Geometric Algorithms Smallest Enclosing Disk

Michael Hemmer

April 15, 2014

Sources

► Emo Welzl

Smallest enclosing disks (balls and ellipsoids)
in New Results and New Trends in Computer Science
Lecture Notes in Computer Science 555 pp. 359-370
Springer-Verlag

Problem Definition

Given a set P of points:

Problem Definition

Given a set P of points: compute the smallest enclosing disk.

Naming and Special Cases

Naming:

- P, the set of points
- ightharpoonup md(P), the smallest enclosing disk of P

Special cases:

- $\qquad \qquad \mathbf{For} \ P = \emptyset \ \mathsf{set} \ md(P) = \emptyset.$
- $\qquad \qquad \mathbf{For} \ P = \{p\} \ \mathsf{set} \ md(P) = p.$

Lemma 1

For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1

For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1

For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1 For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1 For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1 For any point set P, the smallest enclosing disk md(P) is unique.

Lemma 1

For any point set P, the smallest enclosing disk md(P) is unique.

Proof.

Suppose there are two different smallest enclosing disks $D_1=(c_1,r)$ and $D_2=(c_2,r)$, with $P\subset D_1$ and $P\subset D_2$.

The disk D_m with center $(c_1 + c_2)/2$ and radius $sqrt(r^2 - a^2)$, where a is half the distance of c_1 and c_2 , also contains P.

Contradiction, since the radius of D_m is smaller.

Lemma 1

For any point set P, the smallest enclosing disk md(P) is unique.

Proof.

Suppose there are two different smallest enclosing disks $D_1=(c_1,r)$ and $D_2=(c_2,r)$, with $P\subset D_1$ and $P\subset D_2$.

The disk D_m with center $(c_1 + c_2)/2$ and radius $sqrt(r^2 - a^2)$, where a is half the distance of c_1 and c_2 , also contains P.

Contradiction, since the radius of D_m is smaller.

It follows that the problem is well defined for $P \neq \emptyset$.

Algorithmic Ideas?

Brain Storming:)

Algorithm

Algorithm 1 Function mindisk(P)

```
1: if P = \emptyset then

2: D := \emptyset;

3: else

4: choose random p \in P;

5: D := \operatorname{mindisk}(P - \{p\});

6: if p \notin D then

7: D := \operatorname{mindisk\_b}(P - \{p\}, p);

8: end if

9: end if

10: return D;
```

- ▶ Assume that cost for mindisk_b(A, p) costs c|A|.
- Cost for mindisk(P) is:

$$t(|P|) \ = \ t(|P|-1) + 1 + c(|P|-1)Prob(p \not\in md(P-\{p\}))$$

- ▶ Assume that cost for mindisk_b(A, p) costs c|A|.
- Cost for mindisk(P) is:

$$t(|P|) \ = \ t(|P|-1) + 1 + c(|P|-1)Prob(p \not\in md(P-\{p\}))$$

$$Prob(p \notin P - \{p\}) \leq \frac{3}{|P|} \leftarrow \mathsf{Backward} \ \mathsf{Analysis!!!}$$

- ▶ Assume that cost for mindisk_b(A, p) costs c|A|.
- ► Cost for mindisk(P) is:

$$\begin{array}{lcl} t(|P|) & = & t(|P|-1) + 1 + c(|P|-1) Prob(p \not\in md(P-\{p\})) \\ & \leq & t(|P|-1) + 1 + 3c(|P|-1)/|P| \end{array}$$

$$Prob(p \notin P - \{p\}) \leq \frac{3}{|P|} \leftarrow \mathsf{Backward\ Analysis!!!}$$

- ▶ Assume that cost for mindisk_b(A, p) costs c|A|.
- Cost for mindisk(P) is:

$$\begin{array}{lcl} t(|P|) & = & t(|P|-1) + 1 + c(|P|-1) Prob(p \not\in md(P-\{p\})) \\ & \leq & t(|P|-1) + 1 + 3c(|P|-1)/|P| \\ & \leq & t(|P|-1) + 1 + 3c \end{array}$$

$$Prob(p \notin P - \{p\}) \leq \frac{3}{|P|} \leftarrow \mathsf{Backward} \ \mathsf{Analysis!!!}$$

