Green Lights for Everybody
Optimizing Traffic Signal Coordination in Networks

Ekkehard Köhler
Brandenburgische Technische Universität Cottbus

July 2009
Partners

- Rolf Möhring
 Technische Universität Berlin
- Gregor Wünsch
 Technische Universität Berlin
- Klaus Nökel
 ptv AG Karlsruhe
- Martin Strehler
 BTU Cottbus
- ADVEST Cluster
 bmbf
Problem: Too many red lights!

What to do?
Problem: Too many red lights!

What to do?

- change length of signal phases
- change red/green split
- change coordination, i.e. offsets between signals ("Grüne Welle"—progressive signal system)
Problem: Too many red lights!

What to do?

- change length of signal phases
- change red/green split
- change coordination, i.e. offsets between signals ("Grüne Welle"—progressive signal system)

Problem: Not all vehicles can get green corridor
(already single non-trivial)
Problem: Too many red lights!

What to do?
- change length of signal phases
- change red/green split
- change coordination, i.e. offsets between signals ("Grüne Welle"—progressive signal system)

Problem: Not all vehicles can get green corridor (already single non-trivial)

Question: Does exist generalization of green corridors in networks?
Problem: Too many red lights!

What to do?

- change length of signal phases
- change red/green split
- change coordination, i.e. offsets between signals ("Grüne Welle"—progressive signal system)

Problem: Not all vehicles can get green corridor (already single non-trivial)

Question: Does exist generalization of green corridors in networks?

Idea: Minimize waiting times (overall traffic time)
Problem: Too many red lights!

What to do?
- change length of signal phases
- change red/green split
- change coordination, i.e. offsets between signals ("Grüne Welle"—progressive signal system)

Problem: Not all vehicles can get green corridor (already single non-trivial)

Question: Does exist generalization of green corridors in networks?

Idea: Minimize waiting times (overall traffic time)

Method: Discrete optimization; mathematical programming
Easiest Case: Not optimized
Easiest Case: Optimized
Two-way-traffic: Not optimized

What to do?
Two-way-traffic: Not optimized

- What to do?
- Optimization by hand...
Optimization „by hand“
Two-way-traffic: Optimized

► What to do in traffic networks?
Signal coordination in networks

Green corridor for all — impossible! What to do?
Signal coordination in networks

Green corridor for all — impossible! What to do?
Minimize overall traffic time
Model: Traffic Signal

fixed time control: not traffic sensitive

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour → traffic sensitive = fixed time control
Model: Traffic Signal

fixed time control: not traffic sensitive

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour → traffic sensitive = fixed time control

Concepts:

- signal plan
- cycle time T
Model: Traffic Signal

fixed time control: not traffic sensitive

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour → traffic sensitive = fixed time control

Concepts:

- signal plan
- cycle time T
- signal (LSA 1)
- signal group (A, B, C)
Model: Traffic Signal

fixed time control: *not traffic sensitive*

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour → traffic sensitive = fixed time control

Concepts:

- signal plan
- cycle time T
- signal (LSA 1)
- signal group (A, B, C)
- intranode-offset Ψ
Model: Traffic Signal

fixed time control: not traffic sensitive

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour \rightarrow traffic sensitive $=$ fixed time control

Concepts:

- signal plan
- cycle time T
- signal (LSA 1)
- signal group (A, B, C)
- intranode-offset Ψ
- (arc-)offset ϕ
Model: Traffic Signal

fixed time control: not traffic sensitive

- Reason 1: many cities have such signal systems
- Reason 2: rush-hour → traffic sensitive = fixed time control

Concepts:

- signal plan
- cycle time T
- signal (LSA 1)
- signal group (A, B, C)
- intranode-offset Ψ
- (arc-)offset ϕ

Aim: Find set of offsets, such that overall delay is minimal
Model: Network

- street network $G = (V, A)$ (multi-graph)
Model: Network

- street network $G = (V, A)$ (multi-graph)
- vertices: signalized intersections
Model: Network

- street network $G = (V, A)$ (multi-graph)
- vertices: signalized intersections
- arcs: connecting streets between intersections (multi-arcs for different signal groups)
Model: Network

- street network $G = (V, A)$ (multi-graph)
- vertices: signalized intersections
- arcs: connecting streets between intersections (multi-arcs for different signal groups)
- cycle length T: length of signal phase (e.g. 60, 80, 120 sec.)
Model: Network

