Geometric Algorithms
Smallest Enclosing Disk

Michael Hemmer

April 15, 2014
Sources

Emo Welzl

Smallest enclosing disks (balls and ellipsoids)

in New Results and New Trends in Computer Science
Lecture Notes in Computer Science 555 pp. 359-370
Springer-Verlag
Problem Definition

Given a set P of points:
Problem Definition

Given a set P of points: compute the smallest enclosing disk.
Naming and Special Cases

Naming:

- P, the set of points
- $md(P)$, the smallest enclosing disk of P

Special cases:

- For $P = \emptyset$ set $md(P) = \emptyset$.
- For $P = \{p\}$ set $md(P) = p$.
Lemma 1

For any point set P, the smallest enclosing disk $md(P)$ is unique.
Lemma 1

For any point set P, the smallest enclosing disk $md(P)$ is unique.
Uniqueness

Lemma 1

For any point set P, the smallest enclosing disk $md(P)$ is unique.
Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $md(P)$ is unique.
Lemma 1

For any point set P, the smallest enclosing disk $md(P)$ is unique.
Uniqueness

Lemma 1

For any point set P, the smallest enclosing disk $md(P)$ is unique.
Uniqueness

Lemma 1
For any point set P, the smallest enclosing disk $md(P)$ is unique.

Proof.
Suppose there are two different smallest enclosing disks $D_1 = (c_1, r)$ and $D_2 = (c_2, r)$, with $P \subset D_1$ and $P \subset D_2$.

The disk D_m with center $(c_1 + c_2)/2$ and radius $\sqrt{r^2 - a^2}$, where a is half the distance of c_1 and c_2, also contains P.

Contradiction, since the radius of D_m is smaller. \qed
Lemma 1
For any point set P, the smallest enclosing disk $md(P)$ is unique.

Proof.
Suppose there are two different smallest enclosing disks $D_1 = (c_1, r)$ and $D_2 = (c_2, r)$, with $P \subset D_1$ and $P \subset D_2$.

The disk D_m with center $(c_1 + c_2)/2$ and radius $\sqrt{r^2 - a^2}$, where a is half the distance of c_1 and c_2, also contains P.

Contradiction, since the radius of D_m is smaller.

It follows that the problem is well defined for $P \neq \emptyset$.
Algorithmic Ideas?

Brain Storming :)
Algorithm

Algorithm 1 Function mindisk(P)

1: if $P = \emptyset$ then
2: $D := \emptyset$;
3: else
4: choose random $p \in P$;
5: $D := \text{mindisk}(P - \{p\})$;
6: if $p \notin D$ then
7: $D := \text{mindisk}_b(P - \{p\}, p)$;
8: end if
9: end if
10: return D;
Sketch Complexity Analysis

- Assume that cost for \(\text{mindisk}_b(A, p) \) costs \(c|A| \).
- Cost for \(\text{mindisk}(P) \) is:

\[
t(|P|) = t(|P| - 1) + 1 + c(|P| - 1) \text{Prob}(p \not\in \text{md}(P - \{p\}))
\]
Sketch Complexity Analysis

- Assume that cost for $\text{mindisk}_b(A, p)$ costs $c|A|$.
- Cost for $\text{mindisk}(P)$ is:

$$t(|P|) = t(|P| - 1) + 1 + c(|P| - 1) \cdot \text{Prob}(p \notin \text{md}(P - \{p\}))$$

$$\text{Prob}(p \notin P - \{p\}) \leq \frac{3}{|P|} \quad \text{← Backward Analysis!!}$$
Sketch Complexity Analysis

- Assume that cost for $\text{mindisk}_b(A, p)$ costs $c|A|$.
- Cost for $\text{mindisk}(P)$ is:

\[
t(|P|) = t(|P| - 1) + 1 + c(|P| - 1) \text{Prob}(p \not\in \text{md}(P - \{p\})) \\
\leq t(|P| - 1) + 1 + 3c(|P| - 1)/|P|
\]

\[
\text{Prob}(p \not\in P - \{p\}) \leq \frac{3}{|P|} \quad \leftarrow \text{Backward Analysis!!!}
\]
Sketch Complexity Analysis

