
Secure communication based on noisy input data
Physically unclonable functions

Stephan Sigg

June 28, 2011

Physical random functions Controlled Physical random functions CPUF API Conclusion

Overview and Structure

05.04.2011 Organisational

15.04.2011 Introduction

19.04.2011 Classification methods (Basic recognition, Bayesian, Non-parametric)

26.04.2011 Classification methods (Linear discriminant, Neural networks)

03.05.2011 Classification methods (Sequential, Stochastic)

10.05.2011 Feature extraction from audio data

17.05.2011 Feature extraction from the RF channel

24.05.2011 Fuzzy Commitment

31.05.2011 Fuzzy Extractors

07.06.2011 Error correcting codes

21.06.2011 Entropy

28.06.2011 Physically unclonable functions

Stephan Sigg | Secure communication based on noisy input data | 2

Physical random functions Controlled Physical random functions CPUF API Conclusion

Outline

Physical random functions

Controlled Physical random functions

CPUF API

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 3

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Physical random functions / Physically unclonable functions:
Random functions that can only be evaluated with the help of a
physical system

Definition
A PUF is a random function that can only be evaluated with the help of
a specific physical system. The inputs to a physical random function are
challenges and the outputs are responses.

Stephan Sigg | Secure communication based on noisy input data | 4

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Digital PUFs Simplest kind of PUF. Digital key K is embedded in a
tamper-proof package along with some logic that
computes

Response = RF (K ,Challenge)

for some random function RF

Stephan Sigg | Secure communication based on noisy input data | 5

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Optical PUFs Made of transparent optical medium containing bubbles.
Shining a laser beam through the medium produces
speckle pattern (response) that depends on exact
position/direction of incoming beam.

Stephan Sigg | Secure communication based on noisy input data | 6

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Silicon PUFs Challenge is an input to a circuit that reconfigures the
path that signals follow through the circuit. Response is
related to the time it takes for signals to propagate
through a complex circuit.

Stephan Sigg | Secure communication based on noisy input data | 7

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Security of PUFs relies on difficulty of extracting all necessary
parameters from a complex physical system

Attacker trying to extract all physical parameters might modify the
PUF in the process

This makes PUFs tamper resistant to some extend

Stephan Sigg | Secure communication based on noisy input data | 8

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

PUF implementations build on random manufacturing variations
(bubble position or exact wire delays):
Exact behaviour is a mystery even for the manufacturer

Not feasible to create two identical copies of a PUF

A difficulty of optical and silicon PUFs is that their output is noisy

Error correction that does not compromise the security is required1

1
G.E. Suh, C.W. O’Donnell, I. Sachdev, S. Devadas, Design and implementation of the AEGIS single-chip secure

processor using physical random functions, Proceedings of the 32nd Annual International Symposium of computer
Architecture, 2005

Stephan Sigg | Secure communication based on noisy input data | 9

Physical random functions Controlled Physical random functions CPUF API Conclusion

Physical random functions

Standard application: Key-card2

Lock stores a database of challenge response pairs (CRPs) for PUF

When the bearer of the PUF wants to open the lock, it selects a
challenges it knows and asks the PUF for the corresponding response

Each CRP can be used only once : Card will eventually run out of PUFs

2
R. Pappu, Physical One-Way Functions, PhD thesis, MIT, 2001

Stephan Sigg | Secure communication based on noisy input data | 10

Physical random functions Controlled Physical random functions CPUF API Conclusion

Outline

Physical random functions

Controlled Physical random functions

CPUF API

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 11

Physical random functions Controlled Physical random functions CPUF API Conclusion

Controlled Physical random functions

Definition
Controlled physical random function (CPUF):
PUF that can only be accessed through specific API

Main problem with uncontrolled PUFs: Anybody can query the PUF for
the response to any challenge

In order to engage in cryptography with a PUF device, a user has to
exploit the fact that only he and the device know the response to a
specific challenge.