- street network $G = (V, A)$ (multi-graph)
- vertices: signalized intersections
- arcs: connecting streets between intersections (multi-arcs for different signal groups)
- cycle length T: length of signal phase (e.g. 60, 80, 120 sec.)
- transit time τ on arcs (constant)
Model: Network

- street network $G = (V, A)$ (multi-graph)
- **vertices**: signalized intersections
- **arcs**: connecting streets between intersections (multi-arcs for different signal groups)
- cycle length T: length of signal phase (e.g. 60, 80, 120 sec.)
- transit time τ on arcs (constant)
- given traffic volumes f on arcs (from (static) traffic assignment for given OD-matrix)
Model: Network

- street network $G = (V, A)$ (multi-graph)
- vertices: signalized intersections
- arcs: connecting streets between intersections (multi-arcs for different signal groups)
- cycle length T: length of signal phase (e.g. 60, 80, 120 sec.)
- transit time τ on arcs (constant)
- given traffic volumes f on arcs (from (static) traffic assignment for given OD-matrix)
- macroscopic model – vehicles move in platoons
Model: Network

- street network \(G = (V, A) \) (multi-graph)
- **vertices**: signalized intersections
- **arcs**: connecting streets between intersections
 (multi-arcs for different signal groups)
- cycle length \(T \): length of signal phase (e.g. 60, 80, 120 sec.)
- transit time \(\tau \) on arcs (constant)
- given traffic volumes \(f \) on arcs
 (from (static) traffic assignment for given OD-matrix)
- **macroscopic** model – vehicles move in platoons
- platoon length \(p \)
Model: Network

- street network \(G = (V, A) \) (multi-graph)
- **vertices**: signalized intersections
- **arcs**: connecting streets between intersections (multi-arcs for different signal groups)
- cycle length \(T \): length of signal phase (e.g. 60, 80, 120 sec.)
- transit time \(\tau \) on arcs (constant)
- given traffic volumes \(f \) on arcs (from (static) traffic assignment for given OD-matrix)
- **macroscopic** model – vehicles move in platoons
- platoon length \(p \)
- arrival time of platoon relative to beginning of green phase \(\gamma \)
Model: Platoons
Model: Platoons

Platoon of vehicles
Model: Platoons

\[T \]

\[R \quad G \]

platoon of vehicles

\[p \]

\[\tau \]
Model: Platoons

![Diagram of a platoon of vehicles]

- Offset
- T
- R
- G
- γ
- p
- τ

platoon of vehicles
Model: Platoons

 Offset

 T

 R G γ

 p

 τ

 platoon of vehicles
Model: Waiting Times

- γ
- $G - R$
- number of vehicles
- time
- cycle time T

Ekkehard Kühler
BTU Cottbus
Linearized sum of waiting times
MIP-Optimization: Constraints

arc \((v_i, v_j)\):

- offset \(\phi_{ij}\): fractional variable
- arrival time of platoon at vertex \(v_j\): \(\gamma_{ij}\) \((\gamma_{ij} \in [0, T])\)
- determine \(\gamma_{ij}\) arrival time of platoon, \(\tau_{ij} - \gamma_{ij} + r_{ij} = \phi_{ij}\)
 \(\tau_{ij}\) transit time on arc, \(r_{ij}\) length of red phase; \(\phi_{ij}\) offset per arc
- admissibility condition:
 only valid if offsets on cycles sum up to multiple of cycle time
 \(\rightarrow\) cycle base of graphs
 (conversion from arc offsets to vertex offsets)

K., Liebchen, Rizzi, Wünsch. *Networks* 2008
MIP Formulation

\[
\begin{align*}
\min & \quad \sum_{(i,j) \in A} f_{ij} z_{ij} \\
\sum_{e \in F(\ell)} \phi_e - \sum_{e \in R(\ell)} \phi_e + \sum_{r=1}^{k_\ell} \psi_{v_{j},p} &= n_\ell \cdot T \quad \forall \ell \in C \\
\sum_{e \in F(\ell)} \phi_e - \sum_{e \in R(\ell)} \phi_e + \sum_{r=1}^{k_\ell} \psi_{v_{j},p} &= n_\ell \cdot T \quad \forall \ell \in C \\
z_{ij} &\geq g_e^e(\gamma_{ij}) \quad \forall e = (i,j) \in A \\
\tau_{ij} - \gamma_{ij} + r_{ij} &= \phi_{ij} \quad \forall (i,j) \in A \\
n_\ell \leq n_\ell \leq \bar{n}_\ell \\
n_\ell &\in \mathbb{Z} \\
\gamma_{ij} &\in [0, T] \quad \forall (i,j) \in A
\end{align*}
\]
MIP-Optimisation: Remarks

