Part III – Overview

1. People and Projects
2. Project Management
3. Web Software Process Models
4. Further Readings

Where it starts…

- Understanding the problem (wrt “Accomplishing a business need”)
- What is the problem domain?
 - Defining the problem – asking questions
 - Which requirements exist?
 - Does Evolution play a major role?
- The problem:
 - What does the customer need vs. What does the customer want

Project Failure Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Failed</th>
<th>Challenged</th>
<th>Succeeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>25%</td>
<td>49%</td>
<td>28%</td>
</tr>
<tr>
<td>1998</td>
<td>26%</td>
<td>46%</td>
<td>26%</td>
</tr>
<tr>
<td>1995</td>
<td>49%</td>
<td>33%</td>
<td>27%</td>
</tr>
<tr>
<td>1994</td>
<td>31%</td>
<td>51%</td>
<td>16%</td>
</tr>
</tbody>
</table>

This chart depicts the outcome of the 30,000 application projects in large, medium, and small cross-industry U.S. companies tested by The Standish Group since 1994.

http://www.standishgroup.com/
Project Failure Rates (2)

Lost:
- California Dep. Of Motor Vehicles (45 mio US$)
- American Airline (165 mio US$)

Success as planned:
- Hyatt Hotels (15 million US$)

This chart depicts the outcome of the 30,000 application projects in large, medium, and small cross-industry U.S. companies tested by The Standish Group since 1994.

http://www.standishgroup.com/

Steps in Planning a Project

- Definition of the problem
- Develop strategies for potential solutions
- Plan product team
- Plan production process
- Plan project management
- Plan costs and time

Range of Complexity

- Static Site
 - Data Collector Site
- Dynamic Data Access
 - Web Application
- Service-Based Web Application and Federations
- Dynamically Created Site
- Service Application Centered
- Document Centered

Strategies

- Analyze existing solutions
 - Outsource
 - Find & Buy
- Develop new solution
 - From the scratch
 - Development with Reuse
- Desired Solution vs. Product Complexity vs. Time vs. Costs

Learning from the past

- CHAOS Reports in more detail
 - Check for statistics and predictions
- Some numbers:
 - 33% Developed from scratch (traditional lang.)
 - 15% Purchased application & modified
 - 13% Developed from scratch (with obj. model)
 - 5% Purchased application & performed no modification
- One of the best outcomes
 - Success Factors!

CHAOS Top Success Factors

- What makes a project successful? Success factors identified in 2000.
- Cf. Standish Group Web Site

<table>
<thead>
<tr>
<th>Factor</th>
<th>Success Factor (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Management (No. 2 in 2003)</td>
<td>18</td>
</tr>
<tr>
<td>User Involvement (No. 1 in 2003)</td>
<td>16</td>
</tr>
<tr>
<td>Experienced Project Manager</td>
<td>14</td>
</tr>
<tr>
<td>Clear Business Objectives</td>
<td>12</td>
</tr>
<tr>
<td>Minimizing Scope</td>
<td>10</td>
</tr>
<tr>
<td>Requirements Process</td>
<td>8</td>
</tr>
<tr>
<td>Standard-Software Infrastructure</td>
<td>6</td>
</tr>
<tr>
<td>Formal Methodology</td>
<td>6</td>
</tr>
<tr>
<td>Reliable Estimates</td>
<td>5</td>
</tr>
<tr>
<td>Skilled Staff</td>
<td>5</td>
</tr>
</tbody>
</table>
Product Team

- You need a great team to develop great Web-applications/products
 - “Great” - is a difficult term, if you do not know what you are looking for...
 - “Candidate Attributes” include: Expertise, commitment, attitude, behavior, team skills, thirst for knowledge – usually candidates are great or perfect in all areas...
 - Your team composition must handle this

- Impact of bad choices
 - One poor candidate → “one bad apple can ruin the bunch” → do not hire / usually can be handled
 - Worse: longer period of bad staffing → low performance, bad details and quality, late products

