5 Orthogonal Range Searching

Querying a Database

Mt sight it seems that databases have little to do with geometry, Mevertheless,
qany [Ypes of questions—from now on called queries—abont data in a database
u__.&mi.n%nnﬁn geometrically. To this end we transform records in a Jatabase
jqlhg points in a multi-dimensional space, and we transform the queries about
the records into queries on this set of points. Let’s demonstrate this with an

aample.
salary
L]
L]
L4 . G. Ometer
. bom: Aug 19, 1954
4000 v ° salary: 51,500
oA .
* .
3000 k.
. :
L] » : -+
: L] L]
.. . L]
: L]
Figitre 5.1
date of birth

I 10SI00K 19559999 geometrically

Consider a database for personnel administration. [n such a database the
e, address, date of birth, salary, and so on, of each employee are stored. A
tipcal query one may want to perform is to report all employees born between
B0 and 1955 who eam between $3.000 and $4.000 a month. To formulate
¥ 2 5 geometric problem we represent each employee by a point in the
i_u The first coordinate of the point is the date of birth, represented by the
. Meger 10,000 x year + 100 x month + dav, and the second coordinate is the
"~ %nbly salary. With the point we also store the ather information we have

ot the employee, such as name and address. The database query asking
tmployees born between 1950 and 1955 who eamn between $3,000 and

[nterpreting a database goery

95

Chapter 5

ORTHOGDNAL RANGE SEARCHING

440K

EXL

96

19,500,000

19.559,993

$4,00(transforms into the following geometric query: report all poings y
first coordinate lies between 19,500,000 and 19,559,999, and whose sece
coordinate lizs berween 3,000 and 4,000, In other words, we want tg Tepar;
the points inside an axis-parallel query rectangle—see Figure 5.1.

What if we also have information about the number of children of e
employee, and we would like io be able to ask queries like “repon all emplayey;:
born bevween 1950 and 1955 who eam between 53,000 and $4,000 a mony, o
have between two and four children™? In this case we represent each oa_zc?.
by a point in 3-dimensional space: the first coordinate represents the date
birth, the second coordinate the salary, and the third coordinate the numbe,
children. To answer the query we now have to report all points inside the 2
parallel box [19.500,000 : 19,559,999]x[3,000 : 4,000]x[2 - 4]. In pene
we are interested in answering queries on o fieids of the records in our da
we transform the records o points in 4-dimensional space. A query me__w
report all records whose fizlds fie between spectfied values then transfomg
a query asking for all points inside a d-dimensional axis-parallel box, mﬁmm
query is called a rectanguiar range guery, or an orthogonal range query il
compuational geometry. In this chapter we shall study data structtires for s
queries. :

5.1 1-Dimensional Range Searching

Before we try to tackle the 2- or higher-dimensional rectangular range Eﬁ_ﬁ
probiem, let's have a look at the |-dimensional version. The data we are gi
is a set of paints in | -dimensional space—in other words, a set of real numbeg|
A guery asks for the points inside a 1-dimensional query rectangle—in ot
words, an interval [z x'].
Let P:={pi.p2,....pa} De the given set of points on the real line, We o
soive the |-dimensional range searching probliem afficiently using a well-kn
data structure: a balanced binary search tree 7. {A solution that uses an armay i
also possible. This selution does not generalize o higher dimensions, howese;
nor does it allow for efficient updates on P.) The leaves of T store the poins
of P and the internal nodes of 7T store splitting values to guide the search. W
dencte the splitting vaiue stored at a node v by x,. We assume that the
stibtree of a node v contains all the points smaller than or equal to xy, and i
the right subtree contains all the points strictly greater than x,. i
To report the points in a query range [x : ¥'| we proceed as follows. %
search with x and ¥’ in 7. Let g and p' be the two leaves where the SH&M
end, respectivety. Then the points in the interval x : x'] are the ones stored in
leaves in between it and ¢’ plus, possibly, the point stored at u and the Eﬁ.
stored at it’. When we search with the interval [18 : 77] in the tree of Figure 541
for instance, we have to report all the points stored in the dark grey leaves,)
the point stored in the leaf . How can we find the leaves in berween i

' As Figure 5.2 already suggests, they are the leaves of certain subtress?
between the search paths to 4 and ¢, (In Figure 5.2, these subtrees Eﬁ&a

grey whereas the nodes on the search paths are light grey.} More precisely, the
EF“S« that we select are rooted at nodes Vv in between the two search paths
whose parents are on the search path. To And these nodes we first search for
the rode Vspli: where the paths to.x and ¢’ split. This is done with the following
subroutine. Let fc(v} and re(v) denote the left and right child, respectively, of a

node ¥.

