
Algorithms Group
Departement of Computer Science - IBR
TU Braunschweig

Summer ’14

Michael Hemmer

Geometric Algorithms
Exercise 1

April 29, 2014

Luft
(Atrium)

3. Stock
Informatikzentrum

This sheet is comprised of several exercise. Most of
them are theoretical but some are also applied, i.e.,
coding tasks. The solutions should be handed in by
May 6.. This can be done either at the beginning
of the lecture or by placing them in the appropriate
box of the exercise locker, see floor plan on the right.
Applied exercises should be handed in via email to
hemmer@ibr.cs.tu-bs.de. Please mark those exer-
cises that you would like to present during the tutorial.
In order to achieve the “Studienleistung”, you must have presented at least three exercises
until the end of the term. Moreover, you must pass the midterm exam at the beginning
of June.

Exercise T1 (Smallest Enclosing Disk):

The expected run time of the randomized incremental algorithm presented in the lecture
is O(n).

a) What is the worst case complexity of this algorithm ?
b) Design a set of points and insertion order that realizes this worst case complexity.

Exercise T2 (Expected Value):

Let X and Y be two independent random variables. Show that

E[X · Y ] = E[X] · E[Y ].

Exercise T3 (Randomized Incremental Construction - Backward Analysis):

Consider an algorithm that constructs a binary search tree T via randomized incremental
construction. That is, the algorithm selects a random insertion order in the beginning
and then constructs the tree by inserting the elements without any balancing operations.
Given a set of elements S of cardinality n and another query point p. Show that the
expected query time to located p in T is O(log n).
Hint: Consider the path in T to p already during construction. What is the probability
that the length of the path increases due to an insertion of an element ?



Exercise T4 (Doubly Connected Edge List):

f1

f2

f0

e1

e2

e3

v2

v3
e4

f3

a) Consider the picture above, given a call sequence to reach:
• v3 from e1
• e4 from e1
• f1 from e4
• f1 from f3
• f0 from e1

For instance, we can reach v3 from e2 by:

v3 = e2.next().source()

b) Given the set of all edges. How could one easily identify e3 and e4?
c) Give a general function to iterated over all faces starting from the infinite face f0.

For an advanced implementation of the interface you may want to have a look at:
http://doc.cgal.org/latest/Arrangement on surface 2/classCGAL 1 1Arrangement 2.html

Exercise P1 (Intersection Points):
Implement the algorithm NaiveIntersect and SimpleIntersect from the lecture to compute
the set of all intersection points for a given set of segments.

2

http://doc.cgal.org/latest/Arrangement_on_surface_2/classCGAL_1_1Arrangement__2.html

