

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Term Paper

- Context-Aware Applications in Smart Buildings -

Max Kister

Institute of Operating Systems and Computer Networks Technische Universität Braunschweig

July 13, 2007

Outline

Context-Awareness

Definition of context Definition of context-awareness

Context-Aware Applications

Sensors Middleware **Displays and Actuators**

Smart Buildings

Overview Existing design concepts

Conclusions

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Outline

Context-Awareness

Definition of context Definition of context-awareness

Context-Aware Applications

Sensors Middleware Displays and Actuators

Smart Buildings

Overview Existing design concepts

Conclusions

Smart Buildings

Conclusions

Context

Context is any information that can be used to characterize the situation for an entity.

- an entity is a person, place or object that is considered relevant to the interaction between a user and an application
- examples of context information are:
 - identity
 - environmental information (light level, temperature, ...)
 - temporal information (time, date, ...)
 - activity (walking, talking, lying, ...)

Context-Awareness

Context-awareness means that one is able to use context. information.

- context can be used to interpret explicit operations
- a context-aware system should be able
 - to extract context information
 - to interpret context information
 - to use context information
- aim is to adapt the functionality of a system to the current situation

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Outline

Context-Awareness

Definition of context Definition of context-awareness

Context-Aware Applications

Sensors Middleware Displays and Actuators

Smart Buildings

Overview Existing design concepts

Conclusions

ontext-Awareness

Smart Building

Conclusions

Issues of context-aware applications

- context is often indirect deducible
- applications have to be aware of user intentions
- applications must communicate with sensors
- applications should be reusable
- two possibilities for handling context:
 - connect sensor drivers directly into applications
 - use services to hide sensor details

Use of design models

- to make context-aware applications more reusable in different environments, design models were elaborated
- design model consists of:
 - sensors
 - middleware (hardware abstraction, context and privacy management)
 - applications
 - displays and actuators

Sensors

- sensors are the senses of a context-aware application
- ideally should reflect the 'real world' situation
- combination of multiple sensors for more meaningful information
- should have small size and be cheap
- should be wirelessly interconnected
- should have enough energy for a long time period

• 'Smart-Its' from the TecO in Karlsruhe, cPart as an example:

• 8 bit microprocessor

TECHNISCHE UNIVERSITÄT CAROLO-WILHELMINA

ZU BRAUNSCHWEIG

Sensors - examples

- operation of multiple sensors
- wireless communication unit
- different power modes
- the Cricket Indoor Location System from MIT
 - combination of RF and ultrasound technologies
 - beacons (see picture) send ultrasonic pulse
 - mobile receivers can determine their positions

Context-Aware Applications

Smart Building

uildings

Middleware - hardware abstraction, context and privacy management (1)

- middleware should simplify the design of new context-aware applications
- hides details of how context-information was derived
- provides an interface for new applications

Middleware consists of:

- hardware abstraction layer
 - decouples the higher level software from the actual sensor hardware
 - has the task of communicating with different types of sensors
 - builds up a highly dynamic environment with sensors and networks changing constantly

Middleware - hardware abstraction, context and privacy management (2)

Middleware consists of

- context manager
 - derives basic context information from raw sensor data
 - interprets the context
 - builds up an overview about the entity (modeling and evaluation)
- privacy manager
 - creates a privacy domain
 - affords a user the possibility to explicitly adjust the domain
 - seals the privacy domain off the whole world

Context-Awareness

Smart Buildings

Conclusions

Displays and Actuators

- interfaces should be manageable by the average user without any computing knowledge
- no cognitive overload
- fix or mobile interfaces
- speech and gestures as interactions possible
 - but hard to use for novices
 - GUI is easier to understand

Context-Awareness

Context-Aware Applications

Smart Buildings

Conclusions

Outline

Context-Awareness

Definition of context Definition of context-awareness

Context-Aware Applications

Sensors Middleware Displays and Actuators

Smart Buildings

Overview Existing design concepts

Conclusions

Smart Buildings - Overview (1)

Smart Environment is a small world where network-enabled devices work continuously and collaboratively to make lives of inhabitants more comfortable.

- interconnects sensors, middleware and context-aware applications
- is able to autonomously acquire and apply knowledge about the environment
- adapts to current situation

Smart Buildings - Overview (2)

- first applications for offices in the beginning of the 90's
 - Active Badge system (1990)
 - ParcTab system (1993)
- first smart house in 1993
- houses differ in design concepts
 - reactive environments
 - teaching homes
 - programmable pervasive spaces

Reactive Environments (1)

The Adaptive Home (University of Colorado)

- smart house which can react to its environment
- has no user interfaces beyond the sort of controls offered by an ordinary home
- focus on home comfort systems
 - air and water temperature regulation
 - ventilation
 - lighting
- programs itself by observing the inhabitants

Smart Buildings

Reactive Environments (2)

ACHE - middleware of the Adaptive Home

- acronym for Adaptive Control of Home Environments
- centralized on several servers
- direct control of 75 sensors
- transparent for the inhabitants

Teaching Homes (1)

House_n (Massachusetts Institute of Technology)

- no controlling home, but a home which is supportive
- living laboratory MIT-TIAX PlaceLab
- uses a cabinet-based integrated interior infill system
 - Dallas Semiconductor TINI networked microcontroller
 - up to 30 sensors per cabinet
 - capture a complete record of audio-visual activity
 - Java virtual machine for sensor communication
- further sensors shared in the rooms

Context

Context-Aware Applica

Smart Buildings

Conclusions

Teaching Homes (2)

Max Kister

IBR, TU Braunschweig

Programmable pervasive spaces (1)

Gator Tech Smart House (University of Florida)

- assistive environment which is easy to monitor by an average user
- Open Services Gateway Initiative framework
 - middleware based on Java
 - sensors represented as OSGi service bundles
 - applications use services in order to obtain context information

ontext-Awareness

Programmable pervasive spaces (2) - middleware

IBR, TU Braunschweig

 Outline
 Context-Awareness
 Context-Aware Applications
 Smart Buildings
 Conclusions

 Programmable pervasive spaces (3)

 existing applications are:

- smart mailbox
- smart front door
- smart mirror
- smart displays

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Outline

Context-Awareness

Definition of context Definition of context-awareness

Context-Aware Applications

Sensors Middleware Displays and Actuators

Smart Buildings

Overview Existing design concepts

Conclusions

- all systems disclose a potential in helping inhabitants at home
- easy usable user interfaces are a precondition
- modular architectures which can be easily expanded
- technology becomes cheaper

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Thank you!

Context-Awareness

Context-Aware Applications

Smart Building

Conclusions

Term Paper

- Context-Aware Applications in Smart Buildings -

Max Kister

Institute of Operating Systems and Computer Networks Technische Universität Braunschweig

July 13, 2007