FINDSPLITNODE(T, x,£)
fnput, A tree T and two values x and x’ withx £ x'.
Cuitput, The node v where the paths to x and x7 split, or the leaf where both
paths end.
y +— mot(T)
while v is not a leaf and (¥’ £ x, orx > 1)
doilx’ < xy
then v — le(v}
else v — re{v)
retum v

Starting from Vg we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
isin between the two search paths. Similarly, we follow the path of X' and we
teport the leaves in the left subtree of nodes where the path goes right. Finally,
we ave 10 check the points stored at the leaves where the paths end; they may
or may not lie in the range [x: ¥).

Next we deseribe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
®eports the points stored al its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subrontine takes an amount of
time that s linear in the mamber of reported points,

Algorithim | DRANGEQUERY(T, [: #])

fnput. A binary search tree T and a range [x : ¥,

Outp. AN points stored in T that lie in the range.

L Vg ~FINDSPLITNODE(T, £.2)

L d v is aleaf

1 then Check if the point stored at Vopii must be reported.

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

Figure 1.2
A |-dimensmional range query in a binary
search tree

i pilk ;
the sclecled subtrees H

97

o]

Chapter 5
RETHOGONAL RANGE SEARCHING

58

4, else (* Follow the path to x and report the poinls in subtrees right of ?”.
path. #)
v — o Vapir)
while v is not a leaf
doifx < x,
then REPORTSURTREE(re(v})
v — ie(v)

else v — relv)
Check if the point stored at the leaf ¥ must be reported.
Similarly, follow the path to £, report the points in subtrees lefi o
the path, and check if the point stored at the leaf where the pay
ends must be reported.

oo X n

We first prove the cortectness of the algorithm.

Lemma 5.1 Afgorithm | DRANGEQUERY repons exactly those points that Ju
in the gquery range.

Proaf. We first show that any reparted point p lies in the query range. If py
stored at the leaf where the path to x ot (0 x’ ends, then p is tested explicitly f
inclusion in the query range. Otherwise, p is reported in a call to REPORTS g
TREE. Assume this call was made when we followed the path to x. Let v bety
node on the path such that p was reported in the call REPORTSUBTREE(re(v]f
Since v and, hence, re(v) lie in the left subtree of vgpi, we have p g Fig
Because the search path of &’ goes right at vgy;; this means that p < X. Cnte
other hand, the search path of x goes left at v and p is in the right subtres of ¥
50 x < p. It follows that p € [x : X'}. The proof that p lies in the range when itk
reported while following the path to & is symmetrical.

It remains to prove that any point p in the range is reported. Let [t be ke
leaf where p is stored, and let v be the lowest ancestor of p that is visiled by e
query algorithm. We claim that v = , which implies that p is reported. Assum:
for a contradiclion that v # pt. Observe that v cannot be a node visited in acd
to REPORTSUBTREE, because all descendants of such a node are visited. Heoed,
¥ is either on the search path to x, or on the search path to x', o both. Becue|
all three cases are similar, we only consider the third case. Assume first _E:.m
is in the left subtree of v. Then the search path of x goes right al ¥ {otherwise?
would not be Lhe lowest visited ancestor). But this implies that p < x. Si]
if 1t is in the right sublree of v, then the path of &’ goes left at v, and p > v:{_
both cases, the assumption that p lies in the range is contradicted. B