- Assume that cost for \(\text{mindisk}_b(A, p) \) costs \(c|A| \).
- Cost for \(\text{mindisk}(P) \) is:

\[
\begin{align*}
t(|P|) &= t(|P| - 1) + 1 + c(|P| - 1)Prob(p \notin \text{md}(P - \{p\})) \\
&\leq t(|P| - 1) + 1 + 3c(|P| - 1)/|P| \\
&\leq t(|P| - 1) + 1 + 3c
\end{align*}
\]

\[
Prob(p \notin P - \{p\}) \leq \frac{3}{|P|} \leftarrow \text{Backward Analysis!!!}
\]
Sketch Complexity Analysis

- Assume that cost for $\text{mindisk}_b(A, p)$ costs $c|A|$.
- Cost for $\text{mindisk}(P)$ is:

\[
\begin{align*}
t(|P|) &= t(|P| - 1) + 1 + c(|P| - 1) \Pr(p \notin \text{md}(P - \{p\})) \\
&\leq t(|P| - 1) + 1 + 3c(|P| - 1)/|P| \\
&\leq t(|P| - 1) + 1 + 3c \\
&\leq (1 + 3c)n
\end{align*}
\]

\[
\Pr(p \notin P - \{p\}) \leq \frac{3}{|P|} \quad \leftarrow \text{Backward Analysis!!!}
\]
Definition 2
Let P and R be finite point sets in \mathbb{R}^2, $P \cup R \neq \emptyset$. Then $md_b(P, B)$ is the smallest enclosing disk of $P \cup R$ with $R \subset \partial md_b(P, R)$ if it exists.

Obviously:

- $md_b(P, \emptyset) = md(P)$
- $md_b(P \cup R, \emptyset) \subset md_b(P, R)$
Algorithm 2 Function mindisk_b\((P, R)\)

1: \textbf{if } \(P = \emptyset\) \textbf{then}
2: \hspace{1em} \(D := \text{md}_b(\emptyset, R)\);
3: \textbf{else}
4: \hspace{1em} \text{choose random } p \in P;
5: \hspace{1em} \(D := \text{mindisk}_b(P - \{p\}, R)\);
6: \hspace{1em} \textbf{if } p \notin D \textbf{ then}
7: \hspace{2em} \(D := \text{mindisk}_b(P - \{p\}, R \cup \{p\})\);
8: \hspace{2em} \textbf{end if}
9: \textbf{end if}
10: \textbf{return } D;

Algorithm 3 Function mindisk\((P)\)

1: \textbf{return } \text{mindisk}_b(P, \emptyset);
Definition 3 (Algebraic Formulation)

A disk $D(q, r)$ can be defined via function

$$f(p) = 1/r^2 \cdot ||p - q||^2,$$

that is:

$$p \in D(q, r) \iff f(p) \leq 1$$

$$p \in \partial D(q, r) \iff f(p) = 1$$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$

Proof on board or exercise ;)
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda)f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0, 1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$
Convex Combination of Disks

Definition 4 (Convex Combination)

For two disks $D_1 = D(q_1, r_1)$ and $D_2 = D(q_2, r_2)$ define disk D_λ for $\lambda \in [0,1]$ via function:

$$f_\lambda(p) = \lambda f_1(p) + (1 - \lambda) f_2(p) \leq 1$$

- $D_1 \cap D_2 \subset D_\lambda$
- $\partial D_1 \cap \partial D_2 \subset \partial D_\lambda$
- D_λ is a disk
- r_λ is smaller than $\max(r_1, r_2)$

Proof on board or exercise ;)

\[\begin{array}{c}
\text{Proof on board or exercise ;)}
\end{array}\]
Lemma 5

If there exists a disk containing \(P \) with \(R \) on its boundary, then \(m d_b(P, R) \) is well defined.

Proof.

Suppose there are two discs \(D_1 \) and \(D_2 \) with same radius that contain \(P \) and with \(R \) on boundary.

Consider \(D_\lambda \) for \(D_1 \) and \(D_2 \), since \(R \subset \partial D_1 \cap \partial D_2 \) it follows that \(R \subset D_\lambda \).