- ▶ Assume that cost for mindisk_b(A, p) costs c|A|.
- ► Cost for mindisk(P) is:

$$\begin{array}{lll} t(|P|) & = & t(|P|-1) + 1 + c(|P|-1) Prob(p \not\in md(P-\{p\})) \\ & \leq & t(|P|-1) + 1 + 3c(|P|-1)/|P| \\ & \leq & t(|P|-1) + 1 + 3c \\ & \leq & (1+3c)n \end{array}$$

$$Prob(p \notin P - \{p\}) \leq \frac{3}{|P|} \leftarrow \mathsf{Backward\ Analysis!!!}$$

Minimum Disk with Boundary Constraints

Definition 2

Let P and R be finite point sets in \mathbb{R}^2 , $P \cup R \neq \emptyset$. Then $md_b(P,B)$ is the smallest enclosing disk of $P \cup R$ with $R \subset \partial md_b(P,R)$ if it exists.

Obviously:

- $ightharpoonup md_b(P,\emptyset) = md(P)$
- $Md_b(P \cup R, \emptyset) \subset md_b(P, R)$

Algorithm

Algorithm 2 Function mindisk_b(P,R)

```
1: if P = \emptyset then

2: D := md_b(\emptyset, R);

3: else

4: choose random p \in P;

5: D := \text{mindisk\_b}(P - \{p\}, R);

6: if p \notin D then

7: D := \text{mindisk\_b}(P - \{p\}, R \cup \{p\});

8: end if

9: end if

10: return D;
```

Algorithm 3 Function mindisk(P)

1: return mindisk_b(P, \emptyset);

Algebraic Formulation

Definition 3 (Algebraic Formulation)

A disk D(q,r) can be define via function

$$f(p) = 1/r^2 \cdot ||p - q||^2,$$

that is:

$$p \in D(q, r) \Leftrightarrow f(p) \le 1$$
$$p \in \partial D(q, r) \Leftrightarrow f(p) = 1$$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- $ightharpoonup r_{\lambda}$ is smaller than $\max(r_1, r_2)$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $ightharpoonup D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- r_{λ} is smaller than $\max(r_1, r_2)$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $ightharpoonup D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- r_{λ} is smaller than $\max(r_1, r_2)$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $ightharpoonup D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- r_{λ} is smaller than $\max(r_1, r_2)$

Definition 4 (Convex Combination)

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $ightharpoonup D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- r_{λ} is smaller than $\max(r_1, r_2)$

Definition 4 (Convex Combination)

For two disks $D_1=D(q_1,r_1)$ and $D_2=D(q_2,r_2)$ define disk D_λ for $\lambda\in[0,1]$ via function:

$$f_{\lambda}(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \le 1$$

- $ightharpoonup D_1 \cap D_2 \subset D_{\lambda}$
- $\partial D_1 \cap \partial D_2 \subset \partial D_{\lambda}$
- $ightharpoonup D_{\lambda}$ is a disk
- r_{λ} is smaller than $\max(r_1, r_2)$

Proof on board or exercise;)

$md_b(P,R)$ is well defined

Lemma 5

If there exists a disk containing P with R on its boundary, then $md_b(P,R)$ is well defined.

Proof.

Suppose there are two discs D_1 and D_2 with same radius that contain P and with R on boundary.

Consider D_{λ} for D_1 and D_2 , since $R \subset \partial D_1 \cap \partial D_2$ it follows that $R \subset D_{\lambda}$.

Same argument as Lemma 1 gives $D_{1/2}$, which has smaller radius; contradiction.

md_b - Point on Boundary

Lemma 6

Provided $md_b(P,R)$ exists and $p\in P$ with $p\not\in D_1=md_b(P-\{p\},R)$, then: $md_b(P,R)=md_b(P-\{p\},R\cup\{p\})$

md_b - Point on Boundary

Lemma 6

Provided $md_b(P,R)$ exists and $p \in P$ with $p \notin D_1 = md_b(P - \{p\}, R)$, then: then: $md_b(P, R) = md_b(P - \{p\}, R \cup \{p\})$

Proof.