We now turn our attention to the performance of the data structure. Becas®
it is a balanced binary search tree, it uses O{n) storage and it can be buikt
&{nlogn) time. What about the query time? In the worst case all the poir
could be in the query range. In this case the query time will be Bfn), whid
seems bad, Indeed, we do not need any data structure to achieve @{n} qu
time: simply checking all the points against the query range leads © -_KEW
result. On the other hand, a query time of ®(n) cannot be avoided E:QM

have to report all the points. Therefore we shall give a mare refined anal

b

ry time. The refined analysis takes not only s, the number of points

of the QUEY
in the set P, (At account, but also &, the number of reported points. [n other
o, WE W show that the query algorithm 1s cutpur-sensitive, a concept we

ready encountered in Chapter 2,

Recall that the time spent in & call to REPORTSUBTREE is linear in the
qumber of reported points. Hence, the total time spent in all such calls is O(%),
The remaining nodes that are visited are nodes on the search path of x or £
Beralse 7T is balanced, these paths have length O{logn). The time we spend
aeach node is (1), so the total time spent in these nodes is (logn), which
gives & QUETY time of G{togn +£).

The following theorem summarizes the results for |-dimensional range
searching:

Theores 5.2 Let P be a set of n points in |-dimensional space. The set F
can be stored in a bafanced binary search tree, which uses (Xn) storage and
has Ofrlogn) construction time, such that the points in a guery range can be
mported in time O{k +logr}, where k is the aumber of reported poinis.

al

52 Kd-Trees

Now let’s po to the 2-dimensional rectangular range searching problem. Let
Pbe aset of # points in the plane. In the remainder of this section we assume
that no two points in P have the same x-coordinate, and no two points have the
seme y-coordinate. This restriction is not very realistic, especially not if the
points represent employees and Lhe coordinates are things like salary or number
of children. Fortunately, the restriction can be overcome with a nice trick that
we describe in Section 3.5,

__au..&anamczw_ rectangular range query on P asks for the points from £ lying
inside & query rectangle [x:x") x [y 1 3']. A point p:=(p,, p,) ties inside this
mectangle if and oniy if _

peEfx: X and v & [y

in,noan say that a 2-dimensional rectangular range query is composed of two
Idimensional sub-queries, one on the x-coordinate of the points and one on the
yeoordinate.

__= the previous section we saw a dala structure for |-dimensional range
Quenies. How can we generalize this structure——which was just a binary search
H?Jc 2-dimensional range queries? Let’s consider the following recursive
E?Eo_._ of the binary search _._.nn" the set of {1-dimensional} points is split inte

0 subsets of H_a_._.m_.__w equal size; one subser contains the peints smaller than or
”w__.“.“”ho w_mn_ splitting ﬁ__c_n. the 9:_2 subset contains the points larger than the
ot M..E ue. jﬁ splitting value is stored at the root, and the two subsets are

rsively in the two subtrees.
In the 2-dimensional case sach point has two values that are important:

its x i ;
and its y-coordinate. Therefore we first split on z-coordinate, next on

Section 5.2

KD-

THREES

9%

Chapter 5
ORTHOGONAL RANGE SEARCHING

Figure 5.3

A kd-tree: on the lefl the way the plane
is subdivided and on the right the
corresponding binary tree

y-coordinate, then again on s-coordinate, and so en. More precisely, the ugu..
is as follows. At the toot we split the set P with a vertical line £ into two SEE.
of roughly equal size. The splitting line is stored at the root. Feg. the Subsepy -
points ta the left or on the splitting line, is stored in Lhe left subtree, and Pia
the subset [0 the right of it, is stored in the right subtree. At the left child ofthe
root we split Feq into two subsets with a horizontal line; the points below orey
it are stored in the left subtree of the left child, and the poinrs above it are Stong
in the right subtree. The left child itself stores the splitting line. Similarty, g -
sel Pigyy 15 split with 2 horizontal line into two subsels, which are stored in i
left and right subtree of the right child. At the grandchitdren of the root, y,
splir again with a vertical line. In general, we splil with a vertical line at node
whose depth is even, and we split with 2 horizontal line at nodes whose depif i
odd. Figure 3.3 itlustrates how the splitting is dong and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the nam

&
1] (4]
[
2] ps P o™
.
/n
= [3)
.
)
[Po
s

stood for k-dimensional tree; the iree we described above would be a 2d
Nowadays, the original meaning is lost, and what used to be called a 2d-ree
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the Tecursive procedure described bel
This procedure has two parameters: a st of points and an integer. The fi
parameter is the set for which we want 1o build the kd-tree; initially this _sgm
sel P. The second parameter is depth of recursion or, in other words, the degh
of the root of the subtree that the recursive call constructs. The depth para
is zero at the first call, The depth is imporant because, a5 explained ab
it determines whether we must split with a vertical or a horizontal line.
procedure vetums the root of the kd-tree.