- basic model: Gartner, Little, Gabbay. 1975.
MIP-Optimisation: Remarks

- basic model: Gartner, Little, Gabbay. 1975.
MIP-Optimisation: Remarks

- basic model: Gartner, Little, Gabbay. 1975.
- related: PESP (Periodic Event Scheduling Problem) periodic time labeling
MIP-Optimisation: Remarks

- basic model: Gartner, Little, Gabbay. 1975.
- related: PESP (Periodic Event Scheduling Problem)
 periodic time labeling
- different red/green splits possible (switch between modes)
MIP-Optimisation: Remarks

- basic model: Gartner, Little, Gabbay. 1975.
- related: PESP (Periodic Event Scheduling Problem) periodic time labeling
- different red/green splits possible (switch between modes)
- non-uniform cycle length in network possible
MIP-Optimisation: Results

CPLEX; cancel after 10 minutes

- 140 vertices, 500 arcs, 400 cycles
 optimality gap 19%

- 70 vertices, 180 arcs, 110 cycles
 optimality gap 0.04% (1% after 10 sec.)
MIP-Optimisation: Results

CPLEX; cancel after 10 minutes

- 140 vertices, 500 arcs, 400 cycles
 optimality gap 19%

- 70 vertices, 180 arcs, 110 cycles
 optimality gap 0.04% (1% after 10 sec.)

- comparison with TRANSYT via simulation
 (microscopic simulation with VISSIM)
MIP-Optimisation: Results

CPLEX; cancel after 10 minutes

- 140 vertices, 500 arcs, 400 cycles
 optimality gap 19%

- 70 vertices, 180 arcs, 110 cycles
 optimality gap 0.04% (1% after 10 sec.)

- comparison with TRANSYT via simulation
 (microscopic simulation with VISSIM)

- comparable results in reasonable time
MIP-Optimisation: Results

CPLEX; cancel after 10 minutes

- 140 vertices, 500 arcs, 400 cycles
 optimality gap 19%

- 70 vertices, 180 arcs, 110 cycles
 optimality gap 0.04% (1% after 10 sec.)

- comparison with TRANSYT via simulation
 (microscopic simulation with VISSIM)

- comparable results in reasonable time

- proof of quality by lower bound
 (optimality gap)
But:

Problem: coordination changes transit times \(\Rightarrow\) traffic changes!
But:

Problem: coordination changes transit times \Rightarrow traffic changes!

New questions: can coordination and traffic assignment be determined simultaneously?
But:

Problem: coordination changes transit times \Rightarrow traffic changes!

New questions: can coordination and traffic assignment be determined simultaneously?

\rightarrow Integrated model for traffic assignment and signal coordination

bmb+f Project ADVEST in cooperation with ptv AG
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?

Problem:
underlying traffic assignment model is static (without temporal components)
⇒ offsets at signals cannot directly be mapped
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?

Problem:
underlying traffic assignment model is static (without temporal components)
⇒ offsets at signals cannot directly be mapped

Link Performance Function: average transit time; depends on traffic
(constant) transit time + (traffic dependent) waiting time at intersection
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?

Problem:
underlying traffic assignment model is static (without temporal components)
⇒ offsets at signals cannot directly be mapped

Link Performance Function: average transit time; depends on traffic
(constant) transit time + (traffic dependent) waiting time at intersection

static traffic assignment:
- convex
- monotonically increasing

Signal coordination:

\[
\begin{align*}
\tau_e &= 0 \\
\tau_e' &= x_e
\end{align*}
\]
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?

Problem:
underlying traffic assignment model is static (without temporal components)
⇒ offsets at signals cannot directly be mapped

Link Performance Function: average transit time; depends on traffic
(constant) transit time + (traffic dependent) waiting time at intersection

static traffic assignment:
- convex
- monotonically increasing

Signal coordination:
- transit time constant
- offset changes waiting time
Integrated Model: Coordination — Traffic Assignment

Question: How does coordination change traffic assignment?