Assume $p \in D_2 = md_b(P,R)$ but $p \notin \partial D_2$

 D_2

md_b - Point on Boundary

Lemma 6

Provided $md_b(P,R)$ exists and $p \in P$ with $p \notin D_1 = md_b(P - \{p\},R)$, then:

$$md_b(P, R) = md_b(P - \{p\}, R \cup \{p\})$$

Proof.

Assume $p \in D_2 = md_b(P, R)$ but $p \notin \partial D_2$

Consider continues deformation of D_{λ} :

There exists a $\lambda' \in (0,1)$ such that $p \in \partial D_{\lambda'}(D_0,D_1)$.

The radius of D_{λ} is smaller than the one of D_2 ; contradiction.

At most three points required

Lemma 7

Provided $md_b(P,R)$ exists, there is $S \subset P$ with $|S| \leq \max\{0,3-|R|\}$ such that $md_b(P,R) = md_b(S,R)$

Proof.

Obvious since a disk is defined by at most $\boldsymbol{3}$ points on the boundary.

(Exercise)

Improved Algorithm

Algorithm 4 Function mindisk_b(P,R)

```
1: if P = \emptyset or |R| = 3 then

2: D := md_b(\emptyset, R);

3: else

4: choose random p \in P;

5: D := \text{mindisk\_b}(P - \{p\}, R);

6: if p \notin D then

7: D := \text{mindisk\_b}(P - \{p\}, R \cup \{p\});

8: end if

9: end if

10: return D;
```

Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P, R) for |P| = n and |R| = 3 - j, then We would like to know $t_3(n)$.

Complexity:

▶ Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since |R| = 3
- $t_i(0) = 0$ since $P = \emptyset$
- $t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1) \text{ for } 0 < j \le 3$

Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

•
$$t_0(n) = 0$$
 since $|R| = 3$

$$t_j(0) = 0$$
 since $P = \emptyset$

$$t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1) \text{ for } 0 < j \le 3$$

$$ightharpoonup t_1(n) \leq n$$

$$t_2(n) \le t_2(n-1) + 1 + \frac{2}{n}t_1(n-1)$$

$$t_3(n) \le t_3(n-1) + 1 + \frac{3}{n}t_2(n-1)$$

Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

•
$$t_0(n) = 0$$
 since $|R| = 3$

•
$$t_j(0) = 0$$
 since $P = \emptyset$

$$t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1)$$
 for $0 < j \le 3$

$$ightharpoonup t_1(n) \leq n$$

$$t_2(n) \le t_2(n-1) + 1 + \frac{2}{n}n$$

$$t_3(n) \le t_3(n-1) + 1 + \frac{3}{n}t_2(n-1)$$

Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since |R| = 3
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1)$ for $0 < j \le 3$

- $ightharpoonup t_1(n) \le n$
- $t_2(n) \le t_2(n-1) + 3$
- $t_3(n) \le t_3(n-1) + 1 + \frac{3}{n}t_2(n-1)$

Complexity:

▶ Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

•
$$t_0(n) = 0$$
 since $|R| = 3$

$$t_j(0) = 0$$
 since $P = \emptyset$

$$t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1) \text{ for } 0 < j \le 3$$

- $ightharpoonup t_1(n) \le n$
- ▶ $t_2(n) \le 3n$
- $t_3(n) \le t_3(n-1) + 1 + \frac{3}{n}t_2(n-1)$

Complexity:

▶ Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

•
$$t_0(n) = 0$$
 since $|R| = 3$

$$t_j(0) = 0$$
 since $P = \emptyset$

$$t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1) \text{ for } 0 < j \le 3$$

$$ightharpoonup t_1(n) \le n$$

▶
$$t_2(n) \le 3n$$

$$t_3(n) \le t_3(n-1) + 1 + \frac{3}{n}3n$$

Complexity:

▶ Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since |R| = 3
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1)$ for $0 < j \le 3$

- $ightharpoonup t_1(n) \leq n$
- ▶ $t_2(n) \le 3n$
- $t_3(n) \le t_3(n-1) + 10$

Complexity:

▶ Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk_b(P,R) for |P|=n and |R|=3-j, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since |R| = 3
- $t_j(0) = 0$ since $P = \emptyset$
- ▶ $t_j(n) \le t_j(n-1) + 1 + \frac{j}{n}t_{j-1}(n-1)$ for $0 < j \le 3$

- $ightharpoonup t_1(n) \leq n$
- ▶ $t_2(n) \le 3n$
- ▶ $t_3(n) \le 10n$

Generalization to smallest enclosing ball in \mathbb{R}^d

- Rename function to minball;)
- ▶ Replace constant 3 by $\delta = d + 1$

$$t_j(n) = nj! \sum_{k=1}^j \frac{1}{k!} \le (e-1)j!n$$
 (Exercise)

Theorem 8

The smallest enclosing ball of a set of n points in \mathbb{R}^d can be computed in expected time $O(\delta \delta! n)$, where $\delta = d + 1$.

