- also store history in a DAG
- ⇒ can compute exact if needed

* DAG = Directed Acyclic Graph

+ : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x} + \sqrt{y} - \sqrt{x+y} + 2\sqrt{xy}$.
Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates
Lazy Kernel

- DAG nodes for constructions
- DAG nodes for predicates
+ reduce management cost
+ reduce memory consumption
+ reduce rounding mode changes
(Simplified) Overview CGAL Kernel

- CGAL::Cartesian<double>: fast but not exact
- CGAL::Cartesian<Q>: exact but slow
- CGAL::Filtered_kernel<K>
 - uses constructions of kernel K
 - dynamic filter for all predicates
 - semi-static filter for some predicates
 - predicates are exact

Predefined kernels:

- Exact_predicates_inexact_constructions_kernel
 = Filtered_kernel< Cartesian<double>>

- Exact_predicates_exact_constructions_kernel
 ≃ Lazy_exact_kernel< Cartesian<Q>>
Exact Expression Evaluation using Separation Bounds

LEDA::real and CORE::Expr

Allow:

- addition, substraction, multiplication
- division
- k-th root
- algebraic numbers
Recall Lazy Evaluation

Lazy Number Type

- compute **double** interval first
- also store history in a DAG*
⇒ can compute exact if needed

* DAG = Directed Acyclic Graph

+ : adaptive
- : time lost in DAG management
- : high memory consumption

Fig. 3. Example DAG: $\sqrt{x} + \sqrt{y} − \sqrt{x + y} + 2\sqrt{xy}$.
Possible Variant:

Use multi-precision floating point intervals
 ▶ try with doubles first
 ▶ otherwise try with more precision if needed
 ▶ and so on ...
Possible Variant:

Use multi-precision floating point intervals
 ▶ try with doubles first
 ▶ otherwise try with more precision if needed
 ▶ and so on ...
 ▶ .. an expression that is zero leads to an infinite loop!
Possible Variant:

Use multi-precision floating point intervals

- try with doubles first
- otherwise try with more precision if needed
- and so on ...
- .. an expression that is zero leads to an infinite loop!

Simple solution:

- just stop at some high precision
Can we do better?

Suppose the expression is just made of:
- integers (in the leaves of the DAG)
- operations: \{+,-,\times\}
- Example: \(E = 23 \cdot 60 \cdot 234 + 634 \cdot 234 \cdot 12 - 87633 \cdot 24 \)
Can we do better?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: \{+, -, *\}
- Example: \(E = 23 \cdot 60 \cdot 234 + 634 \cdot 234 \cdot 12 - 87633 \cdot 24\)

Yes we can!

- The value of \(E\) must be an integer \((val(E) \in \mathbb{Z})\)
 - Compute interval \(I\) with increasing precision until:
 - \(0 \notin I\): return \(\text{sign}(I)\);
 - \(I \cap \mathbb{Z} = \{0\}\): return 0;
Can we do better?

Suppose the expression is just made of:

- integers (in the leaves of the DAG)
- operations: \{+, -, \times\}
- Example: \(E = 23 \cdot 60 \cdot 234 + 634 \cdot 234 \cdot 12 - 87633 \cdot 24 \)

Or in other words:

- 0 is separated from all other possible values by 1, the separation bound of \(E \), \(sep(E) = 1 \)
- The process stops once the width of \(I \) is less than 1, \(\Delta(I) < 1 = sep(E) \)
Extend set of operations by \sqrt{k}.

Definition
An **algebraic integer** is a root of a polynomial with integer coefficients and leading coefficient one.

It follows that this is also the case for its minimal polynomial.

Example: $X^2 - 2 = (X - \sqrt{2})(X + \sqrt{2})$ or $X^k - a$

Remark I: An integer is an algebraic integer.
Remark II: Algebraic integers are closed under \(\text{op} \in \{+, -, \ast\} \)

For algebraic integers \(\alpha \) and \(\beta \) consider the minimal polynomials:

1. \(P_A(X) = X^n + \prod_{i=0}^{n-1} a_i X^i = \prod_{i=1}^{n} (X - \alpha_i) \in \mathbb{Z}[X] \)
2. \(P_B(X) = X^m + \prod_{j=0}^{m-1} b_j X^i = \prod_{j=1}^{m} (X - \beta_j) \in \mathbb{Z}[X] \),

where \(\alpha \) is a root of \(P_A(X) \) and \(\beta \) is a root of \(P_B(X) \).

The result of \(\alpha \ \text{op} \ \beta \), with \(\text{op} \in \{+, -, \ast\} \) is the root of

\[
P_{A \text{ op } B}(X) = \prod_{i=1}^{n} \prod_{j=1}^{m} (X - (\alpha_i \ \text{op} \ \beta_j)) \in \mathbb{Z}[X],
\]

which is a monic polynomial of degree \(n \cdot m \).

