Exercise 1 (Independent Set): Let $G = (V, E)$ be a graph. A set of vertices $I \subseteq V$ is called independent if for all $u, v \in I$: $\{u, v\} \notin E$. The Independent Set Problem (IS) asks for an independent set of maximum cardinality. (1) Show that C is a Vertex Cover of G iff $I = V \setminus C$ is an independent set. (2) Prove that IS is NP-Complete.

Exercise 2 (Vertex Cover): We have seen in the lecture that the (minimum) Vertex Cover Problem (VC) is in general NP-complete. Show however that, when the input graph is a tree, VC can be solved in polynomial time.

Exercise 3 (Vertex Cover): We consider two greedy algorithms for the Vertex Cover problem in a graph $G = (V, E)$:

Greedy 1:

$C := \emptyset$

while $E \neq \emptyset$
do

Choose an edge $e \in E$ and choose a vertex v of e.

$C := C \cup \{v\}$

$E := E \setminus \{e \in E : v \in e\}$

end

return C

Show that for both algorithm a constant approximation factor cannot be guaranteed, not even in bipartite graphs.
Greedy 2:

\[C := \emptyset \]

\[\text{while } E \neq \emptyset \text{ do} \]

\[\quad \text{Choose a vertex with maximal degree in the current graph.} \]

\[\quad C := C \cup \{ v \} \]

\[\quad E := E \setminus \{ e \in E : v \in e \} \]

\[\text{end} \]

\[\text{return } C \]

Exercise 4 (Diameter of Sets of Points): Let \(P \) be a set of \(n \) points in \(\mathbb{R}^d \) (assume \(d \) is constant). The diameter (\(\Lambda \)) of \(P \) is a pair of points \(p, q \in P \) that realizes the maximum distance between any two points of \(P \) (two points that are furthest apart). The diameter of \(P \) can trivially be computed in \(O(n^2) \) time (assuming that the distance between points can be computed in \(O(1) \)). However, show that in \(O(n) \) time a 2-approximation of the diameter can be computed. That is, a number \(\Lambda' \) such that:

\[\Lambda' \leq \Lambda \leq 2 \cdot \Lambda'. \]

10pts.