Product Team II

- Small Teams!
 - CHAOS: Best success rates
 - 1999: time < 6 month, people < 6 and budget < 750.000 US$
 - 2001: time < 4 month, people < 4 and budget < 500.000 US$
 - Otherwise try to scale!
- Furthermore:
 - Minimize Scope, Open communication, and focus on using Standards

Typical Team Approach

- You can combine some roles to teams as small as 3 people
 - Do not combine some (like Product and Program Manager, or anything with Developer)
- You can scale the teams by using two general methods
 - Functional Teams
 - Many people for one role
 - Feature Teams
 - Sub-teams for each feature

Scaling MSF Team-Model

- You can combine some roles to teams as small as 3 people
 - Do not combine some (like Product and Program Manager, or anything with Developer)
- You can scale the teams by using two general methods
 - Functional Teams
 - Many people for one role
 - Feature Teams
 - Sub-teams for each feature

Evolution-oriented Team

- Growing instead of developing solutions...

Ready to go?

- Constantly check the team
- Prepare for status by questions:
 - Do I have the right users? Do I make involvement easy? Etc.
 - Does the key executives have a stake in the outcome? Do I have a well defined plan?
 - Prepare for change and risk management
- Prepare for CHANGE-Management
 - Stay agile – but remember (trace) why you did or changed something!
Basics: Project & Tasks
- **Project**
 - Temporary endeavor undertaken to create a unique product or service
 - I.e., set of activities which ends with specific accomplishment and which has
 1. Non-routine tasks,
 2. Distinct start/finish dates, and
 3. Resource constraints (time/money/people/equipment).
- "Tasks" are activities which must be completed to achieve project goal
 - Can have subtasks
 - Have start and end points (and has a duration)
 - Short relative to the project
 - And are significant (Use verb-noun form, e.g., "create design")
 - Use action verbs such as "create", "define", and "gather"

Basics: WBS & Program
- **Work Breakdown Statement (WBS)**
 - Categorized list of tasks with an estimate of resources required
- **Program**
 - A group of projects managed in a coordinated way to obtain benefits not available from managing them individually
 - E.g., Program: PRJ Design, PRJ Construction
 - E.g., Program: PRJ Version 1, PRJ Version 2

Project Problems
- Only ~28% of application projects are delivered on time
 - BUT 98% of these with project manager
- Problems to solve:
 - Unrealistic Schedules
 - May yield to artificial documents
 - Avoid cost of iteration/going back a stage
 - Rewriting documents by bad solutions
 - Seriously reviewing and approving takes time
 - Next stage may start before document approved
 - Deliverables not suitable for reuse-oriented models
 - Documents are likely to constrain reuse

PM Disciplines & Skills
- **Skills** – Usually general management
 - I.e., finance, planning (strategic, tactical, operational), work management, leading vs. managing, delegation, negotiation, etc.
 - Steps to start with
 - Define Team, Methods and Standards
 - Define scope and vision of the project → Initiate Phase
 - Risk Management – is a MUST!
 - Report, monitor, review, control, etc.
- Many more exist:
 - Project Management Institute Body of Knowledge, provides over 35 years of experience
 - PM Knowledge Areas and required skills: Integration, Scope, Time, Cost, Quality, HR, Communications, Risk, and Procurement Management
 - Cf. PMI’s PMBOK http://www.pmbok.com and Standish Group

PM Initiate Phase Activities
- **Activities to start with in the Initial Phase**
 - Prepare for Product Life Cycle Management
 - Projected Organization and Personnel Management
 - Establish open communication in the team
 - Advocate for customer vs. Advocate for team vs. …
 - Interim Milestone (IM) of Initial Phase:
 - Core Team Organized
PM Tools
- General Project Management Tools
 - e.g. support for GANTT charts, PERT diagrams
- Process Models
 - Deliverable-oriented process models
- Dedicated tools
 - Risk management
 - Prediction knowledge bases
 - Requirement tools
- Few (if any) project management research dedicated to Web Application production
 - Requires experience