Problem:
underlying traffic assignment model is static (without temporal components)
⇒ offsets at signals cannot directly be mapped

Link Performance Function: average transit time; depends on traffic
(constant) transit time + (traffic dependent) waiting time at intersection

static traffic assignment:

- convex
- monotonically increasing

Signal coordination:

- transit time constant
- offset changes waiting time
1. Approach: Static Model

1. **Stage:** Assume offsets to be given
1. Approach: Static Model

1. **Stage:** Assume offsets to be given

Question: Can waiting times be mapped in link perf. function?
1. Approach: Static Model

1. **Stage**: Assume offsets to be given

Question: Can waiting times be mapped in link perf. function?
1. Approach: Static Model

1. **Stage:** Assume offsets to be given

Question: Can waiting times be mapped in link perf. function?
1. **Approach: Static Model**

1. **Stage:** Assume offsets to be given

Question: Can waiting times be mapped in link perf. function?

![Link Performance Function Diagram]

- non-monotonic
- non convex
- non concave
1. Approach: Static Model

1. Stage: Assume offsets to be given

Question: Can waiting times be mapped in link perf. function?

link performance function:
- non-monotonic
- non convex
- non concave

Open: Can traffic assignment be computed?
2. Approach: Time-Expanded Model

Idea: Model temporal character of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)
2. Approach: Time-Expanded Model

Idea: Model temporal character of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)

- flow travels through the network over time
- map time-dependent properties of arcs
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.
Time-Expanded Graph

Idea (Ford & Fulkerson):
Copy of each vertex per time step; arcs connect vertex copies corresponding to transit time.

Observation:
Dynamic flow in G corresponds to static flow in time-expanded graph G^T.

\Rightarrow standard algorithms for static flows applicable
2. Approach: Expanded Model

Idea: Model time-dependence of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)
2. Approach: Expanded Model

Idea: Model time-dependence of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)

New: cyclic expansion (combination of static and dynamic)
2. Approach: Expanded Model

Idea: Model time-dependence of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)

New: cyclic expansion (combination of static and dynamic)
2. Approach: Expanded Model

Idea: Model time-dependence of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)

New: cyclic expansion (combination of static and dynamic)
2. Approach: Expanded Model

Idea: Model time-dependence of offsets

Model: time-expanded network (dynamic flows, Ford/Fulkerson)

New: cyclic expansion (combination of static and dynamic)
2. Approach: Expanded Model

objective function: Minimize overall travel time

→ **Min Cost Circulation** (costs: const. transit-/waiting-times)
2. Approach: Expanded Model

objective function: Minimize overall travel time
→ **MIN COST CIRCULATION** (costs: const. transit-/waiting-times)
2. Approach: Expanded Model

objective function: Minimize overall travel time

→ **Min Cost Circulation** (costs: const. transit-/waiting-times)
2. Approach: Expanded Model

objective function: Minimize overall travel time

→ **Min Cost Circulation** *(costs: const. transit-/waiting-times)*
2. Approach: Expanded Model

objective function: Minimize overall travel time

→ **Min Cost Circulation** (costs: const. transit-/waiting-times)

And:

- time-expansion
- green-arcs
- waiting-arcs
- suitable capacities
- cost 0 on auxiliary arcs
New Model: Summary

- cyclic time expansion
- constant transit time on streets plus waiting times at intersection
- can change level of discretization
- traffic assignment reduces to min cost circulation
New Model: Summary

- cyclic time expansion
- constant transit time on streets plus waiting times at intersection
- can change level of discretization
- traffic assignment reduces to min cost circulation

Challenges:

- size of the model
- non-uniform cycle times
- calibration
- test with simulation tool
Computational Results: Inner city of Braunschweig

- 7 crossings
- 3 commodities
- cycle time of 84 seconds

data: group of Sándor Fekete
Experiments:

Expanded networks with different number of expansion steps

<table>
<thead>
<tr>
<th>Steps</th>
<th>Nodes</th>
<th>Edges</th>
<th>Variables</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>266</td>
<td>238</td>
<td>1484</td>
<td>1168</td>
</tr>
<tr>
<td>28</td>
<td>532</td>
<td>476</td>
<td>2968</td>
<td>2332</td>
</tr>
<tr>
<td>84</td>
<td>1596</td>
<td>1428</td>
<td>8904</td>
<td>6980</td>
</tr>
</tbody>
</table>