Same argument as Lemma 1 gives \(D_{1/2} \), which has smaller radius; contradiction.
Lemma 6

Provided \(md_b(P, R) \) exists and

\(p \in P \) with \(p \notin D_1 = md_b(P - \{p\}, R) \),

then:

\[md_b(P, R) = md_b(P - \{p\}, R \cup \{p\}) \]
Lemma 6
Provided $md_b(P, R)$ exists and $p \in P$ with $p \notin D_1 = md_b(P - \{p\}, R)$, then:

$$md_b(P, R) = md_b(P - \{p\}, R \cup \{p\})$$

Proof.
Assume $p \in D_2 = md_b(P, R)$ but $p \notin \partial D_2$.

□
Lemma 6

Provided $md_b(P, R)$ exists and $p \in P$ with $p \notin D_1 = md_b(P - \{p\}, R)$, then:

$$md_b(P, R) = md_b(P - \{p\}, R \cup \{p\})$$

Proof.

Assume $p \in D_2 = md_b(P, R)$ but $p \notin \partial D_2$.

Consider continues deformation of D_λ:

There exists a $\lambda' \in (0, 1)$ such that $p \in \partial D_\lambda'(D_0, D_1)$.

The radius of D_λ is smaller than the one of D_2; contradiction.
Lemma 7

Provided $md_b(P, R)$ exists, there is $S \subset P$ with $|S| \leq \max\{0, 3 - |R|\}$ such that $md_b(P, R) = md_b(S, R)$

Proof.
Obvious since a disk is defined by at most 3 points on the boundary.

(Exercise)
Algorithm 4 Function mindisk_b(P,R)

1: if $P = \emptyset$ or $|R| = 3$ then
2: $D := md_b(\emptyset, R)$;
3: else
4: choose random $p \in P$;
5: $D := \text{mindisk}_b(P - \{p\}, R)$;
6: if $p \notin D$ then
7: $D := \text{mindisk}_b(P - \{p\}, R \cup \{p\})$;
8: end if
9: end if
10: return D;
Complexity:

- Let $t_j(n)$ the expected number of calls of $p \notin D$ in $\text{mindisk}_b(P, R)$ for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.
Complexity

Complexity:

- Let $t_j(n)$ the expected number of calls of $p \not\in D$ in mindisk_b(P, R) for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since $|R| = 3$
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$
Let $t_j(n)$ the expected number of calls of $p \not\in D$ in $\text{mindisk}_b(P, R)$ for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since $|R| = 3$
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$

It follows:

- $t_1(n) \leq n$
- $t_2(n) \leq t_2(n - 1) + 1 + \frac{2}{n} t_1(n - 1)$
- $t_3(n) \leq t_3(n - 1) + 1 + \frac{3}{n} t_2(n - 1)$
Complexity:

- Let $t_j(n)$ the expected number of calls of $p \notin D$ in `mindisk_b(P, R)` for $|P| = n$ and $|R| = 3 - j$, then

 We would like to know $t_3(n)$.

 - $t_0(n) = 0$ since $|R| = 3$
 - $t_j(0) = 0$ since $P = \emptyset$
 - $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$

It follows:

 - $t_1(n) \leq n$
 - $t_2(n) \leq t_2(n - 1) + 1 + \frac{2}{n} n$
 - $t_3(n) \leq t_3(n - 1) + 1 + \frac{3}{n} t_2(n - 1)$
Complexity:

- Let \(t_j(n) \) the expected number of calls of \(p \notin D \) in \(\text{mindisk}_b(P,R) \) for \(|P| = n\) and \(|R| = 3 - j\), then

We would like to know \(t_3(n) \).

- \(t_0(n) = 0 \) since \(|R| = 3\)
- \(t_j(0) = 0 \) since \(P = \emptyset \)
- \(t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1) \) for \(0 < j \leq 3 \)

It follows:

- \(t_1(n) \leq n \)
- \(t_2(n) \leq t_2(n - 1) + 3 \)
- \(t_3(n) \leq t_3(n - 1) + 1 + \frac{3}{n} t_2(n - 1) \)
Complexity:

Let $t_j(n)$ the expected number of calls of $p \not\in D$ in $\text{mindisk}_b(P,R)$ for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since $|R| = 3$
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n}t_{j-1}(n - 1)$ for $0 < j \leq 3$

It follows:

- $t_1(n) \leq n$
- $t_2(n) \leq 3n$
- $t_3(n) \leq t_3(n - 1) + 1 + \frac{3}{n}t_2(n - 1)$
Complexity:

- Let $t_j(n)$ the expected number of calls of $p \notin D$ in $\text{mindisk}_b(P, R)$ for $|P| = n$ and $|R| = 3 - j$, then

 We would like to know $t_3(n)$.