PM-Tool: Gantt Chart
- Gantt Chart - Preferred visual reporting device used for conveying a project's schedule.
 - Graphically displays the work breakdown, total duration needed to complete tasks, as well as % completion
 - Does not display level of effort, and is not an effective planning tool on its own
 - May be integrated with other spreadsheet-type reporting devices that convey additional information related to project planning

PM-Tool: Gantt Chart 2

PM-Tool: Deliverables

Risks & Potential Sources
- Potential sources:
 - People – e.g. Customer, Team
 - Process – e.g. Schedule, Requirements, Design
 - Technology – e.g. Availability, Security
 - Environmental – e.g. Legal, Business
- Risk Management is a recurring process throughout the whole project
 - There is no excuse for not doing it...
Risk Management Process

- **Risk** – Any event that could potentially have a negative impact on the project
 - Remember: Risk is not a problem as refers to the future!
 - Evaluate: Quality analysis (prioritize effect on project objective) & Quantity analysis (probability and estimating implications)

|-----------------|-------------|-------------|---------|-----------|-----------|--------------|

[Diagram showing the risk management process]

Related to Source: MSFv3 Risk Discipline Paper

Risk Assessment (simplified)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Probability (1-7)</th>
<th>Impact (1-7)</th>
<th>Total Risk (P x I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Developer leaves team</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Regulation §1-3</td>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>WS not available</td>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Part III ▶ Chapter://2 ▶ Project Management

Organization Structure

Will not be covered by this lecture

Some notes:
- Few (if any) Web Engineering Research
- Cf. standard Software Engineering literature
- Regarding evolution of content
 - Workflows respectively process models for publishing content and people involved
 - Cf. Content Management Systems literature

Costs Estimation

Will not be covered by this lecture

Some notes:
- Few Web Engineering Research
- Cf. standard Software Engineering literature
- Issues to look at
 - Costs for Marketing (search engines, advertising)
 - Return on investment (ROI) have to be considered, e.g. advertisements, integration of other Web Applications (Marketplaces, Web Application Production Lines)
 - Computer & Network costs
 - Political influences

Goals of Web Engineering

- Develop (high quality) Web Applications
 - Effective
 - Efficient
 - Achieve desired application
 - in a Predictable Way
- Maintain and Evolve
 - Plan for change (Solution may change the problem!!!!)

…using systematic, disciplined and quantifiable Approaches: Process Models
Production Process

- "Idea" during "software crisis"
 - Apply methods to software development
 - Describe the process of software development with Process Model
- "Visible" development process
 - Important for Project Management
- Lessons learned in Software Engineering:
 - Process is complex and variable
 - Detailed process Models – still research
- Different Processes appropriate for different classes of problems
- Lessons Learnt: Applying a process adds "6% success factor"

Process Model

- Applying a process model to a Web Engineering specific problem
- Focus on systematic, disciplined and quantifiable development and evolution

Process Models and WebE

- Code-and-fix model (ad hoc development)
- The Waterfall model
- Prototyping model
- Evolutionary Development model
- Spiral model
- Rational Unified Process model
- MSFv3 Process model
- Agile Processes
- Reuse-Oriented Approaches
- WebComposition Process model
- Agile Processes, XP, Scrum
- And many, many more...