Running times for different numbers of expansion steps

<table>
<thead>
<tr>
<th>Steps</th>
<th>CPLEX Server</th>
<th>MT CPLEX S.</th>
<th>CPLEX PC</th>
<th>SCIP PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>37 s</td>
<td>37 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>160 s</td>
<td>172 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>2700 s</td>
<td>3000 s</td>
<td>8000 s</td>
<td>21 hours</td>
</tr>
</tbody>
</table>
Refining model: Hierarchic approach

- solve rough model with few expansion steps (only allow a few offsets, i.e. multiples of x)
- refine network by more expansion steps
- solve refined model with additional constraints

<table>
<thead>
<tr>
<th>Steps</th>
<th>original</th>
<th>refined</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>37 s</td>
<td>37 s</td>
</tr>
<tr>
<td>28</td>
<td>160 s</td>
<td>2 s</td>
</tr>
<tr>
<td>84</td>
<td>3000 s</td>
<td>8 s</td>
</tr>
</tbody>
</table>

- about 75% of binary variables fixed
- Refined model yields same optimal solution for this example (speed-up factor 50)
Simulation with Vissim:

Comparison of

- (estimated) actual coordination
- various solutions obtained by CPLEX
- random coordinations
- heuristic approach
1st Commodity
2nd Commodity
3rd Commodity
Simulation with low load

Load: 1: 300 cars per hour, 2: 150 cph, 3: 300 cph

Mean mean travel time (10 runs) in seconds:

<table>
<thead>
<tr>
<th>Commodity</th>
<th>actual</th>
<th>CPLEX</th>
<th>random</th>
<th>heuristic</th>
<th>no TLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>145</td>
<td>98</td>
<td>151</td>
<td>145</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>85</td>
<td>152</td>
<td>137</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>63</td>
<td>77</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>weighted</td>
<td>\sum</td>
<td>100</td>
<td>81</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

Standard deviation of mean travel time: 2 s
Simulation with dense traffic

Load: 1: 600 cars per hour, 2: 300 cph, 3: 600 cph

Mean travel time in seconds:

<table>
<thead>
<tr>
<th>Commodity</th>
<th>actual</th>
<th>CPLEX</th>
<th>random</th>
<th>heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163</td>
<td>104</td>
<td>164</td>
<td>167</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>96</td>
<td>153</td>
<td>141</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>65</td>
<td>90</td>
<td>68</td>
</tr>
<tr>
<td>weighted</td>
<td>∑</td>
<td>109</td>
<td>87</td>
<td>132</td>
</tr>
</tbody>
</table>
Simulation with extreme load

Load: 1: max, 2: max, 3: max

Mean travel time in seconds / cars per hour:

<table>
<thead>
<tr>
<th>Commodity</th>
<th>actual</th>
<th>CPLEX</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>528 / 830</td>
<td>528 / 830</td>
<td>552 / 760</td>
</tr>
<tr>
<td>2</td>
<td>182 / 600</td>
<td>164 / 600</td>
<td>239 / 500</td>
</tr>
<tr>
<td>3</td>
<td>121 / 1400</td>
<td>118 / 1400</td>
<td>157 / 1400</td>
</tr>
</tbody>
</table>

weighted \sum - - -
Summary

- showed approaches how to model signal coordination using discrete optimization methods
Summary

- showed approaches how to model signal coordination using discrete optimization methods
- used macroscopic models; evaluated with microscopic simulation
Summary

- showed approaches how to model signal coordination using discrete optimization methods
- used macroscopic models; evaluated with microscopic simulation
- purely static MIP optimization; applicable also for larger instances
Summary

- showed approaches how to model signal coordination using discrete optimization methods
- used macroscopic models; evaluated with microscopic simulation
- purely static MIP optimization; applicable also for larger instances
- semi-dynamic MIP optimization; work in progress
Summary

- showed approaches how to model signal coordination using discrete optimization methods
- used macroscopic models; evaluated with microscopic simulation
- purely static MIP optimization; applicable also for larger instances
- semi-dynamic MIP optimization; work in progress
- important property: know lower bounds (distance from optimal solution)