Algorlthm BUILDKDTREE(F, deptf)
Input. A set of points F* and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
then return a leaf storing this point

2.
3. else if depth is even
4 then Split F into two subsets with 2 vertical line £ through

median x-coordinate of the points in P. Let A he thes

points to the jeft of £ or on £, and let 7 be the set of points
to the right of ¢.
else Split P _.Eo two subsets with a horizontal line ¢ through

the median y-coordinate of the points in 2. Let £ be the
set of points below £ or on £, and let P be the set i
ot h set of points

Vit — BUILDKDTREE(P, ,depth~)

Veight — BuUlLDKDTREE(R, depth+ 1)

g Creale a :.o% v storing £, make Vi the left child of v, and make

Viight the Tight chiid of v.
9. return v

The algorithm uses the eonvention that the point on the splitting line-—the one
getermining the median x- or y-coordinate—belongs to the subset to the left of,
ot betow, the splitting iine. For this to work comectly, the median of a set of a.
pumbers should be defined as the [a/2]-th smallest aumber. This means that
the median of two values is the smaller one, which ensures that the algorithm
ferminates.

Before we come to the query algorithm, let’s analyze the construction time
of 2 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
reoordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of paints both on #- and on y-coordinate. The parameter set £ is
now passed to the procedure in the form of two sorted lists, one on z-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
a.nSﬂ:._mS (when the depth is even) or the median y-coordinate (when the
HME is && in :a_mma,:an, It is alsc easy to construct the sorted lists for the
u_?u_.ownh__wm““ Mn._a_““_c_“a_wmzwmm:am from the given lists. Hence, the building time

Tin) = o1y, ifr=1,
Ola}+2T([nf2]). ifn >,

which selves 10 O{rlogn). This bo i

k : . This bound subsumes the time wi -
ing M._ﬁ points on - and y-coordinate. " spend forpresor
ﬁ_mmm_.w::ﬁ_ the amount of storage we note that cach leaf in the kd-tree stores
oo o pointof £ Im.:nn“ there are n leaves. Because a kd-tree is a binary
ol h._.H_emiw_.u__m leaf and internal node uses {1} storage, this implies that the

ntof storage 15 ((n). This leads to the following lemma.

Lemma 5,3 4 kg
N _tree fi . .
sttucted in O(nlog n) zhm.m set of 1 points uses G(n) storage and can be con-

We .
9% tum 1o the query algorithm. The splitting line stored at the toot

partitio ;
m“m__ﬁ_”.ﬂ nﬂm:n 1nto two half-planes. The points in the left half-plane are
Hored sublree, and the points in the right half-plane are stored in the

Section 5.2
ED-TREES

!

Chapter 5
ORTHOUGONAL RANGE SEARCHING

Fignre 5.4
Correspondence between nodes in a
kd-tree and regions in the plane

102

right subtree. 1n a sense, the left child of the root corresponds to the lef __E
plane and the right child corresponds o the right half-plane. (The 832&.3..
used in BUILDKDTREE that the point on the splitting line belongs to the kg
subset implies that the left half-plane is closed to the right and the right halg
plane is open to the left.) The other nodes in a kd-tree correspond to g Fegigy
of the plane as well. The left child of the left child of the root, for Em_psn_
corresponds 1o the region bounded to the right by the splitting line storeg N
the root and bounded from above by the line stored at the left child of the ry,
In general, the region correspanding to a nade v is a rectangle, which can
unbounded on one or more sides. It is bounded by splitting lines storeq
ancestors of v—see Figure 5.4, We denote the region corresponding to g i