Code-and-fix Model

- Oldest Model – and still in use
 - Works "pretty well" for small projects in the early beginning
 - Test phases usually very long and unpredictable
 - Susceptible to Spaghetti-Code & Linking
- User requirements often neglected
- Fixing bugs expensive
- Unsuitable for team work
- Unsuitable for most Web projects

The Waterfall Model

- Life Cycle Model – software process as number of stages
- Derived from other engineering approaches (late sixties)
- Used for practical Web Application development in several variants
- Completion of stage / milestone needed to proceed to following stage (M)
- Negative: Problems in early stages
- Popular for management

Prototyping Model

- Outline Requirements
- Develop Prototype
- Evaluate Prototype
- Operation & Maintenance

© 1999-2006 by Dr.-Ing. M. Gaedke
Prototyping Model II

- Prototype – only responsible for defining system requirement
- Suitable if system requirements can not described completely in the beginning
- Applicable for reuse approaches
- Open Process Model – use of any process model
- Further Issues
 - Good for motivation of team
 - Increases trust of customer

Evolutionary Development

- Successive Versions Model, Exploratory Evolutionary Development
- Aims at fast product implementation
- Delivery if product corresponds to subjective requirements
- Monolithic view hinders reuse
- Measuring progress difficult

Spiral Model (Risk-Driven)

- Determine objectives, Alternatives, constraints
- Evaluate alternatives, identify, resolve risks
- Requirements plan life cycle plan
- Development Plan
- Conceptual Design, Prototyping, Models etc.
- Detailed design
- Plan next phases
- Integration & Test
- Display

Spiral Model Template

<table>
<thead>
<tr>
<th>Project, Date, …</th>
<th>Project, Date, …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Improve O1 and O2</td>
</tr>
<tr>
<td>Constraints</td>
<td>Within L costs, …</td>
</tr>
<tr>
<td>Alternatives</td>
<td>Buy A1</td>
</tr>
<tr>
<td>Risks</td>
<td>Integration of X</td>
</tr>
<tr>
<td>Risk resolution</td>
<td>Develop Prototype, Product Survey</td>
</tr>
<tr>
<td>Results</td>
<td>Prototype works, flexible with A3</td>
</tr>
<tr>
<td>Plans</td>
<td>Develop Product and integrate A3</td>
</tr>
<tr>
<td>Commitment</td>
<td>Fund further 6 month</td>
</tr>
</tbody>
</table>

Rational Unified Process®

- People
- Tools
- Technical Perspective

Management Perspective

- Development Life Cycle
 - Inception: vision, business case, scope of the project
 - Elaboration: Planning, Construction
 - Transition: Deliver, Training
 - Evolution: Life of software after initial development cycle
Part III Chapter/3 Web Software Process Models

Technical Perspective

- Iteration Activities
 - Planning
 - Analysis
 - Design
 - Implementation
 - Testing
- Iteration is intellectual activity – not a stage for certain task

Part III Chapter/3 Web Software Process Models

Key MSF Components

Models

- Team Model
- Process Model

Disciplines

- Project Management Discipline
- Risk Management Discipline
- Readiness Management Discipline

Source: http://www.microsoft.com/technet/itsolutions/techguide/msf/default.mspx

Part III Chapter/3 Web Software Process Models

MSF Process Model

- Deployment Complete
- Release Readiness Approved
- Vision/Scope Approved
- Scope Complete
- Project Plans Approved

Part III Chapter/3 Web Software Process Models

Design Process Overview

- Conceptual Design
- Logical Design
- Physical Design
- Scenarios
- Objects and Services
- User Interface and Logical Database
- Components, User Interface, and Physical Database

Part III Chapter/3 Web Software Process Models

Agile Processes

- Reaction to the “bureaucratic” process models
 - Lightweight methodologies (now agile methodologies)
 - Try to answer Too much process vs. no process

Part III Chapter/3 Web Software Process Models

Agile Manifesto

- Principles defined by Manifesto for Agile Software Development
 - Individuals & interactions > processes & tools
 - Working software > comprehensive documentation
 - Customer collaboration > contract negotiation
 - Responding to change > following a plan
 - Manifesto acknowledges the value of the right items, but focuses the value on the left more
- For further information, cf.: http://agilemanifesto.org/

© 1999-2006 by Dr.-Ing. M. Gaedke
Agile (Process) Findings

- Separation of design and construction
 - Construction is automated by the compiler
 - … all the effort is design (this includes coding)
 - Design is a creative process …
 - as such: not easy to plan, predictability is impossible