(*) The \(\alpha_i \) are the algebraic conjugates of \(\alpha \).

(**) The degree of \(P_A(X) \) is the algebraic degree of \(\alpha \).
Lemma

Let α be an algebraic integer and let $\deg(\alpha)$ be its algebraic degree. If $U > 0$ is an upper bound on the absolute values of all algebraic conjugates of α, then

$$|\alpha| \geq 1/U^{\deg(\alpha)-1}.$$

Proof.

Consider the minimal polynomial $P_{\alpha} = \prod_{i=1}^{n}(X - \alpha_i) \in \mathbb{Z}[X]$. The constant coefficient is $\prod_{i=1}^{n} \alpha_i$ which is at least one, since it is in \mathbb{Z}.

\Rightarrow $|\alpha| \cdot U^{\deg(\alpha)-1} \geq 1$
We obtain algebraic integers by expressions that are made of:

- integers (in the leaves of the DAG)
- operations: \{+,-,\ast,\sqrt{\cdot}\}

An upper bound on the

- algebraic degree \(D(E)\) is the product of all occurring \(k\).
- the bound \(U(E)\) on absolute value of the algebraic conjugates is given by the following recursive table:

<table>
<thead>
<tr>
<th>(E)</th>
<th>(U(E))</th>
<th>(D(E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \in \mathbb{Z})</td>
<td>(</td>
<td>n</td>
</tr>
<tr>
<td>(X \pm Y)</td>
<td>(U(X) + U(Y))</td>
<td>(D(X) \cdot D(Y))</td>
</tr>
<tr>
<td>(X \cdot Y)</td>
<td>(U(X) \cdot U(Y))</td>
<td>(D(X) \cdot D(Y))</td>
</tr>
<tr>
<td>(\sqrt[\ast]{X})</td>
<td>(\sqrt[\ast]{U(X)})</td>
<td>(k \cdot D(x))</td>
</tr>
</tbody>
</table>

If \(\tilde{E} < 1/U(E)^{D(E)-1}\) \(\Rightarrow E = 0\)
Introducing devisions

Devision destroys algebraic integer property!
⇒ Treat numerator and denominator separately

\[
\frac{A_n}{A_d} \pm \frac{B_n}{B_d} \Rightarrow \frac{A_nB_d \pm B_nA_d}{A_dB_d}, \ldots, \sqrt[\kappa]{\frac{A_n}{A_d}} \Rightarrow \frac{\kappa \sqrt{A_nA_d^{k-1}}}{A_d}
\]

we obtain the following table:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>$U_n(E)$</td>
</tr>
<tr>
<td></td>
<td>$n \in \mathbb{Z}$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$X \pm Y$</td>
<td>$U_n(X)U_d(Y) + U_n(Y)U_d(X)$</td>
</tr>
<tr>
<td></td>
<td>$X \cdot Y$</td>
<td>$U_n(X) \cdot U_n(Y)$</td>
</tr>
<tr>
<td></td>
<td>X / Y</td>
<td>$U_n(X) \cdot U_d(Y)$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt[\kappa]{X}$</td>
<td>$\sqrt[\kappa]{U_n(X)U_d^{k-1}}$</td>
</tr>
</tbody>
</table>

If $|\tilde{E}| \cdot U_d(E) < 1/U_n(E)^{D(E)-1} \Rightarrow E = 0$
Final Remarks

- `leda::real` and `CORE::Expr` are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

+ Allow cascaded constructions
+ Lazy evaluation

- Time lost in DAG management
- High memory consumption

General guidelines:

- Never use them as your main type
- Try to produce balanced expressions
- Try to simplify expressions
- Do you really need to use $\sqrt{\cdot}$?
- Avoid unnecessary test against zero
Final Remarks

- `leda::real` and `CORE::Expr` are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

+ Allow cascaded constructions
+ Lazy evaluation
- time lost in DAG management
- high memory consumption

General guidelines:

- never use them as your main type
- try to produce balanced expressions
- try to simplify expressions
- do you really need to use $\sqrt{\cdot}$?
- avoid unnecessary test against zero
Final Remarks

- `leda::real` and `CORE::Expr` are essentially the same
- both also allow to define a value as the root of a polynomial

Advantages & Disadvantages

+ Allow cascaded constructions
+ Lazy evaluation
- time lost in DAG management
- high memory consumption

General guidelines:

- never use them as your main type
- try to produce balanced expressions
- try to simplify expressions
- do you really need to use $\sqrt{\cdot}$?
- avoid unnecessary test against zero