Generalization to smallest enclosing ball in \mathbb{R}^d

- Rename function to minball;)
- ▶ Replace constant 3 by $\delta = d + 1$

$$t_j(n) = nj! \sum_{k=1}^j \frac{1}{k!} \le (e-1)j!n$$
 (Exercise)

Theorem 8

The smallest enclosing ball of a set of n points in \mathbb{R}^d can be computed in expected time $O(\delta \delta! n)$, where $\delta = d + 1$.

Remark: It is also possible to extend the algorithm to ellipsoids.

Algorithm for Ball in \mathbb{R}^d

Algorithm 5 Function minball_b(P,R)

```
1: if P = \emptyset or |R| = \delta then
2: D := mb_b(\emptyset, R);
3: else
4: choose random p \in P;
5: D := \text{minball\_b}(P - \{p\}, R);
6: if p \notin D then
7: D := \text{minball\_b}(P - \{p\}, R \cup \{p\});
8: end if
9: end if
10: return D;
```

- ▶ For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in minball_b(P, R) for |P|=n and $|R|=\delta-j$, where $\delta=d+1$.

- ▶ For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in minball_b(P,R) for |P|=n and $|R|=\delta-j$, where $\delta=d+1$.
 - $s_0(n) = 1$ since R is full
 - $ightharpoonup s_j(0) = 1 \text{ since } P = \emptyset$
 - $s_j(n) \le s_j(n-1) + \frac{j}{n}s_{j-1}(n-1)$ for $0 < j \le \delta$

- ▶ For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in minball_b(P,R) for |P|=n and $|R|=\delta-j$, where $\delta=d+1$.
 - $s_0(n) = 1$ since R is full
 - $s_j(0) = 1$ since $P = \emptyset$
 - $s_j(n) \le s_j(n-1) + \frac{j}{n}s_{j-1}(n-1)$ for $0 < j \le \delta$
- ▶ Claim: $s_j(n) \leq (1 + H_n)^j$, where $H_n = \sum_{k=1}^n \frac{1}{k}$ (Exercise)

- ▶ For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in minball_b(P,R) for |P|=n and $|R|=\delta-j$, where $\delta=d+1$.
 - $s_0(n) = 1$ since R is full
 - $s_j(0) = 1$ since $P = \emptyset$
 - $s_j(n) \le s_j(n-1) + \frac{j}{n}s_{j-1}(n-1)$ for $0 < j \le \delta$
- ▶ Claim: $s_j(n) \leq (1 + H_n)^j$, where $H_n = \sum_{k=1}^n \frac{1}{k}$ (Exercise)
- ▶ Since $H_n \le 1 + \ln$, it follows that the number of expected calls to minball_b is upper bounded by $(2 + \ln)^{\delta}$.

Formulation with one Permutation

Algorithm 6 Function mindisk(P) - P an ordered sequence

- 1: Compute random permutation π for $1 \dots |P|$
- 2: return mindisk_b($\pi(P)$, \emptyset);

Algorithm 7 Function mindisk_b(P,R) – P an ordered sequence

```
1: if P = \emptyset or |R| = 3 then
 2: D := md_b(\emptyset, R);
 3: else
 4: p := last(P):
5: D := mindisk_b(P - \{p\}, R);
 6: if p \notin D then
         D := \mathsf{mindisk\_b}(P - \{p\}, R \cup \{p\});
      end if
 9: end if
10: return D;
```

Complexity Analysis on Permutation

- ▶ For sequence P, let T(P,R) be the cost of $mindisk_b(P,R)$.
- Let $t_j(n)$ be the expected value of T(P,R) over all possible insertion sequences S_n , where $j=\delta-|R|$.
- ▶ Obviously $t_0(n) = 0$ and $t_j(0) = 0$ remain.
- We want to know:

$$t_3(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), \emptyset)$$

Or in general:

$$t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R)$$
, with $|R| = \delta - j$.