Stephan Sigg | Secure communication based on noisy input data | 12

Physical random functions Controlled Physical random functions CPUF API Conclusion

Controlled Physical random functions

Third party could try to overhear challenge, obtain response from PUF
and spoof the device

Problem: Adversary can freely query the PUF

By using CPUFs, Access to PUF restricted by control algorithm that
prevents this attack

Embedding control logic for PUF in physical system of PUF makes it
difficult to conduct invasive attacks on the control logic

Stephan Sigg | Secure communication based on noisy input data | 13

Physical random functions Controlled Physical random functions CPUF API Conclusion

Controlled Physical random functions

The PUF and its control logic have complementary roles

The PUF protects the control logic from invasive attacks

The control logic protects the PUF from protocol attacks

Stephan Sigg | Secure communication based on noisy input data | 14

Physical random functions Controlled Physical random functions CPUF API Conclusion

Controlled Physical random functions

Applications for CPUFs
Applications for CPUFs include applications that require single
symmetric key on a chip

Smartcards that implement authentication:
Current smart-cards: Hidden digital keys can be extracted using
various attacks

PUF on the smartcard: Can authenticate chip – Digital key not
required (Smartcard hardware itself is the secret key)

Key can not be duplicated: Person that temporary looses control of
card need not fear that an adversary might have cloned the card or
that the security became somehow impaired.

Stephan Sigg | Secure communication based on noisy input data | 15

Physical random functions Controlled Physical random functions CPUF API Conclusion

Outline

Physical random functions

Controlled Physical random functions

CPUF API

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 16

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

CPUF typically modelled as general-purpose processing element with
access to a PUF

Man-in-the-Middle Attack:
Adversary intercepts communication to device wants Alice to accept
incorrect result as coming from device

Alice would execute the following protocol

Stephan Sigg | Secure communication based on noisy input data | 17

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Alice would execute the following protocol

1 Pick one CRP (Char, Response) at random

2 Execute the following function on the PUF:

1: GetAuthenticBroken(Chal){
2: my Resp = PUF(Chal);
3: // Do some computation, produce result
4: return (Result, MAC(Result, Resp));
5: }

3 Use the MAC and Response to check that the data is authentic

Stephan Sigg | Secure communication based on noisy input data | 18

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Protocol is not secure against Man-in-the-Middle attacks

Attacker could

1 Intercept message send to GetAuthenticBroken and extract Chal

2 Execute on the PUF:

1: StealResponse(Chal){
2: return (PUF(Chal));
3: }

3 Forward Alice the message MAC(FakeResult, Response)

4 Since the MAC was computed with the correct response, Alice
accepts FakeResult

Stephan Sigg | Secure communication based on noisy input data | 19

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Problem: When Alice releases her challenge, Adversary can ask PUF for
corresponding response and impersonate PUF

Problem persists as long as the PUF freely provides responses

Stephan Sigg | Secure communication based on noisy input data | 20

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetSecret
To solve this problem:
PUF shall only be accessed via call
GetSecret(Chal)=Hash(PHashReg, PUF(Chal))

PUF reveals combination of response and executed program instead of
response

Since the Hash is a one-way function: Response not recovered easily

Stephan Sigg | Secure communication based on noisy input data | 21

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetSecret
We alter the call of Alice accordingly:

1: GetAuthenticBroken(Chal){
2: hashblock()({// HB
3: // Do some computation, produce result
4: });
5: my Secret = GetSecret(Chal);
6: return (Result, MAC(Result, Secret));
7: }

Stephan Sigg | Secure communication based on noisy input data | 22

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetSecret
Alice can now compute Secret from Response by computing
Hash(PHash(HB),Response) to check the MAC

An adversary has no way of obtaining Secret

Stephan Sigg | Secure communication based on noisy input data | 23

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetCRP
However, the solution presented may be too restrictive for Alice also

With no CRP:
No way for Alice to obtain one in the first place:
Device never reveals response

Possible solution: Primitive called GetCRP that

1 Picks a random challenge

2 Computes the response

3 Returns the response to the caller

When space of challenges large enough:
Unlikely that attacker can compute CRPs identical to Alice’s

Stephan Sigg | Secure communication based on noisy input data | 24

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetResponse
Problem: Random number generators often vulnerable to attacks