 - $t_0(n) = 0$ since $|R| = 3$
 - $t_j(0) = 0$ since $P = \emptyset$
 - $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$

 It follows:

 - $t_1(n) \leq n$
 - $t_2(n) \leq 3n$
 - $t_3(n) \leq t_3(n - 1) + 1 + \frac{3}{n} 3n$
Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in mindisk$_b(P,R)$ for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since $|R| = 3$
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$

It follows:

- $t_1(n) \leq n$
- $t_2(n) \leq 3n$
- $t_3(n) \leq t_3(n - 1) + 10$
Complexity:

Let $t_j(n)$ the expected number of calls of $p \notin D$ in $\text{mindisk}_b(P, R)$ for $|P| = n$ and $|R| = 3 - j$, then

We would like to know $t_3(n)$.

- $t_0(n) = 0$ since $|R| = 3$
- $t_j(0) = 0$ since $P = \emptyset$
- $t_j(n) \leq t_j(n - 1) + 1 + \frac{j}{n} t_{j-1}(n - 1)$ for $0 < j \leq 3$

It follows:

- $t_1(n) \leq n$
- $t_2(n) \leq 3n$
- $t_3(n) \leq 10n$
Generalization to smallest enclosing ball in \mathbb{R}^d

- Rename function to minball ;)
- Replace constant 3 by $\delta = d + 1$
- $t_j(n) = nj! \sum_{k=1}^{j} \frac{1}{k!} \leq (e - 1)j!n$ \hspace{1cm} (Exercise)

Theorem 8

The smallest enclosing ball of a set of n points in \mathbb{R}^d can be computed in expected time $O(\delta \delta!n)$, where $\delta = d + 1$.
Generalization to smallest enclosing ball in \mathbb{R}^d

- Rename function to minball ;)
- Replace constant 3 by $\delta = d + 1$
- $t_j(n) = n j! \sum_{k=1}^{j} \frac{1}{k!} \leq (e - 1) j! n$ (Exercise)

Theorem 8

The smallest enclosing ball of a set of n points in \mathbb{R}^d can be computed in expected time $O(\delta \delta! n)$, where $\delta = d + 1$.

Remark: It is also possible to extend the algorithm to ellipsoids.
Algorithm for Ball in \mathbb{R}^d

Algorithm 5 Function $\text{minball}_b(P,R)$

1: if $P = \emptyset$ or $|R| = \delta$ then
2: $D := \text{mb}_b(\emptyset, R)$;
3: else
4: choose random $p \in P$;
5: $D := \text{minball}_b(P - \{p\}, R)$;
6: if $p \not\in D$ then
7: $D := \text{minball}_b(P - \{p\}, R \cup \{p\})$;
8: end if
9: end if
10: return D;
Practical Considerations

- For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in $\text{minball}_b(P, R)$ for $|P| = n$ and $|R| = \delta - j$, where $\delta = d + 1$.

\begin{align*}
\text{Claim: } s_j(n) &\leq (1 + H_n)^j, \text{ where } H_n = \sum_{k=1}^{n} 1/k \text{ (Exercise)}
\end{align*}

Since $H_n \leq 1 + \ln n$, it follows that the number of expected calls to minball_b is upper bounded by $(2 + \ln)\delta$.
Practical Considerations

- For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in $\text{minball}_{b}(P, R)$ for $|P| = n$ and $|R| = \delta - j$, where $\delta = d + 1$.
 - $s_0(n) = 1$ since R is full
 - $s_j(0) = 1$ since $P = \emptyset$
 - $s_j(n) \leq s_j(n - 1) + \frac{j}{n} s_{j-1}(n - 1)$ for $0 < j \leq \delta$

- Claim: $s_j(n) \leq (1 + H_n)j$, where $H_n = \sum_{k=1}^{n} \frac{1}{k}$ (Exercise)
 - Since $H_n \leq 1 + \ln n$, it follows that the number of expected calls to $\text{minball}_{b}(P, R)$ is upper bounded by $(2 + \ln)\delta$.

Practical Considerations

▷ For points in high dimension \(d\) the expensive operation is computation of \(mb_b(\emptyset, R)\)

▷ Let \(s_j(n)\) the expected number of calls of \(mb_b(\emptyset, R)\) in \(\text{minball}_b(P, R)\) for \(|P| = n\) and \(|R| = \delta - j\), where \(\delta = d + 1\).