$$t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} [T(\pi(P) - \{p\}, R) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\})]]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} [T(\pi(P) - \{p\}, R) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\})]]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} [T(\pi(P) - \{p\}, R) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\})]]$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} T(\pi(P) - \{p\}, R)$$

$$+ \chi(p \notin md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\pi \in S_{n}} T(\pi(P) - \{p\}, R \cup \{p\})]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} T(\pi(P) - \{p\}, R)$$

$$+ \chi(p \notin md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} T(\pi(P) - \{p\}, R \cup \{p\})]$$

$$\begin{split} t_{j}(n) &= \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\ t_{j}(n) &= \frac{1}{n} \sum_{p \in P} [1 \\ &+ \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} T(\pi(P) - \{p\}, R) \\ &+ \chi(p \not\in md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\substack{\pi \in S_{n} \\ p = \pi(P)[n]}} T(\pi(P) - \{p\}, R \cup \{p\}) \] \\ t_{j}(n) &= \frac{1}{n} \sum_{p \in P} [1 \\ &+ \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R) \\ &+ \chi(p \not\in md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n}} T(\sigma(P - \{p\}), R \cup \{p\}) \] \end{split}$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R \cup \{p\})]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R \cup \{p\})]$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + t_{j}(n-1) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + t_{j}(n-1) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)]$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{1}{n} \sum_{p \in P} [1 + t_{j}(n-1) + \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)]$$

$$t_{j}(n) = \frac{n}{n} + \frac{1}{n} \sum_{p \in P} t_{j}(n-1) + \frac{1}{n} \sum_{p \in P} \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{n}{n} + \frac{1}{n} \sum_{p \in P} t_{j}(n-1) + \frac{1}{n} \sum_{p \in P} \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) = \frac{n}{n}$$

$$+ \frac{1}{n} \sum_{p \in P} t_{j}(n-1)$$

$$+ \frac{1}{n} \sum_{p \in P} \chi(p \notin md_{b}(P - \{p\}, R)) \cdot t_{j-1}(n-1)$$

$$t_{j}(n) \leq 1$$

$$+ \frac{n}{n} t_{j}(n-1)$$

$$+ \frac{3}{n} \cdot t_{j-1}(n-1)$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) \leq 1$$

$$+ \frac{n}{n} t_{j}(n-1)$$

$$+ \frac{3}{n} \cdot t_{j-1}(n-1)$$

$$t_{j}(n) = \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R)$$

$$t_{j}(n) \leq 1$$

$$+ \frac{n}{n} t_{j}(n-1)$$

$$+ \frac{3}{n} \cdot t_{j-1}(n-1)$$

$$\begin{array}{lcl} t_{j}(n) & = & \dfrac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\ \\ t_{j}(n) & \leq & 1 \\ & + & \dfrac{n}{n} t_{j}(n-1) \\ & + & \dfrac{3}{n} \cdot t_{j-1}(n-1) \\ \\ t_{j}(n) & \leq & 1 + t_{j}(n-1) + \dfrac{j}{n} \cdot t_{j-1}(n-1), \text{ which we know.} \end{array}$$

$$\begin{array}{lcl} t_{j}(n) & = & \frac{1}{n!} \sum_{\pi \in S_{n}} T(\pi(P), R) \\ \\ t_{j}(n) & \leq & 1 \\ & + & \frac{n}{n} t_{j}(n-1) \\ & + & \frac{3}{n} \cdot t_{j-1}(n-1) \\ \\ t_{j}(n) & \leq & 1 + t_{j}(n-1) + \frac{j}{n} \cdot t_{j-1}(n-1), \text{ which we know.} \end{array}$$

Thus, as before $t_3(n) = 10n$.

Summary

Algorithm:

- algorithm for computing smallest enclosing disk
- ightharpoonup expected O(n) time
- ightharpoonup O(n) space
- extendable to higher dimensions

Technique: Randomized Incremental Construction (RIC)

- Usually easy to implement
- Complexity analysis may be more tricky
- Backward Analysis