£ »
° »
-
» *
3 L
a2, "
»
& *
* L » ™
* '] -+
a o - fa
L 3
* . .
*]
* e L] - *
region(v) |4

v by region(v). The region of the root of a kd-tree is gimply the whole pla:
Observe that a point is stored in the subtree rooted ata node v if and only ifi
lies in region(v). For instance, the subtree of the node v in Figure 3.4 slor
the points indicated as biack dots. Therefore we have to search the subtre
rooted at v only if the query rectangle intersects region(v). This chservalin
leadts to the following query algorithm: we traverse the kd-tree, but visit ooy
nodes whose region is intersected by the query rectangle. When a regian]
fully contained in the query rectangle, we can reporl all the points stored &
its subtree. When the traversal reaches a leaf, we have to check whether
point stored at the leaf is contained in the query region and, if so, a?__m
Figure 5.5 illustrates the guery algorithm. (Note that the kd-tree of Figur3d
could not have been constructed by Algorithm BUILDKDTREE; the meé
wasn’t always chosen as the split value.) The grey nodes are visited when
query with the grey rectangle. The node marked with a star corresponds
region (hat is completely contained in the guery rectangle; in the figure
rectangular region is shown darker. Hence, the dark prey subtree rooted 2t 02
nede is traversed and all points stored in it are reported. The other leaves that
visited correspond to tegions that are only partially inside the query Rnﬁ_wm
Hence, the points stored in them must be tested for inclusion in the guery %
this results in points pg and gy being reported. and points pa, 12, and pi3
heing reported. The query algorithm is described by the following re

Section 5.2
KD-TREES

Figure 5.5
A query on a kd-tree

progedure. which takes as arguments the root of a kd-tree and the query range &,
fLuses 2 subroutine REFORTSUBTREF(V), which traverses the subtree rooted
atanode v and reports all the points stored at its leaves, Recall that {e{v} and
re{v) denote the Teft and right child of & node v, respectively.

Algorithm SEARCHKDTREE(V, R}
fngut. The root of (a subtree of) a kd-tree, and a range .
Output. All points at leaves below v that lie in the range.
. Wvisaleaf
2. then Report the point stored at v il it lies in R.
3. else if region{fc(v)) is fully contained in R

then REPORTSUBTREE(Io{v]}

else il regioniic(v)) imersects R

then SEARCHKDTREE(c(V), R)
if region{rc(V)} is fully contained in R
then REPORTSUBTREE{rc{v)) g(vylet

4
5
6,
M_ £[v}
9 else if region(re{v}) inlersects R

| then SEARCHKDTREE(rcfv), R}

=

d._.n main test the query algorithm performs is whether the query range R
imiersects the region comesponding to some node v. To be able ta do this test
e can compute region(v} for all nodes v during the preprocessing phase and
store it, but this is not necessary: one can maintain the curvent region through

__a“_ﬂ”“ﬁ_._h S_w_ using the lines stored in the internal nodes. For instance, the regianlv)
from aw_.aiww:mw_ﬂmﬂﬂw_“ﬁ toftchid ofanode v at even depth can be computed
region{lc{v)) = region{v) N E{v)®",
| ﬁm M_muﬂ_.”w.p__ﬁm”mu%ﬂum line stored at v, and £{v)*=" is the half-plane to the o

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query E_W.
R is a rectangle. Indeed, it works for any other query range as well. i3

We now analyze the time & query with a rectangular range takes.

Lemma 5.4 A guery with an axis-parailel rectangle in 2 kd-tree sioring n E__E
can be performed in O(/n-+ k) time, where k is the number of reported pojg;