 ▷ \(s_0(n) = 1\) since \(R\) is full
 ▷ \(s_j(0) = 1\) since \(P = \emptyset\)
 ▷ \(s_j(n) \leq s_j(n - 1) + \frac{j}{n} s_{j-1}(n - 1)\) for \(0 < j \leq \delta\)

▷ Claim: \(s_j(n) \leq (1 + H_n)^j\), where \(H_n = \sum_{k=1}^{n} \frac{1}{k}\) (Exercise)
Practical Considerations

- For points in high dimension d the expensive operation is computation of $mb_b(\emptyset, R)$
- Let $s_j(n)$ the expected number of calls of $mb_b(\emptyset, R)$ in $\minball_b(P, R)$ for $|P| = n$ and $|R| = \delta - j$, where $\delta = d + 1$.
 - $s_0(n) = 1$ since R is full
 - $s_j(0) = 1$ since $P = \emptyset$
 - $s_j(n) \leq s_j(n - 1) + \frac{j}{n} s_{j-1}(n - 1)$ for $0 < j \leq \delta$
- Claim: $s_j(n) \leq (1 + H_n)^j$, where $H_n = \sum_{k=1}^{n} \frac{1}{k}$ (Exercise)
- Since $H_n \leq 1 + \ln n$, it follows that the number of expected calls to \minball_b is upper bounded by $(2 + \ln n)^\delta$.
Formulation with one Permutation

Algorithm 6 Function $\text{mindisk}(P) - P$ an ordered sequence

1: Compute random permutation π for $1 \ldots |P|$
2: return $\text{mindisk}_b(\pi(P), \emptyset)$

Algorithm 7 Function $\text{mindisk}_b(P, R) - P$ an ordered sequence

1: if $P = \emptyset$ or $|R| = 3$ then
2: \quad $D := \text{md}_b(\emptyset, R)$
3: else
4: \quad $p := \text{last}(P)$
5: \quad $D := \text{mindisk}_b(P - \{p\}, R)$
6: \quad if $p \notin D$ then
7: \quad \quad $D := \text{mindisk}_b(P - \{p\}, R \cup \{p\})$
8: \quad end if
9: end if
10: return D
Complexity Analysis on Permutation

For sequence P, let $T(P, R)$ be the cost of $\textit{mindisk}_b(P, R)$.

Let $t_j(n)$ be the expected value of $T(P, R)$ over all possible insertion sequences S_n, where $j = \delta - |R|$.

Obviously $t_0(n) = 0$ and $t_j(0) = 0$ remain.

We want to know:

$$t_3(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), \emptyset)$$

Or in general:

$$t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R), \text{ with } |R| = \delta - j.$$
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} [1 \]

\[+ \frac{1}{(n - 1)!} \sum_{\pi \in S_{n-1}} \sum_{p=\pi(P)[n]} [T(\pi(P) - \{p\}, R) \]

\[+ \chi(p \notin md_b(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\})]] \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} \left[1 + \frac{1}{(n - 1)!} \sum_{\substack{\pi \in S_n \atop p=\pi(P)[n] \neq p}} T(\pi(P) - \{p\}, R) \right. \]

\[+ \chi(p \notin md_b(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\}) \left. \right] \]
$t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R)$

$= \frac{1}{n} \sum_{p \in P} \left[1 + \frac{1}{(n-1)!} \sum_{\pi \in S_n \atop p=\pi(P)[n]} T(\pi(P) - \{p\}, R) \right. $

$+ \chi(p \notin mdb(P - \{p\}, R)) \cdot T(\pi(P) - \{p\}, R \cup \{p\}) \left. \right]$

$= \frac{1}{n} \sum_{p \in P} \left[1 + \frac{1}{(n-1)!} \sum_{\pi \in S_n \atop p=\pi(P)[n]} T(\pi(P) - \{p\}, R) \right. $