Therefore: Might prefer alternative that not relies on a RNG that much

Replace GetCRP by GetResponse()=PUF(PHashReg)

Now: Anybody can generate CRP (PHashReg,GetResponse())

But: Due to hash function, nobody can generate specific CRP

Stephan Sigg | Secure communication based on noisy input data | 25

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetResponse

Stephan Sigg | Secure communication based on noisy input data | 26

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

GetResponse
Man-in-the-Middle attack is prevented since each user has his own CRPs

Challenges can be public, but responses are required to be private

When not told the secret and GSH not leaks information, adversary can
only obtain secret by hashing appropriate response

No way for adversary to obtain this response

Therefore:
Man-in-the-Middle attacks are prevented since PUF accessed only
through GetSecret and GetResponse.

Stephan Sigg | Secure communication based on noisy input data | 27

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Challenge response pair management
How to get the response to the legitimate user?
The following sequence is proposed for CRP management

After manufacturing manufacturer gets device-CRP with
Bootstrap

Manufacturer uses Introduction to provide CRPs to certification
authorities

Certification authorities provide CRPs to end users

Anybody in possession of a CRP can create new CRPs by Renew

Stephan Sigg | Secure communication based on noisy input data | 28

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Bootstrapping

1 Pick a pre-challenge PreChal at random

2 Execute

1: Bootstrap(PreChal){
2: hashblock(PreChal)({
3: Return GetResponse();
4: });
5: }

3 The challenge for the CRP is obtained by calculating PHash(HB)

If PreChal is not known, the security relies on the hash function

Stephan Sigg | Secure communication based on noisy input data | 29

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Renewal

1 Pick a pre-challenge PreChal at random

2 By using an old challenge OldChal, execute

1: Renew(OldChal, PreChal){
2: hashblock(OldChal, PreChal)({
3: my NewResponse = GetResponse();
4: my Secret = GetSecret(OldChal);
5: return Encrypt(NewResponse, Secret);//Key:Secret
6: });
7: }

3 Compute Hash(PHash(HB), OldResponse) to calculate Secret,
check the MAC with it and retrieve NewResponse

Stephan Sigg | Secure communication based on noisy input data | 30

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Renewal
When the response corresponding to OldChal is only known to the
user, the method is secure.

Stephan Sigg | Secure communication based on noisy input data | 31

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Introduction
Provide user with CRP

Assumption:
Trusted channel between user and certifier

Stephan Sigg | Secure communication based on noisy input data | 32

Physical random functions Controlled Physical random functions CPUF API Conclusion

CPUF API

Introduction

1 Cert. authority picks (OldChal, OldResponse), computes
Secret=Hash(PHash(HB), OldResponse) and returns (OldChal, Secret)

2 User picks pre-challenge PreChal at random and executes

1: Introduction(OldChal, PubKey, PreChal){
2: hashblock(PubKey, PreChal)({
3: my NewResponse = GetResponse();
4: my Message = PublicEncrypt(NewResponse, PubKey);
5: my Secret’ = GetSecret(OldChal);
6: Return (Message, MAC(Message, Secret’));
7: });
8: }

3 User checks MAC with Secret. (Secret=Secret’ since both are computed as
Hash(PHash(HB), OldResponse)). User Decrypts Message and computes
PHash(HB) to obtain Response and Challenge

Stephan Sigg | Secure communication based on noisy input data | 33

Physical random functions Controlled Physical random functions CPUF API Conclusion

Outline

Physical random functions

Controlled Physical random functions

CPUF API

Conclusion

Stephan Sigg | Secure communication based on noisy input data | 34

Questions?

Stephan Sigg
sigg@ibr.cs.tu-bs.de

Stephan Sigg | Secure communication based on noisy input data | 35

Physical random functions Controlled Physical random functions CPUF API Conclusion

Literature

C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.

P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data – On private
biometrics, secure key storage and anti-counterfeiting, Springer, 2007.

W.W.Peterson, E.J. Weldon, Error-Correcting Codes, MIT press, 1972.

R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

Stephan Sigg | Secure communication based on noisy input data | 36

	Physical random functions
	Controlled Physical random functions
	CPUF API
	Conclusion

