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Given a set P of points: compute the smallest enclosing disk.



Naming and Special Cases

Naming:
» P, the set of points
» md(P), the smallest enclosing disk of P

Special cases:
» For P = () set md(P) = 0.
» For P = {p} set md(P) = p.



Uniqueness

Lemma 1
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For any point set P, the smallest enclosing disk md(P) is unique.

Proof.
Suppose there are two different smallest enclosing disks
Dy = (c1,7) and Dy = (co,7), with P C Dy and P C Ds.

The disk D,, with center (c; + ¢2)/2 and radius sqrt(r? — a?),
where ¢ is half the distance of ¢; and ¢, also contains P.

Contradiction, since the radius of D,, is smaller.



Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk md(P) is unique.

Proof.
Suppose there are two different smallest enclosing disks
Dy = (c1,7) and Dy = (co,7), with P C Dy and P C Ds.

The disk D,, with center (c; + ¢2)/2 and radius sqrt(r? — a?),
where ¢ is half the distance of ¢; and ¢, also contains P.

Contradiction, since the radius of D,, is smaller. ]

It follows that the problem is well defined for P # ().



Algorithmic ldeas?

Brain Storming :)



Algorithm

Algorithm 1 Function mindisk(P)

1. if P = () then

2: D = @;

3. else

4:  choose random p € P;

5. D := mindisk(P — {p});

6: if p& D then

7: D := mindisk_b(P — {p},p);
8. endif

9: end if

10: return D;




Sketch Complexity Analysis

» Assume that cost for mindisk_b(A, p) costs c|A].
» Cost for mindisk(P) is:

t(IPl) = t(P|=1)+1+c(|P|—1)Prob(p & md(P —{p}))
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Sketch Complexity Analysis

» Assume that cost for mindisk_b(A, p) costs c|A].
» Cost for mindisk(P) is:

t(IPl) = t(P|=1)+1+c(|P|—1)Prob(p & md(P —{p}))
< t(|P|—1)+1+3¢c(|P]—1)/|P]|
< t(JP|-1)+1+3c
< (1+43¢)n

Prob(p ¢ P—{p}) < % + Backward Analysis!!!



Minimum Disk with Boundary Constraints

Definition 2
Let P and R be finite point sets in R?, PU R # (). Then
mdy (P, B) is the smallest enclosing disk of P U R with
R C Omdy(P, R) if it exists.
Obviously:

» mdy(P,0) = md(P)

> 'mdb(P UR, (Z)) C mdb(P, R)



Algorithm

Algorithm 2 Function mindisk_b(P,R)

1. if P =0 then
2: D = mdb((D,R);

3. else

4. choose random p € P;

5. D := mindisk_b(P — {p}, R);

6: if p& D then

7: D := mindisk_b(P — {p}, RU {p});
8: end if

9: end if

10: return D,

Algorithm 3 Function mindisk(P)

1: return mindisk_b(P, 0);




Algebraic Formulation

Definition 3 (Algebraic Formulation)
A disk D(gq,r) can be define via function

flo)=1/r"-|lp—ql]%,

that is:

p€ D(g,r) = f(p) <1
p€9D(q,7) & f(p) =1



Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks D1 = D(q1,71) and Dy = D(q2,72) define disk D),
for A € [0,1] via function:

L) =Afilp) + (1 =N fae(p) <1
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Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks D1 = D(q1,71) and Dy = D(q2,72) define disk D),
for A € [0,1] via function:

L) =Afilp) + (1 =N fae(p) <1

v

DN Dy C Dy
0D1 N 0Dy C 0Dy,
D) is a disk

ry is smaller than \ )
max(ry, ) S

D1 D‘Z

v

v

v

Proof on board or exercise ;)



mdy(P, R) is well defined

Lemma 5
If there exists a disk containing P with R on its boundary, then
mdy(P, R) is well defined.