$+ \chi(p \notin mdb(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\pi \in S_n \atop p=\pi(P)[n]} T(\pi(P) - \{p\}, R \cup \{p\}) \right]
Complexity Analysis on Permutation – Continued

\[
t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R)
\]

\[
t_j(n) = \frac{1}{n} \sum_{p \in P} [1
\]

\[
+ \frac{1}{(n - 1)!} \sum_{\pi \in S_n} T(\pi(P) - \{p\}, R)
\]

\[
+ \chi(p \notin m_{db}(P - \{p\}, R)) \cdot \frac{1}{(n - 1)!} \sum_{\pi \in S_n} T(\pi(P) - \{p\}, R \cup \{p\})
\]
\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\pi \in S_n \atop p = \pi(P)[n]} T(\pi(P) - \{p\}, R) \]

\[+ \chi(p \notin md_b(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\pi \in S_n \atop p = \pi(P)[n]} T(\pi(P) - \{p\}, R \cup \{p\}) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R) \]

\[+ \chi(p \notin md_b(P - \{p\}, R)) \cdot \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R \cup \{p\}) \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} \left[1 + \frac{1}{(n - 1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R) + \chi(p \notin md_b(P - \{p\}, R)) \cdot \frac{1}{(n - 1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R \cup \{p\}) \right] \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} [1 + \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} T(\sigma(P - \{p\}), R)] \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} [1 + t_j(n-1) + \chi(p \notin md_b(P - \{p\}, R)) \cdot t_{j-1}(n-1)] \]
Complexity Analysis on Permutation – Continued

\[
\begin{align*}
t_j(n) &= \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \\
t_j(n) &= \frac{1}{n} \sum_{p \in P} [1 + t_j(n - 1) + \chi(p \notin md_b(P - \{p\}, R)) \cdot t_{j-1}(n - 1)]
\end{align*}
\]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{1}{n} \sum_{p \in P} \left[1 + t_j(n-1) + \chi(p \not\in md_b(P - \{p\}, R)) \cdot t_{j-1}(n-1) \right] \]

\[t_j(n) = \frac{n}{n} + \frac{1}{n} \sum_{p \in P} t_j(n-1) + \frac{1}{n} \sum_{p \in P} \chi(p \not\in md_b(P - \{p\}, R)) \cdot t_{j-1}(n-1) \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{n}{n} \]
\[+ \frac{1}{n} \sum_{p \in P} t_j(n - 1) \]
\[+ \frac{1}{n} \sum_{p \in P} \chi(p \notin md_b(P - \{p\}, R)) \cdot t_{j-1}(n - 1) \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) = \frac{n}{n} \]

\[+ \frac{1}{n} \sum_{p \in P} t_j(n - 1) \]

\[+ \frac{1}{n} \sum_{p \in P} \chi(p \notin md_b(P - \{p\}, R)) \cdot t_{j-1}(n - 1) \]

\[t_j(n) \leq 1 \]

\[+ \frac{n}{n} t_j(n - 1) \]

\[+ \frac{3}{n} \cdot t_{j-1}(n - 1) \]
\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]
\[t_j(n) \leq 1 + \frac{n}{n} t_j(n - 1) + \frac{3}{n} \cdot t_{j-1}(n - 1) \]
Complexity Analysis on Permutation – Continued

\[
t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R)
\]

\[
t_j(n) \leq 1 + \frac{n}{n} t_j(n - 1) + \frac{3}{n} \cdot t_{j-1}(n - 1)
\]
\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) \leq 1 + \frac{n}{n} t_j(n - 1) \]

\[+ \frac{3}{n} t_{j-1}(n - 1) \]

\[t_j(n) \leq 1 + t_j(n - 1) + \frac{j}{n} \cdot t_{j-1}(n - 1), \text{ which we know.} \]
Complexity Analysis on Permutation – Continued

\[t_j(n) = \frac{1}{n!} \sum_{\pi \in S_n} T(\pi(P), R) \]

\[t_j(n) \leq 1 + n t_j(n - 1) + \frac{3}{n} \cdot t_{j-1}(n - 1) \]

\[t_j(n) \leq 1 + t_j(n - 1) + \frac{j}{n} \cdot t_{j-1}(n - 1), \text{ which we know.} \]

Thus, as before \(t_3(n) = 10n \).
Summary

Algorithm:
- algorithm for computing smallest enclosing disk
- expected $O(n)$ time
- $O(n)$ space
- extendable to higher dimensions

Technique: Randomized Incremental Construction (RIC)
- Usually easy to implement
- Complexity analysis may be more tricky
- Backward Analysis