- Iterative development is essential
 - Allows to deal with changes in required features

- Style of planning
 - Long term plans: fluid
 - Short term plans: stable for a single iteration

Agile Methodologies

- XP (Extreme Programming)
 - Testing as foundation of development
 - Write tests first
 - Evolutionary design process with focus on refactoring
- Cockburn's Crystal Family
 - Different projects require different methodologies
 - Focus on least disciplined methodology (that could still succeed)
 - Iteration reviews encouraging the process to be self-improving
- Scrum
 - Iteration = Sprints (of 30 days)
 - Scrum = Every day fifteen minute meeting
- Feature Driven Development (FDD)
 - Start: Develop an Overall Model, Build a Features List, Plan by Feature
 - Iteration: Design by Feature, Build by Feature
- Many others
 - RUP and MSF can be used in an agile manner – but don’t have to!

Reuse-Oriented Approaches

- Web Engineering in context of Reuse
- Product is assembly from reusable components
 - Idea: All needed Components exist
- These Approaches focus on being agile in the context of:
 - Producer Reuse
 - Consumer Reuse

Model for Producer Reuse

- Develop (Components) for Reuse
- Domain Engineering
 - Process Model for Production of Domain Components
- Process Model
 1. Domain Analysis
 2. Develop Components
 3. Deploy Components in Reuse-Repository
 4. Make them available via Registries

Model for Consumer Reuse

- Develop with Reuse (of Components)
- Orthogonal Process Model
- Process Model
 1. Accessing
 2. Understanding
 3. Adapting
WebComposition

WebComposition project
- Gaedke et al., University of Karlsruhe, Germany

Vision:
- Develop Web applications in an agile way by reusing components and services – Focus on Evolution

Project:
- Reuse-Oriented Process Model
- Middleware: WebComposition Service Linking System (WSLS)
- Reuse-Repository & UDDI as Registry
- System Model: i2Map & System Description Framework (SDF)

History:
- First developments in 1996
- Used for different projects, e.g. Global e-Procurement System of Hewlett-Packard, Notebook University Karlsruhe, Mobile University project of Microsoft Research

WebComposition Simplified

Life-Cycle of any Service with focus on Evolution
- Web Application is a set of services (realizing features)

Planning for Reuse (Analysis)
- Domain Engineering, RNA, Ontology

Producer Reuse (Design)
- Development of Reusable Services and Artifacts

Consumer Reuse (Realization)
- Development with Reusable Services and Artifacts

WebComposition Process

Focus on Features
- Working artifact is unit of reuse
- Agile Process for each service

Aspects
- Reuse-Driven
- Risk-Driven
- Milestones
- Hypermedia & Composition in mind

Guiding models

More on Process Models

OPEN Process
- OPEN Consortium
- Contract-oriented stages
- Coordination with other processes

Web Engineering Process Models
- Hot research topic – no standards yet
- In most cases: derived from Spiral and focus on object oriented/based design models

Many others are available – in most cases modifications of the Process Models presented here

(Agile) Literature

Kent Beck, Martin Fowler, *Planning Extreme Programming*, Addison-Wesley

Ken Schwaber, Mike Beedle, *Agile Software Development with SCRUM*, Prentice Hall

Alistair Cockburn, *Agile Software Development*, Addison-Wesley

Literature

- Chapter 2, 4: Thomas A. Powell, Web Site Engineering, Prentice Hall PTR
- Chapter 6, 7: David Lowe and Wendy Hall, Hypermedia and the Web – an Engineering Approach, John Wiley & Sons
- Chapter 1, 2, 6, 7, 26: Ian Sommerville, Software Engineering, Addison-Wesley
- Jim McCarty, Dynamics of Software Development, Microsoft Press
- MSF: http://www.microsoft.com/msf
- PMI: http://www.pmi.org (or check IEEE Std 1490-1998)

Further information available at Lecture Web Site