Proof.
Suppose there are two discs D1 and Dy with same radius that
contain P and with R on boundary.

Consider Dy for Dy and D5, since R C D1 N dDs it follows that
R C D,.

Same argument as Lemma 1 (
gives Dy /5, which has smaller ra- (k
dius; contradiction.

D,
D,



mdy, - Point on Boundary

Lemma 6

Provided mdy(P, R) exists

and

p € P withp ¢ D1 = mdy(P — {p}, R),
then:

mdy(P, R) = mdy(P — {p}, RU {p})
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mdy, - Point on Boundary

Lemma 6

Provided mdy(P, R) exists

and 7
p € P withp ¢ D1 = mdy(P — {p}, R),

then:

mdy(P, R) = mdy(P — {p}, RU {p})

\

Proof.
Assume p € Dy = mdy(P, R) but p & 0D2.

Consider continues deformation of Dy:
There exists a X' € (0, 1) such that p € 9Dy/(Dy, D1).

The radius of D, is smaller than the one of Dy; contradiction. [



At most three points required

Lemma 7
Provided mdy(P, R) exists, there is S C P with
|S| < max{0,3 — |R|} such that mdy(P, R) = mdy(S, R)

Proof.
Obvious since a disk is defined by at most 3 points on the
boundary. O

(Exercise)



Improved Algorithm

Algorithm 4 Function mindisk_b(P,R)

1. if P =( or |R| = 3 then
2: D = mdb(V),R);

3: else

4:  choose random p € P;

5. D := mindisk_b(P — {p}, R);

6: if p& D then

7: D := mindisk_b(P — {p}, RU {p});
8 end if

9: end if

10: return D;




Complexity

Complexity:
> Let t;(n) the expected number of calls of p & D in
mindisk b(P,R) for |[P| =n and |R| = 3 — j, then

We would like to know t3(n).
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Complexity

Complexity:
» Let ¢j(n) the expected number of calls of p € D in
mindisk b(P,R) for |[P| =n and |R| = 3 — j, then
We would like to know t3(n).
> to(n) =0 since |[R| =3
» t;(0) =0since P=0
> ti(n) <tj(n—1)+ 14+ 2t;_1(n—1)for 0 <5 <3
It follows:
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Complexity

Complexity:
» Let ¢j(n) the expected number of calls of p € D in
mindisk b(P,R) for |[P| =n and |R| = 3 — j, then
We would like to know t3(n).
> to(n) =0 since |[R| =3
» t;(0) =0since P=0
> ti(n) <tj(n—1)+ 14+ 2t;_1(n—1)for 0 <5 <3
It follows:
> tl(n) S
> ta(n) < 3n
> tg(n) <1



Generalization to smallest enclosing ball in R¢

» Rename function to minball ;)
> Replace constant 3by d =d +1
> tj(n) = ny! Zi:l H<(e—1)jn (Exercise)

Theorem 8
The smallest enclosing ball of a set of n points in R can be
computed in expected time O(d0!n), where § = d + 1.



Generalization to smallest enclosing ball in R¢

» Rename function to minball ;)

» Replace constant 3 by § =d+1

> tj(n) = ny! Zi:l H<(e—1)jn (Exercise)
Theorem 8

The smallest enclosing ball of a set of n points in R can be
computed in expected time O(d0!n), where § = d + 1.

Remark: It is also possible to extend the algorithm to ellipsoids.



Algorithm for Ball in R?

