Context-Aware Communication

Seminar Ubiquitous Human-Machine Interaction July 13th 2007

Sebastian A. Maciejewski

TU Braunschweig
Institute of Operating Systems
and Computer Networks
www.ibr.cs.tu-bs.de/dus

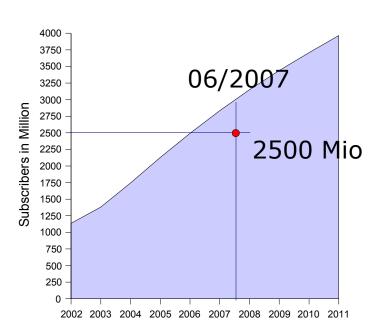
Outline

Introduction

Motivation, definition and scope

Selected fields of research

- Context-acquisition diverse types of context
- Communication different application areas


Conclusion

Recapitulation, trends, potential, challenges

Reference

Introduction (1/3)

Motivation mobile phones

Forcasted worldwide mobile subscriber numbers, 2002 – 2011 (Source: Portio Research 2006 and 3G Americas 2007)

Types of communication

- Push-to-talk over Cellular (PoC)
- Short Message Service (SMS)
- Ordinary phone calls

Disruption vs. information

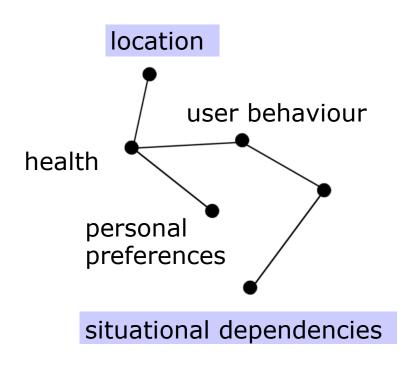
- Ringing cell phones during meetings
- People are calling without knowledge of one's context

Solutions?

Manual profile selection

Introduction (2/3)

Definition of context-aware communication


Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves.*

In general context-aware communication encompasses all fields of communication where context information creates a benefit and is acquired and processed to utilize it.

^{*)} Anind K. Dey and Gregory D. Abowd. "Towards a Better Understanding of context and context-awareness".

Introduction (3/3)

Scope of paper and presentation

Context-acquisition

driver assistance

mobile phones

middleware

health
care
social networking

Communication

Selected fields of research (1/7)

Context-acquisition

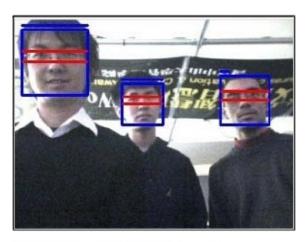
Location-acquisition

Outdoor

- Satellite communication (GPS) (comMotion^P, city guides^P)
- Mobile communication (cells, triangulation) (Home Zone^P)
- A-GPS (combination GPS and mobile comm.) (Emergency^p)

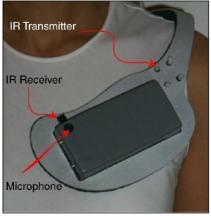
Indoor

- Wireless LAN (RADAR^P, Nederlandse Spoorwegen^P)
- Bluetooth (¹)
- InfraRed (Active Badge^P)
- Radio frequency Identification (RFID) (LANDMARC²)


Specific

- Calendar information (mobile and computer) (CLUES^{3P})
- Chirp technology (RELATE⁴)

Selected fields of research (2/7)


Context-acquisition

Situational dependencies

Attention Meter^P

Facial expressions and head movements are captured with a single camera.

Sociometer^P

Wearable device with microphone, infrared transmitter and receiver to understand group interaction.

Selected fields of research (3/7)

Communication

Mobile phones

A Bodymedia armband B Bluetooth headset C Laptop D Phone

E GPS receiver.

SenSay^r

Uses calendar information and sensor data to gather context information (autonomous selection of sophisticated states).

The underlying idea: a mobile phone should adapt to its user.

Selected fields of research (4/7)

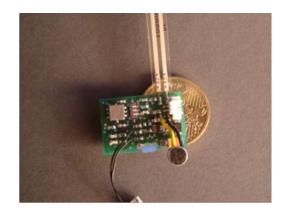
Communication

Mobile phones

Live Contacts Mobile^P

The location, availability and calendar of persons are displayed in the contact list.

Combining for example Outlook, MSN and Home Zone.


Context-Phonebook^P

Adding information as current location or availability to the phone's addressbook.

Selected fields of research (5/7)

Communication

Sensor networks

Smart Its^P

Small-scale devices adding sensor information and peer-to-peer communication to attached objects.

Sensor Wall (Drawing)^P

Drawing illustrating the idea of building tiny sensor nodes into an ordinary wall.

Selected fields of research (6/7)

Communication

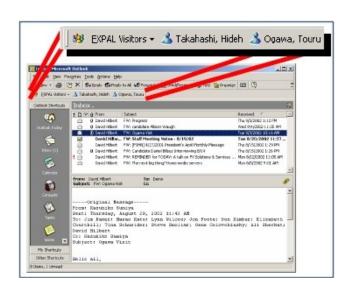
Driver assistance (at DLR)

SADAS architecture^P

Measurement of distance to other cars, driver's attention and behavior. Notification about warnings depending on context.

The ViewCar records⁵

- View of the driver, including gaze tracking
- View out of the window
- Position of the car and lane recognition
- Other objects via laser scanner
- Car data (use and drive dynamics)
- Physiologic data (pulse, electrical conductance of the skin


Selected fields of research (7/7)

Communication

Social networking

Contextual Contact Bar^P

Retrieving relevant contacts from website and email contents.

WatchMe^P

Displaying up-to-date context information for a specific person to enhance communication and awareness.

Conclusion - recapitulation

- Definition of context-aware communication
 - context and communication
- Examples of context-acquisition
 - Location outdoor, indoor, specific
 - Situational dependencies (behavior and group context)
- Selected areas of context-aware communication
 - Mobile phones (wearable devices)
 - Sensor networks (machine-machine communication)
 - Driver assistance
 - Social networking (creating context-awareness, contacts)

Conclusion

Trends

- Small and cheap devices, low-energy consumption
- Growing telecommunication market
- Human-Computer Interaction research
- Complex distributed systems

Potential

- Improving communication
- Providing relevant Information
- Creating awareness

Challenges

- Various (complex) interfaces
- Privacy issues

Reference

- P S. Maciejewski. "Context-Aware Communication". Seminar Ubiquitous Human-Machine Interaction, July 2007. (Basis of this presentation)
- 1 Bandara, U., Hasegawa, M., Inoue, M., Morikawa, H., Aoyama, T. "Design and implementation of a Bluetooth signal strength based location sensing system". ISBN 0-7803-8451-2, September 2004
- 2 Lionel M. Ni1, Yunhao Liu1, Yiu Cho Lau1 and Abhishek P. Patil1. "LANDMARC: Indoor Location Sensing Using Active RFID". ISBN 1022-0038, January 2005
- 3 Marx, Matthew and Chris Schmandt. "CLUES: Dynamic Personalized Message Filtering". Proceedings of CSCW '96, November 1996
- 4 RELATE: Assessment of relative positioning technologies for compositional tangible interfaces. www.teco.edu/relate/ , July 2007
- 5 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verkehrsführung und Fahrzeugsteuerung, Automotive Systeme. www.dlr.de/fs/desktopdefault.aspx/ tabid-1236/, July 2007