Proof. First of all, note that the time to traverse 2 subtree and report the poipy
stored it its leaves is linear in the number of reperted points. Hence, the torg:
time required for traversing subirees in steps 4 and 8 is O(k), where kis g,
total number of reported points. It remains ¢ bound the number of nogy
visited by the query algorithm that are not in one of the lraversed subtres.
(These are the light grey nodes in Figure 5.5.) For each such node v, the query:
range properly inlersects region{¥}, that is, region{v} is intersected by, but ny
fully contained in the range. [n other wonds, the boundary of the query ran
intersects region(v). To analyze the number of such nodes, we shall bound -
nurber of regions intersected by any vertical line. This will give us an :EH
bound on the number of regions intersected by the left and right edge of I
query rectangle, The number of regions intersected by the bottom and top m_mm
of the query range can be bounded in the same way.
Let £ be a vertical line, and let T be a kd-tree. Let #{rooi(T}) be the splinipg
line stored at the root of the kd-tree. The line £ intersects either the region i
the left of £{rooH{T)) or the region to the right of [roar{'T)), but not both. Thi
observation seems to imply that ({r), the number of intersected regions ing’
kd-tree storing a set of n points, satisfies the recurrence gr) = 1+ 0(nf2). B
this is not true, because the splitting lines are horizonial at the children of te,
root. This means that if the line # intersects for instance region(ic{root(T)), e
it will always intersect the regions corresponding 10 both children of fc{reot(T)}
Hence, the recursive situation we get is not the same as the ariginal situation
and the recurrence above is incorrect. To overcome this problem we have s
make sure that the recursive situation is exactly the same as the original situatiot
the root of the subtree must contain a vertical splitting line. This leads 3t
redefine {n) as the nutmber of intersected regions in a kd-tree storing A poirf
whose oot contains a vertical splitting line. To write a recurrence for Qln}ve
now have to go down two steps in the tree. Each of the four nodes at %na
two in the (re¢ coTresponds to 2 region containing a/4 points. (To be precist.d
region can contain at most [[#/2]/2] = {n/4] points. but asymptotically i
does not influence the outcome of the recurrence below.) Two of the four __&n
correspond to intersected regions, so we have to count the number of .:szqs_m
regions {n these subtrees recursively. Moreover, ¢ intersects the region of €
root and of one of its children. Hence, Q{n) satisfies the recurrence d

o1}, ifn=1.

Q) =\ 54 20(m/4), ifn 1.

This recurrence solves to Q{n) = O(/n). In other words, any vertical

intersects O(/) regions in a kd-tree. [n a similar way one can prove that

otil pumber of me_u:m intersected by a horizental line is O{\/r). The total
aumber of _.nm._czm intersected by the boundary of a rectangular query range 15
pounded by (/1) as well. m

The analysis of the query time that we gave above is rather pessimistic: we
pounded the =:3¢a,q of regions inlersecting an edge of the query rectangle by the
qumber of regions intersecting the line through it. In many practical situations
he FANEE will be small. As a result, the edges are short and will intersect much
gewer regions. For example, when we search with a range [x: x]x [y : y|—this
query effectively asks whether the point (x,y} is in the set—the query time is

bounded by Oflogn)-

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 } _.”d..,__.nm for a set P of 1t points 1 the plane uses Ofn) storage
and can be builtin Ofnlogn) time. A rectangular range guery on the kd-tree
wekes Oy/R + K} time, where k is the number of reported poiats.

Kd-trees can also be used for point sets in 3- or higher-dimensional space,
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
Rﬂ_ﬂznc_mq to the xy-axis. In other words, at the root the poinl sel is partitioned
based o the first cootdinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coerdinate,
and 5o on, until at depth & — | we partition on the last coordinate. At depth
o we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored al a leaf. Because a
d-dimensional kd-tree for a se1 of 1 points is a binary tree with x leaves, it uses
0{n) storage. The construction time is O{#logn). {As usual, we assume 4 to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
quety algorithm visits those nodes whose regions are properly intersected by
ihe query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the guery time is bounded by O{a' =1/ +).

5.3 Range Trees

MMWMM,,... ,.m__”_n_._:sna described in the Ensnsw seclion, have (/% + &) query

__mm_u_. i nt n.scavﬁ. of 33:&. points is small, the query time is relatively

g =n_._._m mﬂn:o: we shall ammn:_uo another data structure for rectangular

) .;m Jan. t ﬂ range tree, ,..._zn.: .rmm a better query timne, namely _awH n+

o) wawE.:M“ ave 10 pay for this improvement is an increase in storage from
5 10 O(nlogn) for range trees.

Aswe i ;
o1 M.Esn_n_ before, a 2-dimensional range query is essentially composed of
imensional sub-queries, one on the x-coordinate of the points and one

Section 8.3
RANGE TREES

105