Algorithm 5 Function minball_b(P,R)

1. if P =0 or |R| =0 then
2: D = mbb((Z),R);

3: else

4:  choose random p € P;

5. D := minball_b(P — {p}, R);

6: if p& D then

7: D := minball_b(P — {p}, RU {p});
8 end if

9: end if

10: return D;




Practical Considerations

» For points in high dimension d the expensive operation is
computation of mby(0, R)

> Let sj(n) the expected number of calls of mb, (0, R) in
minball b(P,R) for |P| =n and |R| = J — j, where
0=d+1.
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Practical Considerations

» For points in high dimension d the expensive operation is
computation of mby(0, R)
> Let sj(n) the expected number of calls of mb, (0, R) in
minball b(P,R) for |P| =n and |R| = J — j, where
d=d+1.
» so(n) =1 since R is full
» 5;(0) = 1since P =)
» s5i(n) <sj(n—1)+2s; 1(n—1)for0<j <9
» Claim: s;(n) < (1+ H,)’, where H, = >"1_, + (Exercise)
» Since H, <1+ In, it follows that the number of expected
calls to minball b is upper bounded by (2 + In)°.



Formulation with one Permutation

Algorithm 6 Function mindisk(P) — P an ordered sequence

1. Compute random permutation 7 for 1...|P)|
2: return mindisk_b(7(P), 0);

Algorithm 7 Function mindisk_b(P,R) — P an ordered sequence

1. if P =( or |R| =3 then
2: D = mdb((b,R);

3: else

4 p:=last(P);

5. D := mindisk_b(P — {p}, R);

6: if p& D then

7: D := mindisk_b(P — {p}, RU {p});
8: endif

9: end if

10: return D:;




Complexity Analysis on Permutation

v

For sequence P, let T'(P, R) be the cost of mindisk_b(P, R).
Let ¢;(n) be the expected value of T'(P, R) over all possible
insertion sequences S, where j =0 — |R).
Obviously to(n) = 0 and ¢;(0) = 0 remain.
We want to know:

tsn) = o 3 T(x(P).0)

n
TESH

v

v

v

v

Or in general:

tj(n) = = Y T(x(P),R), with |R| =6 —j.
TES
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L) = o 3 T(x(P),R)

TESn
by = 3D
1
* G X TP -k
p=n(P[n]
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N X TP) -~ k)
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Complexity Analysis on Permutation — Continued

L3 Tw(P). R)
TESH
>
ﬁ S T(x(P) - {p}. R)

TESR
p=n(P)[n]

x(p & mdy(P — {p}, R)) -

o L TP b RUGY)]

TESH
p=n(P)[n]

DML
n

peEP

1
R Z T(o(P —{p}),R)

" o€Sn_1

X & mdy(P — {p}, R)) - ﬁ S T(e(P - {p}), RU{p}) ]
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Complexity Analysis on Permutation — Continued

LS T(P). R
TESH
ML

ﬁ S T(o(P - {p}), R)

oESy 1

x(p & mdy(P — {p}, R)) -

1
- 1
P

tj(n—1)
X & mdp(P — {p},R)) - tj—1(n—1) ]

%1)! > T(e(P—{p}),RU{p})]
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Complexity Analysis on Permutation — Continued

b = o S TE(P),R)

TESH

by = 3

+ ti(n—1)
+ x( € mdy(P —{p},R)) - tj—1(n—1) ]



Complexity Analysis on Permutation — Continued
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Complexity Analysis on Permutation — Continued
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Complexity Analysis on Permutation — Continued

) = o 3 TP, R

TESH
1

S
g
IA

n
—ti(n—1
+ n](n )
3
2t _1
+ n j—1(n )

tiln) < 14+tj(n—1)+ % -tj—1(n — 1), which we know.



Complexity Analysis on Permutation — Continued

bn) = o 3 T(x(P),R)

TESH

1

n

Ztin =1
+ n](n )

SH
g
IN

3
2t a(n—1
+ b 1(n )

tiln) < 1+4+tj(n—1)+ % ~tj—1(n — 1), which we know.

Thus, as before t3(n) = 10n.



Summary

Algorithm:
» algorithm for computing smallest enclosing disk
» expected O(n) time
» O(n) space
> extendable to higher dimensions

Technique: Randomized Incremental Construction (RIC)
» Usually easy to implement
» Complexity analysis may be more tricky

» Backward Analysis



