Institute of Operating Systems and Computer Networks

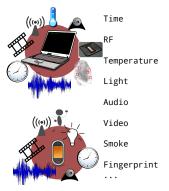
Secure communication based on noisy input data Introduction

Stephan Sigg

April 19, 2011

Overview and Structure

- Classification methods
- Feature extraction
 - Features from audio
 - Features from RF
- Fuzzy Commitment
- Fuzzy Extractors
- Authentication with noisy data
- Error correcting codes
- Entropy
- Physically unclonable functions

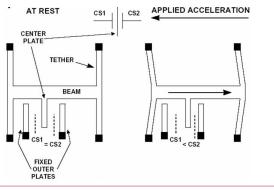

Introduction

Conclusion

• We are surrounded by a multitude of sensors

- Sensor readings utilised for
 - Information provisioning
 - Situation classification
 - Authentication
 - Cryptography

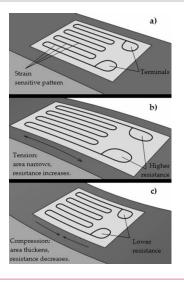
Stephan Sigg \mid Secure communication based on noisy input data \mid 4



Technische Universität Braunschweig

Stephan Sigg \mid Secure communication based on noisy input data \mid 5

- MEMS acceleration sensors
 - E.g. Analogue Devices ADXL
 - Low energy consumption, small, cheap, medium precision
 - MEMS = Micro-mechanical System: Mechanic in Silicon (Silizium)
 - Here: Comparison of capacity CS1 and CS2 leads to acceleration



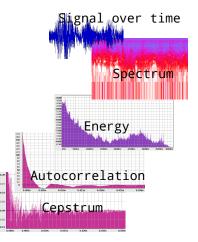
Stephan Sigg | Secure communication based on noisy input data | 6

- Pressure sensors
 - Z.B. IEE about 3-10 Euro
 - Very imprecise



Stephan Sigg \mid Secure communication based on noisy input data \mid 7

- Output of sensors has to be interpreted typically
 - Raw electrical signals
 - Interpretation of signals as electric values
 - Binary or Real valued representation
 - Further identification of features
 - Feature extraction
 - Interpretation of features and classification



Technische Universität Braunschweig

Stephan Sigg | Secure communication based on noisy input data | 8

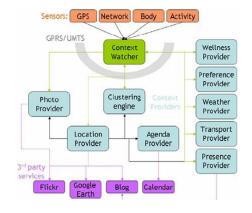
Features and feature extraction

- What is a feature and why do we need it?
 - Captured data might be hard to interpret
 - Many aspects can be contained in a single data stream
 - Example: Audio
 - I oudness
 - Energy on frequency bands
 - Zero crossings
 - Direction changes

Stephan Sigg | Secure communication based on noisy input data | 9

Examples and case studies: Media Cup

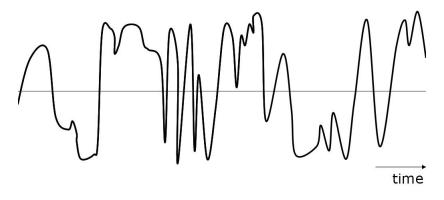
- Media Cup: Context recognition
 - Activity: Trigger sleep mode (save energy)
 - Level of activity
 - Own context: Object movement, person is nervous, specific handling of objects
 - Environmental context: Vibration, earthquake
- Sensor: Ballswitch
 - (nearly) no quiescent current
 - Various types, filled with gas/liquid
 - e.g. Acceleration with fixed value (liquid)
 - Vibration (filled with gas)



Examples and case studies: Context Watcher

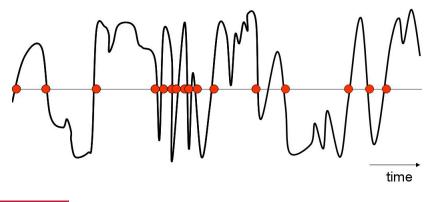
- Context Watcher
 - Location
 - GSM cell-ID; GPS
 - Mood
 - user input
 - Activity
 - calender based
 - Bio-data
 - heart and foot sensors
 - Weather
 - location based over internet
 - Photo/picture
 - camera

Examples and case studies: Context Watcher

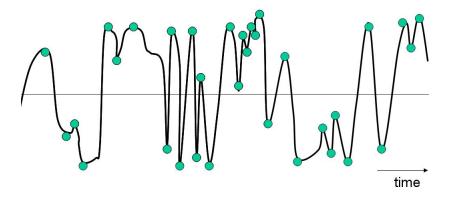

Stephan Sigg | Secure communication based on noisy input data | 12

TEA-Audio

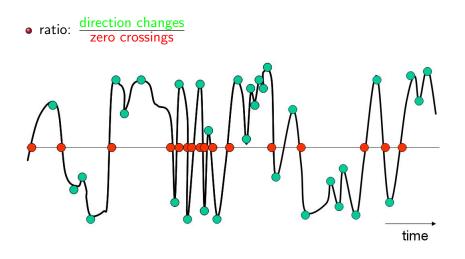
- Requirements
 - Restricted memory space
 - Computing power restricted
- Benefit
 - $\bullet \ \ \mathsf{Many \ sensors} \to \mathsf{Many \ features}$
- Example approach
 - Utilise time domain (no transformation)
 - Utilise statistic measures
 - Feature extraction based on small amount of data



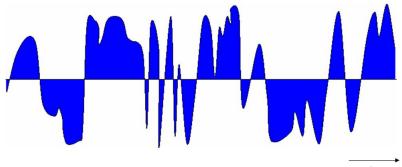
• Audio data in time domain



- Count zero crossings
- Distance between zero crossings

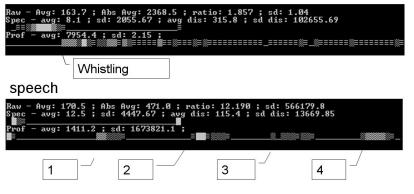


• Count of direction changes


Stephan Sigg | Secure communication based on noisy input data | 16

Stephan Sigg | Secure communication based on noisy input data | 17

Integral



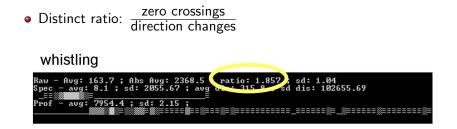
time

• Several chunks for speech

whistling

• Distance between zero crossings: distinct behaviour of oscillation at start and end

whistling



speech

Stephan Sigg | Secure communication based on noisy input data | 20 Inst

speech

• Significant change in standard deviation of chunks

whistling

speech

Introduction

Conclusion

Questions?

Stephan Sigg sigg@ibr.cs.tu-bs.de

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data On private biometrics, secure key storage and anti-counterfeiting, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

Stephan Sigg | Secure communication based on noisy input data | 25